(HI,xnγ) 2002Bu16,2004Ka32,1998Do04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105, 223 (2005)	22-Jun-2005

Reactions include: ²⁴Mg(⁵⁸Ni,pnγ); ⁵⁴Fe(²⁸Ni,pnγ); ⁵⁸Ni(²⁴Mg,pnγ); Ni(⁹²Mo,X).

2002Bu16, 1995Bu33: ⁵⁸Ni(²⁴Mg,pn γ), E=180 MeV. Measured γ , $\gamma\gamma$ using GASP spectrometer consisting of 40

Compton-suppressed HPGe detectors and an 80 BGO-elements inner ball in conjunction with the ISIS silicon ball and a recoil-mass spectrometer.

2004Ka32: ⁵⁴Fe(²⁸Ni,pn γ) E=90 MeV. Measured $\gamma\gamma$, lifetimes using the FSU array of three Compton-suppressed Ge detectors consisting of 4-crystal Clover detectors and seven single-crystal detectors. Lifetimes were measured using the Doppler-shift attenuation method (DSAM) for experimental line shapes that were measured at both 35° and 145° whenever possible. The DSAM applied to this experiment involved a comparison of the decay time of the recoiling nuclei with their slowing-down time in a thick target.

2000Do10,1998Do04: ²⁴Mg(⁵⁸Ni,pn γ), E=190 MeV. Measured γ , $\gamma\gamma$, and lifetimes using three HPGe detectors and a low-energy photon spectrometer (LEPS). A 4.7 s 3 isomer discovered.

2001Re11: 54Fe(28 Si,pn γ), E=85 MeV, mass separation using recoil-mass spectrometer. Measured prompt and delayed γ and $\gamma\gamma$ using the Clarion array to measure the prompt γ -rays and a focal plane clover Ge detector to measure delayed γ -rays in conjunction with RMS (Isomer decay tagging technique).

2000Pi05: ²⁴Mg(⁵⁸Ni,pn γ), E=200 MeV. Measured γ , $\gamma\gamma$, T_{1/2} using three Si(Li) detectors for conversion electron spectroscopy and two segmented Ge clover detectors for γ -ray detection.

2000Ch07: Ni(92 Mo,X) E=60 MeV/nucleon. Measured half-life of a microsecond isomer at 311 keV. All data are from 2002Bu16, unless otherwise stated.

⁸⁰Y Levels

E(level) [†]	J ^π @	T _{1/2} ‡	Comments
0&	(4 ⁻)	30.1 s 5	$T_{1/2}$, J ^{π} : from 1998Do04.
228.5 ⁱ 1	(1 ⁻)	4.7 s 3	$\%\epsilon + \%\beta^+ = 19 2; \% IT = 81 1 (1998Do04, 2000Do10)$ E(level), $T_{1/2}, J^{\pi}$: from 1998Do04.
257.1 ^a 8	(5 ⁻)		J^{π} : from 1998Do04.
312.6 <mark>8</mark> 9	(2^{+})	4.7 μs 3	T _{1/2} : From 2000Ch07.
324.2 ^h 8	2^{-}		
443.6 11			
455.6 ^f 10	(3 ⁺)		
460.7 ⁱ 8	3-		
570.0 ^{&} 7	6-		
648.7 <mark>8</mark> 9	(4^{+})		
663.7 <mark>h</mark> 10	4-		
676.1 <i>11</i>			
878.8 ⁱ 11	5-		
886.6 ^f 10	(5 ⁺)		
937.5 ^a 9	7-		
1059.3 ^d 9	(6 ⁺)		
1175.8 ^e 9	(6+)		
1185.7 <mark>8</mark> 10	(6^{+})		
1207.1 ^{<i>h</i>} 12	6-		
1290.2 [°] 9	(7^{+})		
1358.6 ^{&} 10	8-	0.79 ps +42-21	
1488.7 ⁱ 13	7-		
1490.5 <mark>d</mark> 9	(8+)		
1509.6 ^f 10	(7+)		

(HI,xnγ) 2002Bu16,2004Ka32,1998Do04 (continued)

⁸⁰Y Levels (continued)

E(level) [†]	Jπ @	T _{1/2} ‡	E(level) [†]	Jπ @	T _{1/2} ‡
1764.6 ^e 10	(8^{+})		5438.3 ^h 21	(14^{-})	
1823.9 ^c 10	(9 ⁺)		5446.6 ^{<i>a</i>} 21	15-	0.11 ps 6
1825.1 ^{<i>a</i>} 11	9-	0.35 ps +6-5	5603.5 ^b 21	(15)	
1916.2 ⁸ 11	(8^{+})	*	5681.8 ⁱ 23	(15 ⁻)	
1957.3 ^h 13	8-		5874.9 <mark>/</mark> 20	(15^{+})	
2267.9 ^d 11	(10^{+})		5999.1 ^d 19	(16^{+})	0.06 ps +20-3
2305.6 ⁱ 14	9-	0.8 ps +26-4	6097.6 ^{&} 21	16-	0.12 ps 8
2323.3 ^f 12	(9 ⁺)	0.73 ps +35-19	6242.8 ^C 20	(17^{+})	0.08 ps +17-6
2350.9 ^{&} 12	10-	0.17 ps +6-5	6433.3 ^e 23	(16 ⁺)	
2615.4 [°] 12	(11^{+})	0.66 ps +53-22	6654.9 ^a 23	(17 ⁻)	<0.25 [#] ps
2618.5 ^e 14	(10^{+})		6784.9 <mark>8</mark> 21	(16 ⁺)	
2867.1 ^{<i>g</i>} 13	(10^{+})	0.30 ps +12-8	6968.5 ^h 23	(16 ⁻)	
2901.1 ^{<i>a</i>} 15	11-	0.12 ps +7-5	7034.2 ^b 23	(17)	
2916.3 ^h 15	10-	<0.41 [#] ps	7089.7 ⁱ 25	(17 ⁻)	
3298.6 ^d 13	(12^{+})	0.17 ps 10	7422.6 ^f 22	(17^{+})	
3328.4 ^{<i>f</i>} 14	(11^{+})	<0.23 [#] ps	7450.2 ^{&} 24	18^{-}	0.17 ps +12-9
3333.0 ⁱ 17	11-	0.30 ps +18-11	7528.1 ^d 22	(18^{+})	<0.14 [#] ps
3531.0 ^{&} 16	12-	0.11 ps +8-5	7789.1 ^C 22	(19 ⁺)	<0.14 [#] ps
3628.2 [°] 14	(13 ⁺)	0.19 ps 4	8029.2 ^{<i>a</i>} 25	(19 ⁻)	
3689.7 ^e 18	(12^{+})		8036.1 ^e 25	(18^{+})	
4013.9 ⁸ 15	(12^{+})	<0.26 [#] ps	8568.7 ^b 25	(19)	
4090.0 ^h 18	(12 ⁻)		9001 ^{&} 3	(20 ⁻)	<0.08 [#] ps
4146.0 ^{<i>a</i>} 18	13-	0.15 ps +7-6	9148.9 ^d 24	(20^{+})	
4442.7 ⁱ 20	13-	<0.22 [#] ps	9496.1 ^c 25	(21^{+})	
4509.6 ^f 17	(13 ⁺)	<0.19 [#] ps	9613 ^a 3	(21^{-})	
4558.9 ^d 16	(14^{+})	0.12 ps +11-10	10663 <mark>&</mark> 3	(22 ⁻)	
4842.6 ^{&} 19	14-	0.12 ps +10-7	10918 ^d 3	(22^{+})	
4848.5 ^C 17	(15^{+})	0.12 ps +9-6	11379 ^c 3	(23^{+})	
4973.7 ^e 20	(14^{+})	-	11401 ^{<i>a</i>} 3	(23 ⁻)	
5323.5 <mark>8</mark> 18	(14^{+})		12460 <mark>&</mark> 3	(24^{-})	

[†] From least-squares fit to $E\gamma'$ s, assuming $\Delta(E\gamma)=0.3$ keV for each γ ray, when quoted to tenth of a keV, otherwise 1 keV is assumed.

[±] From DSAM (2004Ka32) for all levels above 313 keV.

[#] Effective half-life (2004Ka32), not corrected for side feeding.

[@] As proposed by 2002Bu16 based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) data and band assignments.

- [&] Band(A): *π*5/2[422]*ν*3/2[301], *α*=0.
- ^{*a*} Band(a): $\pi 5/2[422]v3/2[301]$, $\alpha = 1$.
- ^b Band(B): Band based on (15).
- ^{*c*} Band(C): $\pi 5/2[422]v5/2[422]$, $\alpha = 1$.
- ^d Band(c): $\pi 5/2[422]v5/2[422]$, $\alpha=0$.

^{*e*} Band(D): $\pi g_{9/2} \nu g_{9/2}$.

- ^{*f*} Band(E): $\pi 5/2[422]\nu 1/2[431]$, $\alpha = 1$.
- ^g Band(e): $\pi 5/2[422]\nu 1/2[431]$, $\alpha = 0$.

^h Band(F): Band based on 2⁻, α =0. Several configurations contribute: $\pi 5/2[422]\nu 3/2[301]; \pi 1/2[431]\nu 3/2[301];$

(HI,xnγ) 2002Bu16,2004Ka32,1998Do04 (continued)

⁸⁰Y Levels (continued)

 $\pi 3/2[301]\nu 1/2[431].$

^{*i*} Band(f): Band based on 1⁻, α =1. Several configurations contribute: $\pi 5/2[422]v3/2[301]; \pi 1/2[431]v3/2[301]; \pi 3/2[301]v1/2[431].$

$\gamma(^{80}Y)$

DCO's are from 2002Bu16 and correspond to gates on $\Delta J=2$, Q transitions, unless stated otherwise.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	Comments
84		312.6	(2^{+})	228.5 (1 ⁻)			E_{γ} : from 1998Do04.
95.5	27 3	324.2	2-	$228.5(1^{-})$	D		$A_2 = -0.12$ 3, $A_4 = -0.07$ 6.
114.1	1.0 4	1290.2	(7^{+})	1175.8 (6+)			2 / 1
136.2	32 <i>3</i>	460.7	3-	324.2 2-	D		$A_2 = -0.16 4, A_4 = -0.06 6.$
143.0	20.0 25	455.6	(3^{+})	312.6 (2+)	D		$DCO=0.8\ 2.\ A_2=-0.14\ 2,\ A_4=-0.07\ 3.$
186.3	3.3 1	443.6		257.1 (5 ⁻)			
192.9	23.1 12	648.7	(4+)	455.6 (3+)	D		DCO=1.1 1 (dipole gated). $A_2 = -0.09 \ 3, \ A_4 = -0.02 \ 3.$
200.0	8.7 9	1490.5	(8^{+})	1290.2 (7 ⁺)	D		$A_2 = -0.59 4, A_4 = +0.06 8.$
203.0	27.2 14	663.7	4-	460.7 3-	D		$A_2 = -0.175, A_4 = -0.058.$
215.1	24.1 15	878.8	5-	663.7 4-	D		$A_2 = -0.185, A_4 = +0.029.$
228.5 1		228.5	(1-)	0 (4 ⁻)	M3(+E4)	<0.65	Mult., δ : From α (K)exp= 0.50 7 (2001No07), 0.47 15 (2000Pi05). E _w : from 1998Do04.
231.0	14.6 6	1290.2	(7 ⁺)	1059.3 (6 ⁺)	D		DCO=1.2 2 (dipole gated). $A_2=-0.36$ 5, $A_4=+0.04$ 9.
232.4	2.1 [†] 8	676.1		443.6			
232.5	3.1 [†] 10	460.7	3-	$228.5 (1^{-})$			
237.9	15 <i>3</i>	886.6	(5 ⁺)	648.7 (4+)	D		DCO=1.0 <i>I</i> (dipole gated). A ₂ =-0.14 <i>3</i> , A ₄ =0.00 <i>5</i> .
257.0	100 3	257.1	(5 ⁻)	0 (4 ⁻)	D		DCO=1.0 <i>I</i> (dipole gated). $A_2=-0.12 \ 3$, $A_4=+0.06 \ 5$.
281.6	10.9 10	1488.7	7-	1207.1 6-	D		$A_2 = -0.23 \ 3, \ A_4 = +0.07 \ 5.$
289.0	7.7 1	1175.8	(6^{+})	886.6 (5 ⁺)	D		$\tilde{DCO}=0.5$ 3. $A_2=-0.04$ 4, $A_4=+0.01$ 7.
299.2	6.5 1	1185.7	(6^{+})	886.6 (5 ⁺)	D		DCO= 0.94 . A ₂ = -0.054 , A ₄ = $+0.028$.
304.7	1.2 1	1490.5	(8+)	1185.7 (6+)	(Q)		DCO=0.5 3 (dipole gated). A_2 =+0.17 22, A_4 =-0.01 36.
312.9	11.8 14	570.0	6-	257.1 (5-)	D		DCO=0.6 <i>1</i> . A_2 =-0.17 <i>5</i> , A_4 =+0.13 <i>10</i> .
315.0	2.6 1	1490.5	(8 ⁺)	1175.8 (6 ⁺)	(Q)		A_2 =+0.22 9, A_4 =+0.23 15. Sign of A_4 is inconsistent with ΔJ =2,Q transition.
323.9	3.5 1	1509.6	(7 ⁺)	1185.7 (6 ⁺)	D		DCO=1.0 3 (dipole gated). $A_2 = -0.26 \ 11$, $A_4 = +0.10 \ 21$.
328.2	17.7 15	1207.1	6-	878.8 5-	D		$A_2 = -0.22$ 3, $A_4 = -0.01$ 45.
329.5	1.7 4	3628.2	(13^{+})	3298.6 (12 ⁺)			2
333.5	24.8 16	1823.9	(9+)	1490.5 (8+)	D		DCO=0.6 1. $A_2 = -0.51$ 5, $A_4 = +0.07$ 10.
333.7	2.4 9	1509.6	(7^+)	1175.8 (6 ⁺)	D+Q		$A_2 = -0.384, A_4 = +0.147.$
336.1	0.7 1	648.7	(4^+)	312.6 (2+)	(Q)		$A_2 = +0.18$ 12, $A_4 = +0.10$ 16.
339.7	2.7 3	663.7	4-	324.2 2-	(Q)		$A_2 = +0.19$ 9, $A_4 = -0.04$ 13.
347.6	8.0 7	2615.4	(11^{+})	2267.9 (10 ⁺)	D		$DCO=0.6 \ I. \ A_2=-0.46 \ 6, \ A_4=+0.15 \ I0.$
348.4	3.3 4	2305.6	9-	1957.3 8-	D		$A_2 = -0.24 \ 6, \ A_4 = -0.09 \ 9.$
367.6	3.1 12	937.5	7-	570.0 6-			
383.0	2.1 1	1059.3	(6^{+})	676.1			
406.6	3.1 <i>1</i>	1916.2	(8^{+})	1509.6 (7 ⁺)			
406.8	1.6 5	2323.3	(9+)	1916.2 (8+)			
418.0	7.2 4	878.8	5-	460.7 3-	(Q)		$A_2 = +0.28 \ 14, A_4 = +0.07 \ 21.$

Continued on next page (footnotes at end of table)

(HI,xnγ) 2002Bu16,2004Ka32,1998Do04 (continued)

$\gamma(^{80}\text{Y})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
421.2	3.0 4	1358.6	8-	937.5 7-		
431.1	6.0 2	886.6	(5^{+})	455.6 (3 ⁺)		DCO=0.9 2.
431.3	35.9 6	1490.5	(8+)	1059.3 (6+)	(Q)	DCO=0.8 3 (dipole gated). A_2 =+0.12 3, A_4 =-0.04 4.
443.9	2.7 4	2267.9	(10^{+})	1823.9 (9 ⁺)		
461.2	0.9 2	3328.4	(11^+)	2867.1 (10 ⁺)		
466.6	1.9 6	1825.1	9-	1358.6 8-	D	
468.6	1.4 4	1957.3	8 (0+)	1488./ /	D+Q	$A_2 = -0.11$ 6, $A_4 = +0.23$ 10.
4/4.2	3.8 14	1/04.0	(8^+)	$1290.2 (7^{\circ})$	D+Q	$A_2 = -0.930, A_4 = +0.219.$
489.9	5.7 1	1039.5	(0)	370.0 0	(D)	Mult.: A ₂ and A ₄ consistent with $\Delta J=0$, dipole transition.
525.9	0.5 1	2350.9	10-	1825.1 9-		DCO=1.6 6 (dipole gated).
527.1	5.6 2	1175.8	(6^+)	$648.7 (4^+)$	(Q)	$A_2 = +0.25 \ I0, \ A_4 = +0.05 \ I6.$
533.7	6.3 6	1823.9	(9')	1290.2 (7')	(Q)	$A_2 = +0.34 II, A_4 = -0.14 II.$
537.0	3.3 1	1185.7	(6')	648./(4')	(Q)	DCO=1.2 3 (dipole gated). $A_2 = +0.20 \ 10, \ A_4 = -0.02 \ 17.$
543.4	/.1 2	1207.1	(10^{+})	003./4		A = 10.26.6 $A = 0.02.8$
543.7	0.6 2	2867.1	(10^{+})	2323.3 (9')	D	$A_2 = +0.26 0, A_4 = -0.02 8.$
555.0 570.1	4.12	1490.5	(8')	937.5 7	D	$A_2 = -0.134, A_4 = +0.1012.$
578.0	394 262	370.0	$\binom{0}{(8^+)}$	0 (4) 11857 (6 ⁺)	(Q)	$A_2 = +0.12$ J, $A_4 = +0.00$ d.
588.0	2.0 2	1764.6	(0)	1103.7 (0) $1175.8 (6^+)$	(\mathbf{O})	$\Delta_{c} = 1.2.5$ (upple galed).
500.9 600.0	5.2 2 11 6 14	1/04.0	(0)	878.8 5-	(\mathbf{Q})	$A_2 = +0.200, A_4 = -0.099.$
610.7	225	2016.3	10-	2305.6 0-		
623.0	6313	1509.6	(7^+)	886.6 (5 ⁺)	(0)	DCO-179 (dipole gated) Δ_{2} +0.23.13 Δ_{4} = -0.01.16
680.6	35.0.8	937.5	7-	$257.1(5^{-})$	(\mathbf{Q})	$A_{2}=+0.19$ 3 $A_{4}=-0.05$ 5
683.4	1.0.3	3298.6	(12^+)	$2615.4 (11^+)$		112 10.19 5, 114 0.05 5.
685.3	0.6.3	4013.9	(12^+)	$3328.4 (11^+)$		
720.1	5.3 8	1290.2	(7^+)	570.0 6		
730.5	2.9 1	1916.2	(8+)	1185.7 (6 ⁺)		DCO=0.8 3 (dipole gated). $A_2 = +0.14$ 19, $A_4 = -0.2$ 3.
750.2	6.5 4	1957.3	8-	1207.1 6-	(Q)	$A_2 = +0.285, A_4 = -0.089.$
777.3	25.4 6	2267.9	(10^{+})	1490.5 (8 ⁺)	(Q)	$A_2 = +0.29 3, A_4 = -0.1 5.$
788.4	22.7 11	1358.6	8-	570.0 6-	(E2)	DCO=1.8 <i>l</i> (dipole gated). A_2 =+0.24 5, A_4 =-0.03 7.
791.5	25 6	2615.4	(11^{+})	1823.9 (9 ⁺)	(E2)	$A_2 = +0.25 6, A_4 = +0.01 10.$
802.1	46 5	1059.3	(6^{+})	257.1 (5 ⁻)	D	DCO=0.5 1. A_2 =-0.28 8, A_4 =+0.16 13.
813.8	4.1 16	2323.3	(9 ⁺)	1509.6 (7 ⁺)		$A_2 = +0.2 \ 3, \ A_4 = -0.3 \ 5.$
816.8	11.9 6	2305.6	9-	1488.7 7-		
853.9	10 4	2618.5	(10^{+})	1764.6 (8+)	Q	$A_2 = +0.29 6, A_4 = -0.24 9.$
887.6	31.8 8	1825.1	9-	937.5 7-	E2	$A_2 = +0.24 3, A_4 = -0.17 5.$
951.0	3.8 12	2867.1	(10^{+})	1916.2 (8 ⁺)		
959.0	4.6 8	2916.3	10	1957.3 8	(E2)	$A_2 = +0.35$ /, $A_4 = -0.01$ 10.
992.3	19.9 14	2350.9	10	1358.0 8	E2 (E2)	$DCO=0.9$ 2. $A_2=+0.26$ 0, $A_4=-0.24$ 9.
1005.0	3.9 3	3528.4	(11^{+}) (12^{+})	$2525.5 (9^{\circ})$	(E2) (E2)	$A_2 = +0.27 I0, A_4 = +0.01 I3.$
1012.8	22 3	3028.2	(15^{-})	2013.4 (11*)	(E2)	$\Delta J=2,Q$ transition.
1027.4	7.8 5	3333.0	11-	2305.6 9-	(E2)	$A_2 = +0.35$ 7, $A_4 = -0.15$ 11.
1030.6	17 4	3298.6	(12^{+})	2267.9 (10 ⁺)	(E2)	$DCO=0.8\ 2.\ A_2=+0.39\ 7,\ A_4=+0.04\ 9.$
1071.2	4.9 4	3689.7	(12^{+})	2618.5 (10 ⁺)	(Q)	$A_2 = +0.28 \ 17, \ A_4 = -0.26 \ 26.$
1076.0	23 7	2901.1	11-	1825.1 9-	(E2)	A_2 =+0.49 4, A_4 =+0.20 7. Sign of A_4 is inconsistent with ΔJ =2,Q transition.
1109.7	3.2 4	4442.7	13-	3333.0 11-	E2	$A_2 = +0.246$, $A_4 = -0.309$.
1147.0	2.9 5	4013.9	(12^{+})	2867.1 (10 ⁺)		
1173.7	2.6 4	4090.0	(12 ⁻)	2916.3 10-		
1180.1	14.0 [‡] 12	3531.0	12-	2350.9 10-	(E2)	$A_2 = +0.35 8$, $A_4 = -0.14 12$ for doublet.
1181.2 ⁴	1.80 [‡] 20	4509.6	(13 ⁺)	3328.4 (11 ⁺)		
1208.2	4.4 7	6654.9	(17 ⁻)	5446.6 15	·	
1220.3	15.19	4848.5	(15^{+})	$3628.2 (13^{+})$	(E2)	$A_2 = +0.30$ 6, $A_4 = +0.10$ 9.

Continued on next page (footnotes at end of table)

1882.6

0.8 4

11379

 (23^{+})

				(111, X11 y)	2002Du10,2	004Ka52,1990D004 (continueu)
					γ (⁸⁰ Y) (continued)
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
1239.1	2.6 5	5681.8	(15^{-})	4442.7 13-		
1244.9	17.5 13	4146.0	13-	2901.1 11-	(E2)	$A_2 = +0.315, A_4 = +0.088.$
1255.0	5.3 10	6097.6	16-	4842.6 14-	(E2)	$A_2 = +0.48\ 29,\ A_4 = -0.2\ 4.$
1260.3	9.9 10	4558.9	(14^{+})	3298.6 (12+	.)	$A_2 = +0.36 \ 13, A_4 = -0.06 \ 19.$
1284.0	1.6 3	4973.7	(14+)	3689.7 (12+) (Q)	$A_2 = +0.57 22, A_4 = +0.09 34.$
1300.6	7.2 5	5446.6	15-	4146.0 13-	(E2)	$A_2 = +0.45 9, A_4 = +0.09 12.$
1309.6	2.6 4	5323.5	(14^{+})	4013.9 (12+	.)	
1311.5	8.4 10	4842.6	14-	3531.0 12-	(E2)	$A_2 = +0.20 8, A_4 = +0.06 13.$
1348.3	1.5 2	5438.3	(14^{-})	4090.0 (12-	.)	
1352.6	5.4 7	7450.2	18-	6097.6 16-	(E2)	$A_2 = +0.27 \ 14, A_4 = -0.20 \ 22.$
1365.3	1.5 3	5874.9	(15^{+})	4509.6 (13+	.)	
1374.3	2.6 4	8029.2	(19 ⁻)	6654.9 (17-	.)	
1394.3	7.9 5	6242.8	(17^{+})	4848.5 (15+	.)	
1407.9	0.9 <i>3</i>	7089.7	(17^{-})	5681.8 (15-	.)	
1430.6	2.4 4	7034.2	(17)	5603.5 (15)		
1440.1	5.6 8	5999.1	(16^{+})	4558.9 (14+	·) (E2)	A_2 =+0.45 8, A_4 =+0.18 11. Sign of A_4 is inconsistent with
						$\Delta J=2,Q$ transition.
1457.5	4.8 7	5603.5	(15)	4146.0 13-	(Q)	$A_2 = +0.37 \ 15, \ A_4 = +0.19 \ 23.$
1459.6	1.7 4	6433.3	(16^{+})	4973.7 (14+	.)	
1461.4	1.3 <i>3</i>	6784.9	(16^{+})	5323.5 (14+	.)	
1529.0	2.8 6	7528.1	(18^{+})	5999.1 (16+	.)	
1530.2	0.6 3	6968.5	(16 ⁻)	5438.3 (14-	.)	
1534.5	1.8 4	8568.7	(19)	7034.2 (17)		
1546.3	4.5 5	7789.1	(19^{+})	6242.8 (17+	.)	
1547.7	0.9 2	7422.6	(17^{+})	5874.9 (15+	.)	
1550.4	3.2 6	9001	(20^{-})	7450.2 18-		
1583.5	1.3 3	9613	(21^{-})	8029.2 (19-	.)	
1602.8	0.8 <i>3</i>	8036.1	(18^{+})	6433.3 (16+	.)	
1620.8	1.3 4	9148.9	(20^{+})	7528.1 (18+	.)	
1662.5	1.3 5	10663	(22^{-})	9001 (20-	.)	
1707.0	1.7 4	9496.1	(21^{+})	7789.1 (19+	.)	
1768.9	0.5 3	10918	(22^{+})	9148.9 (20+	.)	
1788	0.6 4	11401	(23 ⁻)	9613 (21-	.)	
1797.0	0.6 4	12460	(24^{-})	10663 (22-	.)	

2002Bu16 2004K 932 1998Do04 (continued)

[†] 232.4 and 232.5 form a doublet. Ey=232.4 and and Iy=2.1 8 are quoted by 2002Bu16 for both placements. But in the RADWARE file submitted by the authors of 2002Bu16 and available on web (http://radware.phy.ornl.gov/nd/), values quoted for the transition from 460.7 level are E γ =232.5, I γ =3.1 10. The latter values from RADWARE file are given.

9496.1 (21+)

[‡] 1180.1 and 1181.2 form a doublet. E γ =1180.1 and and I γ =14.0 12 are quoted by 2002Bu16 for both placements. But in the RADWARE file submitted by the authors of 2002Bu16 and available on web (http://radware.phy.ornl.gov/nd/), a separate value is quoted for the transition from 4509.6 level, which is much weaker than the transition from 3531.0 level. The value for the weaker line from RADWARE file is given.

[#] From $\gamma(\theta)$ data of 2002Bu16. The mult=Q when $\gamma(\theta)$ data are consistent with $\Delta J=2$, quadrupole; and mult=D or D+Q when $\gamma(\theta)$ are consistent with $\Delta J=1$ or In some rare cases with $\Delta J=0$. RUL for E2 and M2 are used when level lifetimes are known.

 ${}^{80}_{39}Y_{41}$

 ${}^{80}_{39}Y_{41}$

8

(HI,xnγ) 2002Bu16,2004Ka32,1998Do04

 ${}^{80}_{39}\mathrm{Y}_{41}$

