⁸⁰Y ε decay (30.1 s) 1999Do01,1981Li12,1982De36

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105, 223 (2005)	22-Jun-2005

Parent: ⁸⁰Y: E=0.0; $J^{\pi}=(4^{-})$; $T_{1/2}=30.1$ s 5; $Q(\varepsilon)=9.09\times10^{3}$ 18; $\%\varepsilon+\%\beta^{+}$ decay=100.0

⁸⁰Y-Q(ε): from 2003Au03. The $\beta\gamma$ measurement of 2003Ba18 gives \geq 8929 83.

1999Do01 (also 2000Do10): ⁸⁰Y source produced by ²⁴Mg(⁵⁸Ni,pn) at 190 MeV and separated by Argonne fragment mass analyzer (FMA). Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, time- γ and β -gated time- γ using three Compton-suppressed HPGe detectors, a low-energy photon (LEPS) spectrometer. Positrons emitted in the decay of ⁸⁰Y were detected with thin plastic scintillators placed in front of Ge detectors.

1981Li12: source produced by ⁵⁸Ni(²⁴Mg,pn) E=85 MeV, ⁵⁸Ni(²⁵Mg,p2n) E=95 MeV and ⁵⁸Ni(²⁸Si,pn α) E=110 MeV. Measured T_{1/2}(⁸⁰Y), γ , $\gamma\gamma$, $\gamma\chi$, β , $\beta\gamma$.

1982De36: source produced by ⁵⁴Fe(³²S,pn α) and mass separation. Measured γ , $\gamma\gamma$, $\gamma\gamma(t)$, β , $\beta\gamma$, $T_{1/2}(^{80}Y)$. Others:

2003Ba18: Source produced by 58 Ni(28 Si,np α); measured Q value by $\beta\gamma$ coin.

1996Sh27: Source produced by 54 Fe(28 Si,pn) E=88 MeV. Measured Q value by $\beta\gamma$ coin.

1987Li14, 1987Lo10, 1987LeZT: yield of ⁸⁰Y in heavy-ion reactions.

All data are from 1999Do01, unless otherwise stated.

⁸⁰Sr Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^{+}		
385.89 8	2^{+}	30 ps 10	$T_{1/2}$: from $\gamma\gamma(t)$ (1982De36).
980.70 10	4+	•	-,
1142.13 8	(2^{+})		Additional information 1.
1571.05 10	(3 ⁺)		Additional information 2.
1653.59 12	(2^{+})		Additional information 3.
1763.80 23	6+		
1832.55 10	(4 ⁺)		
2296.27 16	(5^{+})		
2301.15 13	$(3,4^{+})$		J^{π} : (3 ⁻ ,4 ⁺) (1999Do01).
2418.87 12	$(3,4^{+})$		J^{π} : (3 ⁻ ,4 ⁺) (1999Do01).
2492.54? 13	(0,1,2)		J^{π} : (1,2) ⁻ (1999Do01).
			E(level): population uncertain in the decay of 30.5-s activity.
2836.5 <i>3</i>	(4)		J^{π} : (5 ⁻) (1999Do01).
2958.26 19	$(3,4,5^+)$		J^{π} : (4 ⁻) (1999Do01).
3058.07 17	$(3,4,5^+)$		J^{π} : (4 ⁻) (1999Do01).
3094.6 4			
3163.0 <i>3</i>			
3283.96 19	$(3^+, 4, 5)$		J^{π} : (4 ⁻) (1999Do01).
3311.6 4			
3377.1 <i>3</i>			
3697.6 <i>3</i>	(3,4,5)		J^{π} : (4,5) ⁻ (1999Do01).

[†] From least-squares fit to $E\gamma's$.

[‡] From 'Adopted Levels'. The assignments by 1999Do01, based on rather weak arguments, are different in some cases; these are listed under comments. In other cases the evaluator has added parentheses since strong arguments are lacking.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ ‡	Ie‡	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(5.39×10 ³ 18)	3697.6	3.6	0.08	6.0	3.7	av E β =2009 87; ε K=0.0184 24; ε L=0.0021 3; ε M+=0.00047 6
$(5.71 \times 10^3 \ 18)$	3377.1	0.9	0.02	6.8	0.9	av E β =2164 87; ε K=0.0150 18; ε L=0.00174 21; ε M+=0.00038 5
$(5.78 \times 10^3 \ 18)$	3311.6	0.6	0.01	7.0	0.6	av $E\beta$ =2196 87; ε K=0.0144 17; ε L=0.00168 20; ε M+=0.00037 5
(5.81×10 ³ 18)	3283.96	2.6	0.04	6.4	2.6	av $E\beta$ =2209 87; ε K=0.0141 17; ε L=0.00165 20; ε M+=0.00036 5 E(and point)=4543 548 from ℓ (1451a) coin (2002Po18)
(5.93×10 ³ 18)	3163.0	0.7	0.01	7.0	0.7	av E β =2267 88; ε K=0.0131 16; ε L=0.00153 18; ε M±=0.00033 4
$(6.00 \times 10^3 \ 18)$	3094.6	0.5	0.01	7.2	0.5	av E β =2301 88; ε K=0.0126 15; ε L=0.00147 17; ε M+=0.00032 4
(6.03×10 ³ 18)	3058.07	1.8	0.02	6.6	1.8	av E β =2318 88; ε K=0.0123 14; ε L=0.00144 17; ε M+=0.00031 4
(6.13×10 ³ 18)	2958.26	1.4	0.02	6.8	1.4	av $E\beta = 2367\ 88;\ \varepsilon K = 0.0117\ 13;\ \varepsilon L = 0.00136\ 15;\ \varepsilon M + = 0.00030\ 4$
(6.25×10 ³ 18)	2836.5	1.5	0.02	6.8	1.5	E(end-point)=4543 532 from $\beta(138/\gamma)$ coin (2003Ba18). av E β =2426 88; ε K=0.0109 12; ε L=0.00127 14; ε M+=0.00028 3
(6.67×10 ³ 18)	2418.87	4.3	0.04	6.5	4.3	av $E\beta$ =2628 88; ε K=0.0087 9; ε L=0.00101 10; ε M+=0.000221 22
(6.79×10 ³ 18)	2301.15	1.7	0.02	6.9	1.7	E(end-point)=4593 796 from $\beta(1438\gamma)$ coin (2003Ba18). av E β =2686 88; ε K=0.0082 8; ε L=0.00095 10; ε M = -0.000208 21
$(6.79 \times 10^3 \ 18)$	2296.27	3.1	0.03	6.7	3.1	av E β =2688 88; ε K=0.0082 8; ε L=0.00095 10; ε M+=0.000207 21
$(7.26 \times 10^3 \ 18)$	1832.55	6.8	0.05	6.5	6.9	av E β =2914 88; ε K=0.0065 6; ε L=0.00076 7; ε M+=0.000165 15
						E(end-point)=4560 323 from $\beta(852\gamma)$ coin (2003Ba18). E(end-point)=4593 879 from $\beta(1447\gamma)$ coin (2003Ba18).
(7.33×10 ^{3#} 18)	1763.80	<5.4	< 0.08	>8.6 ¹ <i>u</i>	<5.5	av E β =2939 87; ε K=0.0133 13; ε L=0.00156 15; ε M+=0.00034 4
						E(end-point)=4664 459 from β (783 γ) coin (2003Ba18). No evidence of direct feeding from $\beta\gamma$ measurement of 2003Ba18.
$(7.44 \times 10^3 \ 18)$	1653.59	1.7	0.03	9.1 ¹ <i>u</i>	1.7	av Eβ=2992 87; εK=0.0126 12; εL=0.00148 14; εM+=0.00032 3
$(7.52 \times 10^3 \ 18)$	1571.05	5.2	0.03	6.7	5.2	av E β =3042 88; ε K=0.0058 5; ε L=0.00067 6; ε M+=0.000147 13
(7.95×10 ³ 18)	1142.13	5.0	0.06	8.9 ¹ <i>u</i>	5.1	E(end-point)=4643 120 from $\beta(1185\gamma)$ coin (2003Ba18). av E β =3239 87; ε K=0.0100 9; ε L=0.00117 10; ε M+=0.000254 22
(8.11×10 ^{3#} 18)	980.70	<31	< 0.2	>6.1	<31	av E β =3331 89; ε K=0.0045 4; ε L=0.00052 4; ε M+=0.000114 9
						E(decay): from $(595\gamma)(4945\beta)$, deduced values: 5.97×10^3 <i>18</i> (1981Li12) and 6.10×10^3 67 (1982De36); but both these values most likely correspond to a β transition from a level above 3 MeV as discussed by 2003Ba18. E(end-point)=4617 <i>136</i> from $\beta(595\gamma)$ coin (2003Ba18). No evidence of direct feeding from $\beta\gamma$ coin measurement of 2003Ba18.
$(8.70 \times 10^{3#} 18)$	385.89	<22	< 0.2	>8.5 ¹ <i>u</i>	<22	av E β =3606 88; ε K=0.0073 6; ε L=0.00085 7;

Continued on next page (footnotes at end of table)

⁸⁰Υ ε decay (30.1 s) 1999Do01,1981Li12,1982De36 (continued)

ϵ, β^+ radiations (continued)

E(decay) E(level)

Comments

εM+=0.000185 14

E(decay): from $(386\gamma)(5505\beta)$, deduced values: 6.53×10^3 26 (1982De36) and 6.58×10^3 31 (1981Li12); but both these values most likely correspond to a β transition from a level above 3 MeV as discussed by 2003Ba18.

^{\dagger} All feedings should be treated as upper limits and associated log *ft* values as lower limits since there could be many higher levels, unobserved as yet, in the energy gap of about 5.5 MeV between Q value and the highest known level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{80}\mathrm{Sr})$

I v normalization: $I(\gamma+ce)(\gamma' s \text{ to } g.s.)=100.$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	$\alpha^{@}$	Comments
325.7 2 385.9 1	0.8 2 80 20	3283.96 385.89	(3 ⁺ ,4,5) 2 ⁺	2958.26 0.0	(3,4,5 ⁺) 0 ⁺	[E2]	0.0084	I_{γ} : total intensity from the decay of g.s. and isomer=100.0 16; some fraction (about 20 units) may belong to the decay of of 4.8-s isomer. From the present decay scheme at least 60 units must be from the decay of the 30.5-s activity.
413.6 ^{&} 2 428.9 <i>I</i> 463.4 <i>3</i> 534.3 ^{&} 2 586.4 ^{&} <i>3</i>	0.3 2 1.8 2 0.3 <i>1</i> 0.2 <i>1</i> 0.3 2	3697.6 1571.05 2296.27 3697.6 2418.87	(3,4,5) (3^+) (5^+) (3,4,5) $(3,4^+)$	3283.96 1142.13 1832.55 3163.0 1832.55	$(3^+,4,5)$ (2^+) (4^+) (4^+)			
590.2 <i>5</i> 594.8 <i>1</i>	0.4 2 41.6 8	1571.05 980.70	(3^+) 4^+	980.70 385.89	4^+ 2 ⁺	[E2]	0.0022	I_{γ} : ≈ 1 unit of intensity may belong to the decay of 4.8-s isomer
647.7 2 673.1 2 690.3 2 725.4 2 756 2 1	0.7 <i>1</i> 0.9 <i>2</i> 3.1 <i>2</i> 1.9 <i>2</i> 8 2 <i>3</i>	2301.15 1653.59 1832.55 2296.27 1142.13	$(3,4^+)$ (2^+) (4^+) (5^+) (2^+)	1653.59 980.70 1142.13 1571.05 385.89	(2^+) 4^+ (2^+) (3^+) 2^+			$L \sim 2$ unit of intensity may belong to the
765.3 ^{&} 2	0.8 1	2418.87	$(3,4^+)$	1653.59	(2^+)			$\gamma_{\gamma} \sim 2$ unit of intensity may belong to the decay of 4.8-s isomer.
783.1 2 x801 847.7 2 851.8 1 861.2 3 867.2 4	4.6 2 1.0 <i>I</i> 3.9 <i>3</i> 0.6 2	2418.87 1832.55 3697.6	$(3,4^+)$ (4^+) (3,4,5) $(2^+,4,5)$	980.70 1571.05 980.70 2836.5	4 ⁺ (3 ⁺) 4 ⁺ (4)			E_{γ} : from text in 1999Do01.
987.4 ^{cc} 2 1142.1 <i>1</i>	0.6 <i>1</i> 4.3 2	3283.96 1142.13	$(3^+,4,5)$ (2^+)	2296.27 0.0	(5^+) 0^+			I_{γ} : ≈ 1 unit of intensity may belong to the decay of 4.8-s isomer.
1185.2 <i>1</i> 1225.5 2 1267.6 2	9.7 <i>3</i> 0.5 <i>2</i> 1.7 <i>2</i>	1571.05 3058.07 1653.59	(3^+) (3,4,5^+) (2 ⁺)	385.89 1832.55 385.89	2 ⁺ (4 ⁺) 2 ⁺			·
1276.6 3	1.6 3	2418.87	$(3,4^{+})$	1142.13	(2^{+})			E_{γ} : 1277.5 3 (I γ =3) (1981Li12) placed from a

⁸⁰Y ε decay (30.1 s) 1999Do01,1981Li12,1982De36 (continued)

$\gamma(^{80}Sr)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
						1663 level corresponds to $1276.6\gamma + 1278.7\gamma$ doublet from 1999Do01.
1278.7 <i>3</i>	1.6 3	3697.6	(3,4,5)	2418.87	$(3,4^{+})$	
1315.5 2	1.0 2	2296.27	(5^{+})	980.70	4+	
1320.4 <i>1</i>	1.1 <i>1</i>	2301.15	$(3,4^{+})$	980.70	4+	
1350.4 <i>1</i>		2492.54?	(0,1,2)	1142.13	(2^{+})	I_{γ} : 1.2 <i>l</i> is most likely from the decay of 4.8-s isomer.
1387.2 2	2.0 1	2958.26	$(3,4,5^+)$	1571.05	(3 ⁺)	
1396.3 ^{&} 3	0.4 1	3697.6	(3,4,5)	2301.15	(3,4 ⁺)	E_{γ} : this γ corresponds to 1394.6 3 (I γ =1) (1981Li12) placed from a 1780 level.
1438.2 <i>1</i>	1.5 <i>1</i>	2418.87	$(3,4^{+})$	980.70	4+	
1446.7 <i>1</i>	1.4 2	1832.55	(4^+)	385.89	2+	
1451.4 2	1.1 <i>1</i>	3283.96	$(3^+, 4, 5)$	1832.55	(4^{+})	
1487.0 2	1.0 1	3058.07	$(3,4,5^+)$	1571.05	(3^{+})	
1523.5 <i>3</i>	0.4 1	3094.6	< <i>/ / /</i>	1571.05	(3+)	
1544.7 <mark>&</mark> 3	0.4.2	3377.1		1832.55	(4^{+})	
1591.9.3	0.8 1	3163.0		1571.05	(3^+)	
^x 1630.8 [‡]	010 1	010010		10,1100	(0)	
1653.6 2	0.7 2	1653.59	(2^{+})	0.0	0^{+}	
1658.0 <i>3</i>	0.5 1	3311.6		1653.59	(2^{+})	
^x 1677.4 [‡]						
1806.0 <i>3</i>	0.4 2	3377.1		1571.05	(3^{+})	
^x 1846.7 [‡]						
1855.8 <i>3</i>	1.9 <i>1</i>	2836.5	(4)	980.70	4+	

[†] From 1999Do01. Values for 9 gamma rays from 1981Li12 and 7 gamma rays from 1982De36 are in general agreement.

[‡] From text and figure 2 of 1999Do01; intensity is estimated (by the evaluator) as <1 from figure 2 of 1999Do01.

[#] For absolute intensity per 100 decays, multiply by 1.2.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{80}_{38}{
m Sr}_{42}$ -5

From ENSDF

 $^{80}_{38}\mathrm{Sr}_{42}$ -5