58 Ni(28 Si, $\alpha 2p\gamma$) **2000Wi01**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105, 223 (2005)	22-Jun-2005

2000Wi01: E=130 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, and lifetimes by DSAM using Gammasphere array of 57 large volume Ge detectors. Protons and alpha particles were detected with Microball array of 95 CsI detectors.

⁸⁰Sr Levels

E(level) [†]	J ^{π#}	T _{1/2} ‡	Comments
0&	0^{+}		
386.0 <mark>&</mark>	2+		
981.0 ^{&}	- 4 ⁺		
1142.0^{b}	2+		
1571.0^{b}	∠ 4+		
$1764.0^{\&}$	6 ⁺		
2295.0^{b}	6 ⁺		
2295.0	0 8+	0.284 ps 20	Additional information 1
2701.0	0	0.204 ps 29	O(transition)=2.89+5-4.
2837.0 ^C	(5 ⁻)		
2895.0	(5 ⁻)		
3172.0 ^b	8+		
3394.0 ^C	(7 ⁻)		
3581.0	7+ 7+		
3602.0	1.0+	0.105 14	
3/66.0~	10	0.125 ps 14	Additional information 2. $O(\text{transition}) = 3.12.4$
4056.0 ^C	(9 ⁻)		
4169.0 <mark>b</mark>	10^{+}		
4379.0 ^a	9+		
4469.0 ^d	(9)		
4923.0 ^C	(11^{-})		
4952.0	12+	0.090 ps 11	Additional information 3. $Q(\text{transition})=2.80 + 7 - 14.$
4995.0 [@] 8	(11)		
5274.0 ^b	(12^{+})		
5349.0 ^a	11+	0.291 ps 36	Additional information 4. Q(transition)=3.8 2.
5499.0 ^d	(11)		
5958.0 [°]	(13 ⁻)		
6079.0 [@]	(13)		
6276.0 ^{&}	14+	0.118 ps 14	Additional information 5. Q(transition)=1.82 + 5-2.
6470.0 ^a	13+	0.132 ps 25	Additional information 6. $Q(\text{transition})=3.4 + 3-2.$
6494.0 <mark>b</mark>	(14^{+})		
6664.0 ^d	(13)		
6967.0 [@] g	(15)		
7156.0 ^c	(15 ⁻)		
7730 ^a	15+	0.083 ps 23	Additional information 7. Q(transition)=3.0 + 4-3.

⁵⁸Ni(²⁸Si, α 2p γ) **2000Wi01** (continued)

⁸⁰Sr Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
7750 ^{&}	16+	0.028 ps 7	Q(transition)=2.97 + 37 - 25.
7772 [@] f	(15)	*	
7833.0 <mark>b</mark>	(16 ⁺)		
7971 <mark>d</mark>	(15)		
8132 [@] g	(17^{+})		
8499.0 ^C	(17-)		
9098 ^a	17+	0.042 ps 21	Q(transition)=3.2 + 11 - 3.
9319	$(1'/^{+})$		
9328 ^{cc}	18+		
9413^{a}	(17)		
9447 [@] J	(17)		
98/8° 10530 <mark>4</mark>	(19) 10 ⁺		
10339 10875 ^e	20^{+}		
10955 ^d	(19)		
11067 <mark>&</mark>	20+		
11120@	(20)		
11307 [@] f	(19)		
11370 [@] c	(21^{-})		
12070 ^a	(21+)		
12625 ^e	(22^{+})		
12938 [@]	(22)		
13056 [@] <i>c</i>	(23 ⁻)		
13098 ^{@&}	(22^{+})		
13390 ^{@f}	(21)		
13718 ^{<i>a</i>}	(23^+)		
14558	(24 ⁺)		
14993	(25^{-})		

[†] From least-squares fit to $E\gamma$'s, assuming $\Delta(E\gamma)=1$ keV for each γ .

[‡] From Doppler-shift attenuation method (DSAM), the uncertainties quoted by 2000Wi01 are probably statistical only. Additional 10% systematic uncertainty (due to stopping powers, etc.) is added in quadrature by the evaluator.

[#] As proposed by 2000Wi01 based on $\gamma(\theta)$ data and band assignments. These assignments differ significantly for some of the levels and bands than those In 2003Si06 which form the basis of assignments In Adopted Levels.

[@] Level not confirmed In 2003Si06.

 (25^{+})

 (26^{+})

15569<mark>a</mark>

16671^e

^a Band(B): band based on 7⁺. Parity of this band is opposite In 2003Si06 and In Adopted Levels.

^b Band(C): band based on 2⁺. Starting from 1571 level, the spin is higher by one unit In 2003Si06 and 1987Da05; and In Adopted Levels.

^{*c*} Band(D): Band based on (5⁻). Band crossing at 17⁻. This band is not assigned parity and the spin is one unit lower in 2003Si06. Also the three topmost levels are not confirmed by 2003Si06. The level scheme and spin-parity assignments in 'Adopted Levels' are based on work by 2003Si06.

^d Band(E): band based on (9).

^e Band(F): Band based on 20⁺. The 1933 γ in this band is placed above the 20⁺ level at 10878 by 2003Si06; and the 1750 and

[&]amp; Band(A): g.s. Band.

⁵⁸Ni(²⁸Si, α 2p γ) **2000Wi01** (continued)

⁸⁰Sr Levels (continued)

2113 γ rays are placed in the g.s. band.

^f Band(G): band based on (15). This band is not confirmed by 2003Si06.

^g Band(H): Band based on (11). Positive parity (see 1165γ (17⁺) to (15⁺) transition in table 1) in table 1 but no parity is assigned in level-scheme figure 3. This band is not confirmed by 2003Si06.

$\gamma(^{80}Sr)$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	Comments
386		386.0	2+	$0 0^+$		
429		1571.0	4+	1142.0 2+		
499		3394.0	(7^{-})	2895.0 (5 ⁻)		
557		3394.0	(7^{-})	2837.0 (5 ⁻)		
595		981.0	4+	386.0 2+		
662	19.9 <i>3</i>	4056.0	(9 ⁻)	3394.0 (7 ⁻)	(Q)	$A_2 = +0.12$ 6, $A_4 = -0.01$ 8.
724	23.5 5	2295.0	6+	1571.0 4+	Q	$A_2 = +0.13 5, A_4 = -0.10 7.$
754		4923.0	(11^{-})	4169.0 10+		
756		1142.0	2+	386.0 2+		
777	14.3 4	4379.0	9+	3602.0 7+		$A_2 = -0.53 9, A_4 = +0.59 11.$
						signs of A_2 and A_4 are inconsistent with $\Delta J=2$, Q transition.
783	100 <i>I</i>	1764.0	6+	981.0 4+	Q	$A_2 = +0.42 \ 6, \ A_4 = -0.16 \ 8.$
798	7.9 5	4379.0	9+	3581.0 7+	(Q)	$A_2 = +0.29 \ 15, \ A_4 = -0.04 \ 21.$
867		4923.0	(11^{-})	4056.0 (9-)		
877	13.1 2	3172.0	8^{+}	2295.0 6+	Q	$A_2 = +0.30 6, A_4 = -0.11 9.$
884	20.7 2	4056.0	(9-)	3172.0 8+	(D)	$A_2 = +0.21 \ 6, \ A_4 = -0.08 \ 8.$
888		6967.0	(15)	6079.0 (13)		
901	3.0 3	3602.0	7+	2701.0 8+	D+Q	$A_2 = +0.65 \ 12, \ A_4 = +0.31 \ 16.$
937	73.4 6	2701.0	8^{+}	1764.0 6+	(E2)	$A_2 = +0.325, A_4 = -0.097.$
970	15.4 <i>4</i>	5349.0	11^{+}	4379.0 9+	(E2)	$A_2 = +0.39 8, A_4 = -0.09 7.$
997		4169.0	10^{+}	3172.0 8+		
1030		5499.0	(11)	4469.0 (9)		
1035	13.6 <i>3</i>	5958.0	(13-)	4923.0 (11-)	Q	$A_2 = +0.31$ 7, $A_4 = -0.17$ 9.
1065	57.8 6	3766.0	10^{+}	2701.0 8+	(E2)	$A_2 = +0.425, A_4 = -0.148.$
1084		6079.0	(13)	4995.0 (11)		
1099		3394.0	(7^{-})	2295.0 6+		
1105	8.0 2	5274.0	(12^{+})	4169.0 10+	(Q)	$A_2 = +0.50 8, A_4 = -0.09 10.$
1121		6470.0	13+	5349.0 11+		
1127		6079.0	(13)	4952.0 12+		
1165		6664.0	(13)	5499.0 (11)		
1165	10.4 3	8132	(17^{+})	6967.0 (15)	Q	$A_2 = +0.42 8, A_4 = -0.13 10.$
1185		1571.0	4^{+}	386.0 2+		
1186	63.3 4	4952.0	12^{+}	3766.0 10+	(E2)	$A_2 = +0.31 6, A_4 = -0.05 7.$
1198	9.8 <i>4</i>	7156.0	(15^{-})	5958.0 (13 ⁻)	Q	$A_2 = +0.40 8, A_4 = -0.35 12.$
1220	6.9 <i>3</i>	6494.0	(14^{+})	5274.0 (12 ⁺)	Q	$A_2 = +0.42 8, A_4 = -0.15 11.$
1229		4995.0	(11)	3766.0 10+		
1260	30.6 4	7730	15+	6470.0 13+	(E2)	$A_2 = +0.405, A_4 = -0.118.$
1307		7971	(15)	6664.0 (13)		
1314	30.6 <i>3</i>	2295.0	6+	981.0 4+	(Q)	$A_2 = +0.335, A_4 = -0.028.$
1324	21.5 3	6276.0	14+	4952.0 12+	(E2)	$A_2 = +0.43$ 7, $A_4 = -0.07$ 9.
1339		7833.0	(16^{+})	6494.0 (14 ⁺)		
1343	20.5 3	8499.0	(17^{-})	7156.0 (15 ⁻)	(Q)	$A_2 = +0.33 6, A_4 = +0.07 8.$
1368	12.7 3	9098	17^{+}	7730 15+	(E2)	$A_2 = +0.35$ 7, $A_4 = +0.01$ 9.
1379		9878	(19 ⁻)	8499.0 (17 ⁻)		
1441	12.8 4	10539	19+	9098 17+	(Q)	$A_2 = +0.20 6$, $A_4 = 0.00 8$.
1442		9413	(17)	7971 (15)		
1474	29.2 <i>3</i>	7750	16+	6276.0 14+	(E2)	$A_2 = +0.405, A_4 = -0.058.$

Continued on next page (footnotes at end of table)

⁵⁸Ni(²⁸Si,α2pγ) **2000Wi01** (continued)

$\gamma(^{80}\text{Sr})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_{f} J	\int_{f}^{π} Mult.	Comments
1492		11370	(21^{-})	9878 (1	9-)	
1496		7772	(15)	6276.0 14	+	
1531		12070	(21^{+})	10539 19)+	
1542		10955	(19)	9413 (1	7)	
1547	8.2 3	10875	20^{+}	9328 18	⁺ (Q)	$A_2 = +0.62 \ 8, \ A_4 = -0.08 \ 11.$
1578		9328	18^{+}	7750 16	6 ⁺	
1589		9319	(17^{+})	7730 15	;+	
1648		13718	(23^{+})	12070 (2	1+)	
1675		9447	(17)	7772 (1	5)	
1686	11.4 3	13056	(23 ⁻)	11370 (2	1 ⁻) (Q)	$A_2 = +0.46 6, A_4 = -0.07 9.$
1733		5499.0	(11)	3766.0 10)+	
1739		11067	20^{+}	9328 18	+	
1750		12625	(22^{+})	10875 20)+	
1768		4469.0	(9)	2701.0 8+	-	
1792		11120	(20)	9328 18	+	
1817	8.2 2	3581.0	7+	1764.0 6+	D+Q	$A_2 = +0.07 \ 6, \ A_4 = -0.05 \ 8.$
1818		12938	(22)	11120 (2	0)	
1838	5.3 2	3602.0	7+	1764.0 6+	D+Q	$A_2 = -0.25 6, A_4 = +0.02 8.$
1851		15569	(25^{+})	13718 (2	3+)	
1856		2837.0	(5^{-})	981.0 4+		
1860		11307	(19)	9447 (1	7)	
1914	3.0 3	2895.0	(5 ⁻)	981.0 4+	D+Q	$A_2 = +0.21 9, A_4 = +0.14 11.$
1933		14558	(24^{+})	12625 (2)	2+)	
1937	1.4 2	14993	(25^{-})	13056 (2	3 ⁻) (Q)	$A_2 = +0.60 \ 14, \ A_4 = +0.08 \ 17.$
2031		13098	(22^{+})	11067 20)+	
2083		13390	(21)	11307 (1	9)	
2113	2.0 3	16671	(26^{+})	14558 (2-	(Q) (Q)	$A_2 = +0.87 \ 12, \ A_4 = -0.11 \ 15.$

 $^{80}_{38}{
m Sr}_{42}$

 $^{80}_{38}{
m Sr}_{42}$

6

 ${}^{80}_{38}{
m Sr}_{42}$

⁵⁸Ni(²⁸Si,α2pγ) 2000Wi01

 $^{80}_{38}{
m Sr}_{42}$

⁵⁸Ni(²⁸Si,α2pγ) 2000Wi01 (continued)

 $^{80}_{38}{
m Sr}_{42}$