Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	31-Aug-2014						

 $Q(\beta^{-})=10312 4$; S(n)=4747 3; S(p)=13080 4; $Q(\alpha)=-10673 7$ 2012Wa38

S(2n)=11660 3, S(2p)=29300 500, $Q(\beta^{-}n)=2230 40$ (2012Wa38).

1974Gr29: production and identification of ⁸⁰Ga from fission. Later studies: 1976Ru01, 1981Gi17, 1991Kr15, 1993Ru01. Isomerism in ⁸⁰Ga discovered by 2010Ch50 and 2013Ve03.

Additional information 1. 2010Ch50: source of ⁸⁰Ga produced by irradiation of uranium carbide target with a proton beam at ISOLDE, CERN facility. Collinear laser spectroscopic techniques used on the extracted 30-keV mass separated ion beam. Selective Ga yield was provided by resonance ionization laser ion source (RILIS). Measured hyperfine structure, deduced spins, magnetic moments and quadrupole moments. Known moments for ⁷¹Ga were used for calibration. See also 2012Pr11 and 2011Ma45 for hyperfine structure measurements and rms charge radii.

2013Ve03: ⁸⁰Ga isotope produced in electrofission of uranium. Target of UC_x was bombarded by 50-MeV electron primary beam followed by mass separation using PARRNe mass separator installed on-line to the ALTOISOL facility at IPN-Orsay. Measured $E\gamma$, $I\gamma$, β events using an HPGe detector from Phase 1 type EUROGAM, and a small EXOGAM Clover Ge detector. Measured half-lives from the decay curves of 67 γ rays. Evidence for a second long-lived activity in ⁸⁰Ga.

Mass measurements: 2008Ha23, 2008Su19.

Structure calculations of levels, spins: 2012Sr11, 2009Ho14.

⁸⁰Ga Levels

Cross Reference (XREF) Flags

 80 Zn β^- decay (0.54 s) A

B 81 Zn β^{-} n decay (303.5 ms)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments					
0	2(-)	1.9 s <i>I</i>	A	[¬] ββ [−] =100; [¬] ββ [−] n=0.86 7 µ=+0.036 4 (2010Ch50) Q=+0.478 27 (2010Ch50) δ <r<sup>2>(charge)(⁷¹Ga,⁸⁰Ga)=+0.242 fm² 91 (2012Pr11); 0.010 fm² is statistical uncertainty, 0.091 fm² is systematic. $\delta\nu(IS)(^{71}Ga,^{80}Ga)=-239$ MHz 16 (2012Pr11); 4 MHz is statistical uncertainty, 16 MHz is systematic. E(level): shell-model predictions suggest 6[−] to be the g.s. J^π: spin from hyperfine structure (2010Ch50), parity from shell-model predictions and comparison with measured moments. T_{1/2}: measured by 2013Ve03 from decay curves for many γ rays. Others: much greater than 200 ms (2010Ch50), 1.65 s 1 (1993Ru01), 1.706 s 10 (1991Kr15), 1.67 s 10 (1982FoZZ), 1.7 s (1981Gi17), 1.66 s 2 (1976Ru01) 1.7 s 2 (1974Gr29). All measured values prior to 1994 are most likely for a combined mixture of the 1.9-s, 6^(−) and 1.3-s, 3^(−) activities. See detailed discussion in 2013Ve03. %β[−] n: weighted average of 0.97 6 (1993Ru01), 0.69 8 (1986Wa17), 0.84 6 (1980Lu04). Here all of %β[−] n is assigned to g.s., but most likely it is for a mixture of the 1.9-s and 1.3-s activities. Other measurements: 1986ReZU and 1986ReZS (same group as 1986Wa17); 1982Ru01, 1981Ho07, 1977Ru09 (also 1977Ru10) (same group as 1980Lu04) Compilation and other analyses of %β[−] n values: 1989BrZI, 1984Ma39, 1984Ha58, 1984KoYR, 1979RuZQ. µ,Q: from collinear laser spectroscopic technique (2010Ch50). For any spin value, magnitudes of moments are: µ=0.123 to 0.182 4 or <0.055 4; Q<0.050 12 or Q=0.182 11 to 0.510 28 (2010Ch50).</r<sup>					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸⁰Ga Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				$\mu = -1.425 \ 5 \ (2010 \text{Ch50})$
				Q=+0.375 21 (2010Ch50)
				$\%\beta$ ⁻ n=0.86 / assigned to the ground state decay is most likely for a mixture of the
				two activities of 1.9 s and 1.3 s. $(713 \times 713 $
				$\delta < r^{2} > (charge)(^{17}Ga, ^{60}Ga) = +0.260 \text{ fm}^{2} 92 (2012Pr11); 0.007 \text{ fm}^{2} \text{ is statistical}$
				$\delta v(IS)(^{71}Ga {}^{80}Ga) = -232.0 \text{ MHz} 160 (2012Pr11): 2.5 \text{ MHz} is statistical uncertainty}$
				16.0 MHz is systematic
				E(level): from 2014Li32
				J^{π} : spin from hyperfine structure (2010Ch50), parity from shell-model considerations and comparison with measured moments. Nordheim's rule also suggests 3 ⁻ . $J^{\pi}=3^+$ with configuration= $\pi f_{5/2} \otimes \nu p_{1/2}$ is suggested by 1987Wi13.
				$T_{1/2}$: measured by 2013Ve03 from decay curves for many γ rays. See also comment for half-life of a s
				μ O: from collinear laser spectroscopic technique (2010Cb50)
97 20 8	(4)		۵	μ , Q. none connect user spectroscopic technique (2010(100)). I^{π} : dipole ν to $3^{(-)}$
403 48 3	(ד)		A	
577.42 8			A	
707.90 11	(1^{+})	18.3 ns 5	A	J^{π} : probable (M2) γ to $3^{(-)}$.
	(-)			$T_{1/2}$: from $\beta(685\gamma)(t)$ (2014Li32).
734.76 10			Α	
911.39 <i>10</i>			Α	
951.34 <i>12</i>	$(1^{-},2^{-})$		Α	J ^{π} : possible β feeding from 0 ⁺ parent; γ to 3 ⁽⁻⁾ .
987.20 10	$(1^{-}, 2^{-})$		Α	J ^{π} : possible β feeding from 0 ⁺ parent; γ to 3 ⁽⁻⁾ .
990.15 <i>11</i>			Α	
1141.79 <i>11</i>			Α	
1152.79 11			Α	
1193.90 10			Α	
1213.95 10			Α	
1290.32 12			A	
1300.39 13			A	
1330.47 10	1+		A	\overline{M}_{1} log $H = 4.6$ from 0^{+} moment
1449.92 10	1		A	$J : \log f = 4.0$ from 0 parent.
2044 42 11			A 4	
2092.21.10	1+		A	$I^{\pi} \cdot \log t = 4.61$ from 0^+ parent
2560.40 12	(1^+)		A	J^{π} : log $ft=4.90$ from 0 ⁺ parent.
2676.94 12	1+		A	J^{π} : log ft=4.59 from 0 ⁺ parent.
2822.11 16	(1^{+})		Α	J^{π} : log ft=5.3 from 0 ⁺ parent.
3329.5 4			Α	
3380.0 4			Α	

 † From least-squares fit to $E\gamma$ data.

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
97.20 403.48	(4)	74.8 <i>1</i> 306.4 <i>1</i>	100 4.7 23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	0.154	α : from BrIcc code, value overlaps for E1 and M1.
577.42		403.47 <i>3</i> 174.0 <i>1</i> 480.1 <i>1</i>	100 <i>12</i> 100 <i>11</i> 12.5 <i>18</i>	$\begin{array}{ccc} 0 & 6^{(-)} \\ 403.48 \\ 97.20 & (4) \end{array}$			

 $\gamma(^{80}{\rm Ga})$

Adopted Levels, Gammas (continued)

$\gamma(^{80}\text{Ga})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	Comments
577.42		577.7 2	3.6 18	0	6(-)		
707.90	(1^{+})	685.4 <i>1</i>	100	22.4	3(-)	(M2)	B(M2)(W.u.)=0.60 2 (2014Li32)
734.76		712.3 <i>I</i>	100	22.4	3(-)		
911.39		176.6 <i>1</i>	100 10	734.76			
		814.2 <i>1</i>	15.8 20	97.20	(4)		
		888.9 <i>1</i>	56 6	22.4	3(-)		
951.34	$(1^-, 2^-)$	243.5 1	6.6 15	707.90	(1^{+})		
		928.8 2	100 11	22.4	3(-)		
987.20	$(1^-, 2^-)$	964.8 2	100	22.4	$3^{(-)}$		
990.15		282.21 5	100	707.90	(1^{+})		
1141.79		151.7 [‡] <i>1</i>	<8.7	990.15			
		154.7 <i>1</i>	13 4	987.20	$(1^{-},2^{-})$		
		190.5 <i>1</i>	100 9	951.34	$(1^-, 2^-)$		
		406.9 2	35 9	734.76			
		433.9 1	96 17	707.90	(1^{+})		
1152.79		575.3 1	100	577.42			
1193.90		203.6 1	7.7.26	990.15			
		282.7 1	15.5	911.39	2(-)		
1012.05		11/1.52	100 13	22.4	3()		
1213.95		030.0 1	50.0	577.42	(4)		
1200.22		1110.7 2	100 11	97.20	(4)		
1290.32		1267.9 2	100	22.4	3		
1300.39		723.2* 8	<18	577.42			
1256 47		1203.3 2	100 18	97.20	(4)		
1356.47		444.9 <i>I</i>	8.1 <i>10</i>	911.39			
		021.8 1	1/3	/34./0	2(-)		
1440.02	1+	1334.0 2	100 11	22.4	3()		
1449.92	1	95.4 I 150 5 I	4.20	1200.22			
		308 3 1	1.04 0.52.13	1290.32			
		450 0 1	0.52 15	000.15			
		459.91	<0.20	990.15	$(1-2^{-})$		
		402.72.2	14.4 /	987.20 734.76	(1,2)		
		742 0 1	27 3 26	707.90	(1^{+})		
		1427.5.2	4 9 10	22.4	(1) 3(-)	[M2]	
1526.06		75 0 1	-1.5	1440.02	1+	[1112]	
1520.00		169.6.1	< 1.5 10 5 23	1356 47	1		
		225 7 1	9015	1300.39			
		312.13.5	93.2.15	1213.95			
		332.17 5	20 3	1193.90			
		373.2 1	1.5 8	1152.79			
		538.87 5	9.8 15	987.20	$(1^{-},2^{-})$		
		614.66 5	100 3	911.39			
		791.3 <i>1</i>	30 5	734.76			
		818.2 <i>1</i>	8.3 23	707.90	(1^+)		
		1503.6 3	72 8	22.4	3(-)		
2044.42		518.3 1	56 11	1526.06			
		594.9 [‡] 1	17 6	1449.92	1^{+}		
		688.0 <i>1</i>	100 17	1356.47			
		1057.3 3	33 11	987.20	$(1^{-},2^{-})$		
	. +	2021.8 3	72 17	22.4	3(-)		
2092.21	1^{+}	566.20 5	33 3	1526.06	1+		
		642.3 I	100 10	1449.92	1'		
		/35.6 1	1.3 13	1356.47			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}
2092.21	1+	802.0 <i>1</i> 878.2 2 950.5 2 1104.9 2 1357.2 2 1384.3 2	2.7 7 3.3 7 4.3 10 18.0 23 7.0 13 4.7 10	1290.32 1213.95 1141.79 987.20 734.76 707.90	(1 ⁻ ,2 ⁻) (1 ⁺)	2560.40 2676.94	(1^+) 1 ⁺	1825.5 3 632.5 1 1150.9 2 1226.9 2 1320.6 2 1386.6 2	7.6 22 15.9 <i>18</i> 100 9 15 4 9.1 23 8.6 <i>18</i>	734.76 2044.42 1526.06 1449.92 1356.47 1290.32	1+
2560.40	(1 ⁺)	468.3 <i>I</i> 1034.3 2 1110.3 2 1366.4 2 1418.4 2 1570.2 <i>3</i> 1573.5 <i>3</i> 1608.8 [‡] <i>3</i>	24 7 100 <i>11</i> 20 7 11 <i>4</i> 8.7 <i>11</i> 17.4 22 4.4 22 <2.2	2092.21 1526.06 1449.92 1193.90 1141.79 990.15 987.20 951.34	1 ⁺ 1 ⁺ (1 ⁻ ,2 ⁻) (1 ⁻ ,2 ⁻)	2822.11 3329.5 3380.0	(1+)	1726.5 [‡] 3 1296.2 2 1372.0 2 1834.9 3 1871.3 [‡] 3 2378.1 3 2428.6 3	<0.9 65 23 62 12 100 8 <7.7 100 100	951.34 1526.06 1449.92 987.20 951.34 951.34 951.34	$(1^{-},2^{-})$ 1^{+} $(1^{-},2^{-})$ $(1^{-},2^{-})$ $(1^{-},2^{-})$ $(1^{-},2^{-})$

$\gamma(^{80}\text{Ga})$ (continued)

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
 [‡] Placement of transition in the level scheme is uncertain.

S

From ENSDF

Adopted Levels, Gammas

Legend

 $^{80}_{31}{
m Ga}_{49}$ -5

 $^{80}_{31}{
m Ga}_{49}$ -5

6

 $^{80}_{31}{
m Ga}_{49}$ -6

 $^{80}_{31}{
m Ga}_{49}$ -6

From ENSDF