⁸⁰Se(d,2n γ),⁷⁸Se(α ,pn γ) 1984Do02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105, 223 (2005)	22-Jun-2005

1984Do02: ⁸⁰Se(d,2n γ) E=13.5 MeV, measured γ , $\gamma\gamma$, $\gamma(\theta)$ and ⁷⁸Se(α ,pn γ) E=23, 27 MeV; measured γ , $\gamma\gamma$, $\alpha\gamma(t)$. The authors also report results from ⁸⁰Se(p,n γ) reaction (see ⁸⁰Se(p,n γ) dataset for details. Relative excitation functions in different reactions used in J^{π} assignments.

Additional information 1.

⁸⁰Br Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	1+		
37.060 18	2-		
85.86 <i>3</i>	5-		
256.45 3	$(2)^{+}$		
271.38 <i>3</i>	$(2)^{-}$		
281.30 <i>3</i>	(3)-		
309.50 <i>3</i>	(4)-		
314.90 10	$(1)^+$		
331.06 4	5+	0.7 ns 2	$T_{1/2}$: from 245 γ (t) in (α ,pn γ) (1984Do02).
331.42 4	(3)-		
357.24 5	(6^{+})	0.4 ns 2	$T_{1/2}$: from 271 γ (t) in (α ,pn γ).
366.63 <i>3</i>	$(1,2)^{-}$		
379.93 4	(6 ⁻)		
380.48 <i>3</i>	(3)-		
385.73 4	(4 ⁻)		
390.54 <i>5</i>	(4)-		
447.88 <i>5</i>	(7^{+})		
456.41 3	$(4)^{-}$		
469.01 <i>3</i>	$(2)^{+}$		
469.30 4	(3)-		
492.91 3	$(2)^{-}$		
500.21 5	$(4)^{-}$		
523.32 4	(5 ⁻)		
549.59 4	$(3)^+$		
572.95 4	(3,4,5)		
586.14 5	(3^{+})		
615.33 0	(8.)		
640.40 11	$(2)^{+}$		
682.04.4	(2) $(2 4^{-} 5^{-})$		
685 30 <i>10</i>	(3,4,5)		
717 50 10	(3)		
771 23 6	(3, 7, 5) $(4^{-}, 5^{-}, 6^{-})$		
774 18 5	(7^{-})		
825 28 6	(67^+)		
860.66 6	(2^+)		
1033.08 9	$(\frac{2}{8^+})$		
1141.04 12	(9 ⁺)		
1346.8? 3	~ /		
1405.9? 3			
1534.7? <i>3</i>			
1587.5 2	(10^{+})		

[†] From 'Adopted Levels'.

[‡] From least-squares fit to $E\gamma's$.

⁸⁰Se(d,2n γ),⁷⁸Se(α ,pn γ) **1984Do02** (continued)

 $\gamma(^{80}{
m Br})$

 $\gamma(\theta)$ coefficients (A₂ and A₄) are mainly from (d,2n γ), unless otherwise specified. The data were normalized by 1984Do02 to 260 γ (in ⁸¹Br) assumed as isotropic.

The placement of all γ rays is from $\gamma\gamma$ data.

	γ-ray	intensiti	ies in ⁷⁸ 9	Se(α ,pn γ)				
	Εγ	ľ	γ	Εγ		Ιγ		
	26.18	8 1		244.24	1	52		
	37.05	53 3		245.20)	100 4		
	59.48	5.1	2	258.1		< 2		
	74.97	\leq 0	.5	263.44		2 1		
	90.64	65 <i>2</i>		271.4+	-271.4	12		
	116.8	< 0.	6	274.52	<	2		
	124.03	1.2	3	294.1+	-294.3	27 <i>2</i>		
	137.5	1.6	3	299.5+2	299.9	51		
	143.40	1.0	3	315.4 6 1		6 1		
	159.0+1	59.8 0.8	3	343.	42	3 1		
	167.45	54 <i>2</i>		394.25	5	72		
	175.11	2.6	4	446.4		83		
	195.60 1.7 5		5	525.7		17 3		
	213.81	3.8	5	790.6		< 5		
	218.9+2	19.4 5	1	919.4		< 5		
	223.63	20 <i>2</i>		973		12 6		
	234.32	< 2						
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	α^{a}	Comments
26 18 3	505	357.24	(6^+)	331.06	5+	D		$A_2 = -0.21.2$ $A_4 = -0.06.3$
37.05 2	52 2	37.060	2-	0.0	1^{+}	E1 ^{&}	1.56	<u>112</u> 0.21 2, 114 0.00 5.
48.76 4	0.2 1	85.86	5-	37.060	2-	М3 <mark>&</mark>	308	
50.12 3	0.8 1	331.42	$(3)^{-}$	281.30	$(3)^{-}$			$A_2 = +0.07 4$, $A_4 = +0.01 5$.
59.48 2	14 <i>1</i>	390.54	(4)-	331.06	5+	D		$A_2 = -0.06 2, A_4 = +0.02 3.$
74.97 <i>3</i>	0.6 1	331.42	$(3)^{-}$	256.45	$(2)^{+}$			$A_2 = -0.025, A_4 = -0.037.$
75.93 <i>3</i>	0.4 1	456.41	$(4)^{-}$	380.48	$(3)^{-}$	D		$A_2 = -0.18 \ I0, \ A_4 = -0.07 \ I4.$
80.60 4	0.3 1	549.59	$(3)^{+}$	469.01	$(2)^{+}$	D		$A_2 = -0.18 \ II, A_4 = -0.22 \ I6.$
90.64 2	26 1	447.88	(7^{+})	357.24	(6^{+})	D		$A_2 = -0.31 \ 3, \ A_4 = +0.05 \ 6 \ (\text{from } (\alpha, \text{pn}\gamma)).$
99.17 <i>3</i>	0.4 1	380.48	(3)-	281.30	(3)-			$A_2 = +0.17 9, A_4 = 0.0 1.$
104.43 4	0.4 1	385.73	(4 ⁻)	281.30	(3)-	D		$A_2 = -0.19 \ 6, \ A_4 = 0.0 \ 1.$
112.4 1	0.2 1	492.91	$(2)^{-}$	380.48	$(3)^{-}$			
116.8 ⁰	≤0.1	447.88	(7^{+})	331.06	5+			
124.03 2	1.6 <i>1</i>	380.48	$(3)^{-}$	256.45	$(2)^{+}$	D		$A_2 = -0.19 3, A_4 = +0.05 4.$
126.28 3	0.6 2	492.91	$(2)^{-}$	366.63	$(1,2)^{-}$	_		A ₂ =0.0 <i>1</i> .
137.5 1	1.6 3	523.32	(5 ⁻)	385.73	(4 ⁻)	D		$A_2 = -0.18 II, A_4 = -0.07 I5.$
143.40 3	0.9 2	523.32	(5 ⁻)	379.93	(6 ⁻)	D		$A_2 = -0.13$ /, $A_4 = +0.11$ 10.
146.89 2	2.9 1	456.41	$(4)^{-}$	309.50	$(4)^{-}$	D		$A_2 = +0.16 2, A_4 = +0.01 3.$
159.01	0./I	549.59 460.20	$(3)^{+}$	390.54 200.50	(4)	D		$A_2 = -0.04 \delta, A_4 = +0.03 II.$
139.8 1	1.31	409.30	(3)	309.30	(4)			$A_2 = -0.014, A_4 = +0.050.$
10/.45 2	10 1	013.33	(8 ⁻)	44/.88	$(/^{+})$	D+Q		$A_2 = -0.374, A_4 = -0.013$ (from (α , pn γ)).
1/3.112	3.6 2	456.41	(4)	281.30	(3)	D		$A_2 = -0.05 2$, $A_4 = 0.00 3$.
182.8° 1	≈0.2	082.94	(3,4,5)) 500.21	(4)	D		A = 0.12 $B = 1.005$ $I2$
10/.24 4	0.9 2	512.95	(3,4,3)	383.73	(4)	D		$A_2 = -0.12$ δ , $A_4 = +0.03$ 12.
190.6 ^w 2	0.6 ^w	500.21	$(4)^{-}$	309.50	$(4)^{-}$			

⁸⁰Se(d,2n γ),⁷⁸Se(α ,pn γ) 1984Do02 (continued)

$\gamma(^{80}\text{Br})$ (continued) Mult.# E_{γ}^{\dagger} I_{γ}^{\ddagger} E_i(level) J_i^{π} J_{f}^{π} Comments \mathbf{E}_{f} 10 1 390.54 D 195.60 2 586.14 (3^{+}) $(4)^{-}$ $A_2 = -0.05 2, A_4 = +0.02 2.$ $(6,7^+)$ 207.7 1 0.4 2 1033.08 (8^+) 825.28 $A_2 = -0.08 9.$ 492.91 211.6 1 1.4 3 $(2)^{-}$ 281.30 $(3)^{-}$ 213.81 2 6.4 3 523.32 309.50 $(4)^{-}$ $A_2 = -0.23 3, A_4 = +0.02 4.$ (5^{-}) D 218.9 *I* 31 500.21 $(4)^{-}$ 281.30 $(3)^{-}$ D $A_2 = -0.17 5.$ 256.45 37.060 219.4 *I* 11 1 $(2)^{+}$ 2-A₂=+0.06 2. 223.63 2 29 1 309.50 $(4)^{-}$ 85.86 5-D $A_2 = -0.20$ 7, $A_4 = -0.07$ 12 (from (α , pn γ)). 226.51 4 1.1 1 682.94 $(3,4^{-},5^{-})$ 456.41 $(4)^{-}$ D $A_2 = -0.17 5, A_4 = 0.0 1.$ 234.32 2 5.2 2 271.38 $(2)^{-}$ 37.060 2^{-} $A_2 = +0.09 2$, $A_4 = -0.01 3$. $(2)^{+}$ 1.1 *1* 492.91 256.45 A₂=+0.04 10. 236.44 4 $(2)^{-}$ 240.0^C 1 0.5 2 549.59 $(3)^{+}$ 309.50 $(4)^{-}$ $(3)^{-}$ 244.24 3 16 *I* 281.30 37.060 2-D $A_2 = -0.14 2, A_4 = +0.03 2.$ $A_2 = +0.26 2$, $A_4 = -0.04 3$ (from $(\alpha, pn\gamma)$). 245.20 3 100 2 331.06 5^{+} 85.86 5^{-} 247.91 4 1.6 1 771.23 $(4^{-}, 5^{-}, 6^{-})$ 523.32 (5^{-}) $A_2 = -0.04 9, A_4 = +0.12 12.$ 309.50 263.44 3 7.0 3 572.95 D $(3,4,5)^{-}$ $(4)^{-}$ $A_2 = -0.20 3, A_4 = +0.01 4.$ 271.4^{b@} 1 8<mark>b@</mark> 271.38 1^{+} $(2)^{-}$ 0.0 $I\gamma$ (doublet)=15 1. $A_2 = +0.06 l, A_4 = +0.01 2.$ 271.4^b 1 7<mark>b</mark> 5-357.24 (6^{+}) 85.86 (2+) 274.52 3 (3^+) 1.4 1 860.66 586.14 D $A_2 = -0.065, A_4 = +0.056.$ 278.2^C 1 0.4 1 549.59 $(3)^{+}$ 271.38 $(2)^{-}$ A2=+0.07 15. 294.1[@] 1 25[@] 379.93 (6^{-}) 85.86 5- $I_{\gamma}(294.1\gamma + 294.3\gamma) = 29$ 1. A₂=-0.12 9, A₄=+0.06 12 (from $(\alpha, pn\gamma)$). 4[@] 294.3[@] I 37.060 2-331.42 $(3)^{-}$ For 294.1 γ +294.3 γ , A₂=+0.03 2, A₄=0.00 2. 299.5[@] 3 1**@** 685.30 (3^{-}) 385.73 (4^{-}) 10[@] $299.9^{\textcircled{0}}$ 1 385.73 (4^{-}) 85.86 5- $I_{\gamma}(299.5\gamma + 299.9\gamma) = 11 I.$ For doublet, $A_2 = -0.10 2$, $A_4 = +0.03 2$. 302.99 5 1.4 2 682.94 $(3,4^{-},5^{-})$ 379.93 (6^{-}) $A_2 = 0.0 1.$ 314.9 1 4.5 5 314.90 $(1)^{+}$ 0.0 1^{+} For $314.9\gamma + 315.4\gamma$, A₂=-0.04 2, A₄=+0.03 3. 5^+ 5.8 5 331.06 315.4 1 646.46 717.59 385.73 331.8 2 0.5 2 $(3,4^{-},5)$ (4^{-}) 343.42 3 5.7 4 380.48 $(3)^{-}$ 37.060 2-D $A_2 = -0.27 3, A_4 = +0.03 4.$ $A_2 = +0.03 \ 3, \ A_4 = +0.02 \ 4.$ 366.63 3 4.7 3 366.63 0.0 1^{+} $(1,2)^{-}$ 2.5 2 5-370.56 4 456.41 $(4)^{-}$ 85.86 A₂=+0.19 7, A₄=+0.06 10. 1.7 2 682.94 $(3,4^{-},5^{-})$ 373.6 1 309.50 $(4)^{-}$ D+Q A₂=-0.46 6, A₄=+0.04 8. 1.4 2 (3^{-}) 375.8 1 685.30 309.50 $(4)^{-}$ A2=-0.04 7, A4=-0.03 10. 377.39 3 4.1 3 825.28 $(6,7^{+})$ 447.88 (7^{+}) D $A_2 = -0.07 \ 3, \ A_4 = +0.02 \ 5.$ (7^{-}) 394.25 3 4.5 3 774.18 379.93 (6^{-}) A₂=+0.39 16, A₄=+0.2 2. 1.4 2 717.59 $(3, 4^{-}, 5)$ 309.50 408.1 1 $(4)^{-}$ D $A_2 = -0.28 \ 15, \ A_4 = +0.1 \ 2.$ 414.37 4 5.2 3 500.21 85.86 5 D $A_2 = -0.21 4$, $A_4 = +0.14 6$. $(4)^{-}$ 417.8 *I* 0.8 2 1033.08 (8^+) 615.33 (8^+) 432.24 3 4.5 3 469.30 37.060 2- $(3)^{-}$ A₂=+0.03 5, A₄=+0.06 6. 0.8 2 437.5 1 523.32 (5^{-}) 85.86 5-1587.5 (10^+) (9^+) 0.5 3 1141.04 D+Q 446.4 2 A₂=-0.55 9 (from (α ,pn γ)). 0.9 2 492.91 37.060 2-455.9 1 $(2)^{-}$ 461.8^C 0.4 3 771.23 (4-,5-,6) 309.50 $(4)^{-}$ 469.02 3 4.7 6 469.01 $(2)^{+}$ 0.0 1^{+} D A₂=-0.13 5, A₄=+0.02 6. 1^{+} 493.0 1 0.8 2 492.91 $(2)^{-}$ 0.0 $(6,7^+)$ 494.2 1 1.8 2 825.28 331.06 5^{+} 512.5 2 42 549.59 37.060 2- $(3)^+$ A₂=-0.55 6, A₄=-0.02 8. 3.8 4 (9^+) (8^+) 525.7 1 1141.04 615.33 D+Q 549.6 1 1.8 3 549.59 $(3)^{+}$ 0.0 1^{+} $A_2 = +0.5 2.$ 1^{+} $(2)^{+}$ 0.0 D 660.6 2 1.1 4 660.6 $A_2 = -0.5 3.$ 4.9 5 357.24 (6^{+}) 676.02 1033.08 (8^+) 731.5 3 0.7 5 1346.8? 615.33 (8^{+})

Continued on next page (footnotes at end of table)

⁸⁰Se(d,2n γ),⁷⁸Se(α ,pn γ) 1984Do02 (continued)

$\gamma(^{80}\text{Br})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
790.6 <i>3</i> 919.4 <i>3</i> 973 <i>1</i>	1.4 5 1.0 5 0.8 6	1405.9? 1534.7? 1587.5	(10 ⁺)	615.33 615.33 615.33	(8^+) (8^+) (8^+)	I _γ : from Iγ(973γ)/Iγ(446γ)=1.5 9 in (α ,pnγ).

[†] From 1984Do02, unless otherwise stated. Values are probably averages from (d,2n γ) and (p,n γ) results.

[‡] At E(d)=13.5 MeV and θ =125°.

[#] D(+Q) for transitions with negative A₂ ($\Delta J=0,1$) and D,E2 for transitions with positive A₂ ($\Delta J=0,1,2$). A₄ ≈ 0 for all cases. For mult=D, small admixture of mult=Q is possible but is not quoted here.

[@] From $\gamma\gamma$ data for unresolved doublet.

& From 'adopted gammas'.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

5

 $^{80}_{35}{
m Br}_{45}$

⁸⁰Se(d,2n γ),⁷⁸Se(α ,pn γ) 1984Do02

Level Scheme (continued)

Legend

