⁷⁶Ge(⁷Li,3nγ) 2000Ra25

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	NDS 105, 223 (2005)	22-Jun-2005				

2000Ra25: E=32 MeV. Measured E γ , I γ , $\gamma\gamma$ and $\gamma\gamma(\theta)$ (DCO), lifetimes (by DSA) using an array of twelve Compton-suppressed HPGe detectors besides fourteen BGO elements.

Other:

1979PiZR, 1979PiZQ, 1982PiZX: E=22-30 MeV; measured γ , $\gamma\gamma$, $\gamma(\theta)$ and excitation functions. The authors reported positive parity band based on configuration=(($\pi g_{9/2}$)($\nu g_{9/2}$)) but the detailed results are not available. High-spin levels at 2256, (11⁺); 2942, (12⁺) and 3210, (13⁺) were proposed in this work in addition to many other levels reported in low-ion reactions: (p,n γ); (d,2n γ) and (α ,pn γ) by 1984Do02.

			⁸⁰ Br Levels			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	
0.0	1+		1851.2 ^b 3	9-		
37.0520 20	2^{-}		1954.3 ^c 7	(7 ⁻ ,9 ⁻)		
85.838 6	5-		2001.69 ^{<i>a</i>} 22	$(8^+, 10^+)$		
331.13 ^{&} 10	5+		2256.96 ^{&} 22	11^{+}	0.35 ps 14	
357.31 [@] 10	6+		2379.0 7			
379.91 <mark>b</mark> 9	6-		2796.8 ^a 4	$(9^+, 11^+)$		
447.91 ^{&} <i>14</i>	7+		2915.0 ^c 8	(9-,11-)		
615.41 [@] 17	8+		2944.06 [@] 22	12^{+}	0.63 ps +21-14	
774.27 <mark>b</mark> 9	7-		3212.0 4			
1130.2 ^c 6	(5 ⁻ ,7 ⁻)		3605.0 ^{&} 11	(13+)		
1140.98 ^{&} 19	9+		3658.1 7			
1534.2 ^{<i>a</i>} 3	(7 ⁺ ,9 ⁺)		4450.1 [@] 11	(14^{+})		
1588.05 [@] 19	10^{+}	0.76 ps +27-21				

[†] From least-squares fit to $E\gamma's$.

[‡] From 'Adopted Levels' for low-lying states; from $\gamma\gamma(\theta)$ data and band assignments in 2000Ra25 for higher levels. In 'Adopted Levels levels', most of the spin-parity assignments are given in parentheses since strong arguments form their assignments are lacking.

- [#] From Doppler-shift attenuation method (2000Ra25).
- [@] Band(A): $\pi g_{9/2} \nu g_{9/2}$, $\alpha = 0$.

& Band(a): $\pi g_{9/2} \nu g_{9/2}$, $\alpha = 1$.

- ^{*a*} Band(B): γ cascade based on (7⁺,9⁺).
- ^{*b*} Band(C): γ cascade based on (6⁻).
- ^c Band(D): γ cascade based on (5⁻,7⁻).

$\gamma(^{80}\mathrm{Br})$

DCO ratios correspond to $\Delta J=2$ (E2) gated spectra, unless states otherwise.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	Comments
26.18 [#] 3		357.31	6+	331.13	5+			
37.052 [#] 2		37.0520	2^{-}	0.0	1^{+}			
48.786 [#] 5 90.6 1	100 8	85.838 447.91	5 ⁻ 7 ⁺	37.0520 357.31	$2^{-}_{6^{+}}$	D(+Q)	-0.07 +5-8	DCO=0.49 6; 0.52 3 (ΔJ=0 gated).

Continued on next page (footnotes at end of table)

γ ⁽⁸⁰ Br) (continued)									
E_{γ}^{\dagger}	I_{γ}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	Comments	
116.8 <i>10</i> 167.5 <i>1</i>	<1 86 7	447.91 615.41	7+ 8+	331.13 447.91	5+ 7+	D(+Q)	-0.02 4	DCO=0.56 5; 0.56 3 (Δ J=0 gated)	
245.3 <i>1</i>	95 8	331.13	5 ⁺	85.838	$5^{-}_{6^{+}}$	D		DCO=1.04 7.	
238.0 10	8312	357 31	6 6 ⁺	85 838	5-	D		DCO-1.05 13 (AI-1 gated)	
271.4 J	20.5.24	370.01	0 6 ⁻	85 838	5-			$DCO=1.05$ 15 ($\Delta J=1$ gated).	
355.9 6	4.0 9	1130.2	$(5^-,7^-)$	774.27	5 7-	DŦQ		Mult.: $\Delta J=0$, D or $\Delta J=2$, Q. DCO=1.02 30.	
394.4 <i>1</i>	15.6 <i>19</i>	774.27	7-	379.91	6-	D+Q		DCO=1.15 <i>17</i> ; 1.43 <i>18</i> (ΔJ=1 gated).	
447.1 <i>1</i>	22.8 25	1588.05	10+	1140.98	9+	(M1(+E2))	-0.12 +8-5	DCO=0.53 7 (Δ J=0 gated); 0.80 9 (Δ J=1 gated).	
467.4 10	2.7 6	2001.69	$(8^+, 10^+)$	1534.2	$(7^+, 9^+)$	(D+Q)		DCO=1 \approx (Δ J=1 gated).	
525.6 1	52 5	1140.98	9+	615.41	8+	D+Q	-0.15 4	DCO=0.46 4 (Δ J=0 gated); 0.84 7 (Δ J=1 gated).	
668.9 <i>1</i>	18 <i>3</i>	2256.96	11+	1588.05	10+	D(+Q)	-0.04 5	DCO= $0.52\ 11;\ 0.57\ 8\ (\Delta J=0$ gated).	
687 <i>1</i>	<1	2944.06	12+	2256.96	11+				
688.4 <i>1</i>	11.7 20	774.27	7-	85.838	5-	Q		DCO=1.10 21.	
693.1 <i>10</i>	<1	1140.98	9+	447.91	7+				
714.0 6	4.19	3658.1		2944.06	12^{+}				
795.1 <i>3</i>	9.8 18	2796.8	$(9^+, 11^+)$	2001.69	$(8^+, 10^+)$	D+Q		DCO=1.09 16 (Δ J=1 gated).	
824.2 10	2.8 7	1954.3	(7 ⁻ ,9 ⁻)	1130.2	$(5^{-},7^{-})$	(Q)		DCO=1.08 32 (355.9 γ gated).	
860.7 1	21 3	2001.69	$(8^+, 10^+)$	1140.98	9+	D+Q		DCO=0.95 12 (Δ J=1 gated).	
918.8 <i>3</i>	7.0 13	1534.2	$(7^+, 9^+)$	615.41	8+	D+Q		DCO=0.55 9 (Δ J=0 gated).	
955.0 <i>3</i>	7.9 16	3212.0		2256.96	11^{+}				
960.6 10	1.9 7	2915.0	(9 ⁻ ,11 ⁻)	1954.3	(7 ⁻ ,9 ⁻)				
972.6 1	22 2	1588.05	10+	615.41	8+	(E2)		DCO=0.94 21; 1.61 16 (ΔJ=1 gated).	
1063.8 10	2.7 9	2915.0	(9-,11-)	1851.2	9-			Mult.: $\Delta J=0$, D or $\Delta J=2$, Q. DCO=0.99 25.	
1076.9 <i>3</i>	9.9 19	1851.2	9-	774.27	7-	(Q)		DCO=0.94 23.	
1086.3 <i>3</i>	7.4 15	1534.2	(7+,9+)	447.91	7+			Mult.: $\Delta J=0$, D or $\Delta J=2$, Q. DCO=1.01 <i>17</i> ($\Delta J=0$ gated).	
1116.0 6	5.2 13	2256.96	11+	1140.98	9+				
1180.0 10	3.6 9	1954.3	(7 ⁻ ,9 ⁻)	774.27	7-			Mult.: $\Delta J=0$, D or $\Delta J=2$, Q. DCO=0.86 24.	
1238.0 6	6.1 13	2379.0		1140.98	9+				
1348 <i>I</i>	3.0 7	3605.0	(13^{+})	2256.96	11^{+}				
1356.0 <i>1</i>	15.6 25	2944.06	12+	1588.05	10^{+}	(E2)		DCO=1.06 24.	
1506 <i>1</i>	2.1 6	4450.1	(14^{+})	2944.06	12^{+}				

 $^{76}\text{Ge}(^{7}\text{Li},3n\gamma) \qquad 2000\text{Ra25} \text{ (continued)}$

[†] Uncertainty assigned as 0.1 keV for $I\gamma \ge 10$, 0.3 keV for $I\gamma = 7-10$; 0.6 keV for $I\gamma = 4-7$ and 1 keV for $I\gamma < 4$, based on a general comment by 2000Ra25.

[‡] Since $\gamma\gamma(\theta)$ data are insensitive to determination of parity, the evaluator has assigned dipole or D+Q to $\Delta J=1$ or 0 transitions and Q to $\Delta J=2$ transitions, as indicated by DCO ratio. For levels where lifetimes are available, RUL is used to assign parity. The mult=D here refers to M1 or E1, μ <=D+Q to M1+E2 and mult=Q to E2 in 2000Ra25.

[#] From 'adopted gammas'.

 $^{80}_{35}{
m Br}_{45}$

3

 $^{80}_{35}{
m Br}_{45}$