¹²C(α,⁸He) **1974Ro17,1976Tr01**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. E. Purcell, C. G. Sheu	ENSDF	13-Aug-2018

1974Ro17: E=156 MeV, measured Q of ⁸He spectrum, σ , deduced ⁸C mass excess and width. This is the article in which ⁸C is first recognized (2012Th01). The differential cross section was found to be about 20 nb/sr at $\theta_{lab}=2^{\circ}$. The mass excess of ⁸C was found to be $\Delta M(^{8}C)=35.30$ MeV 20. As indicated above, ⁸C decays by proton emission. Assuming a Gaussian line shape, the width of observed ⁸C state is found to be $\Gamma=0.22$ MeV +8–14.

Since the ⁸He spectrum is the observed quantity in this experiment, a change in the measured mass of ⁸He would lead to a change in the mass of ⁸C. In (1974Ce05) a more accurate value of the mass defect of ⁸He led to a revision of the measured mass defect of ⁸C, $\Delta M(^{8}C)=35.38$ MeV 17.

1976Tr01: E=123.5 MeV, measured σ , deduced mass excess and width. The mass excess of ⁸C was found to be $\Delta M(^{8}C)=35.10$ MeV 3. The width was found to be $\Gamma=230$ keV 50 assuming a Gaussian fit and 183 keV 56 assuming a Breit-Wigner fit. An IMME study of A=8 nuclei is reported in this article.

⁸C Levels

E(level)	Г	Comments
0	230 keV 50	Γ: from (1976Tr01), other value Γ =0.22 MeV +8-14 (1974Ro17).

1

 ${}_{6}^{8}C_{2}$