⁸Li β^- decay 1986Wa01,1989Ba31

	History		
Туре	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

Parent: ⁸Li: E=0.; $J^{\pi}=2^+$; $T_{1/2}=839.9$ ms 9; $Q(\beta^-)=16005.16 \ 10$; $\%\beta^-$ decay=100

1960Fa04: ⁸Li(β^{-}). Deduced nuclear properties.

1960Gr10: ⁸Li(β^-), deduced nuclear properties.

1960No01: ⁸Li(β^-), deduced nuclear properties.

1960No05: ⁸Li(β^-), deduced nuclear properties.

1970Sc34: ⁸Li(β^-), measured β -delayed α -spectrum. ⁸Be deduced level.

1971Wi05: ⁸Li(β^{-}), measured delayed α spectra, T_{1/2}. Deduced No second-class current contribution.

1974Tr01: ⁸Li(β^{-}), measured Ba(θ).

1980Mc07: ⁸Li(β^{-}), measured Ba(θ). Deduced final state energy dependence.

1982Fi03: ⁸Li(β^-), measured β -delayed E_{α}, I_{α}.

1984La27: ⁸Li(β^{-}), measured charge particle spectra following β -decay. Deduced evidence for β -delayed triton emission.

1986Wa01: ⁸Li(β^{-}), analyzed β -delayed breakup α -spectra. ⁸Be deduced level, Γ , Gamow-Teller matrix elements. R-matrix.

1988Ha21: ⁸Li(β^-), measured β -decay asymmetry vs E(β). Deduced No second class current evidence.

1989Ba31: ⁸Li(β^{-}); calculated α -spectra. ⁸Be deduce possible broad intruder state. Many-level R-matrix fit.

1992De07: ⁸Li(β^{-}). Deduced BaALPHA-correlation measurement procedure.

1993Mo28: ⁸Li(β^{-}), measured β -decay end point energy.

1996Eb01: ⁸Li(β^-), measured β -decay count rate asymmetry.

2002Bh03: ⁸Li(β^-), analyzed β -delayed E_{α}. ⁸Be deduced R-matrix parameters.

2003Hu06: ⁸Li(β^-), measured β -decay asymmetry from polarized source, electrons transverse polarization. Deduced time reversal violating triple correaltion parameter, scalar leptoquark mass limit.

⁸Be Levels

$E(\text{level}) J^{\pi \dagger} T_{1/2}^{\dagger}$		T _{1/2} †	Comments		
0.0 3030 <i>10</i>		5.57 eV 25 1513 keV <i>15</i>	%α=100		
[†] From Adopted Levels.					
				β^- radiations	
E(decav)) E	(level) $I\beta^{-\dagger}$	Log ft	Comments	

(12975 10) 3030 ≈100 ≥5.37

av Eβ=6248 5

log ft=5.37 from (1986Wa01). Other value In the literature is log ft=5.72 (1989Ba31). Because broad levels of ⁸Be participate In the β -decay, it is necessary to make detailed computations to determine the log ft value.

[†] Absolute intensity per 100 decays.