⁹C β⁺p decay **1988Mi03,2000Ge09,2001Be51**

History

Туре	Type Author		Literature Cutoff Date	
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745,155 (2004)	31-Mar-2004	

Parent: ⁹C: E=0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=126.5$ ms 9; $Q(\beta^{+}p)=16680.3\ 25$; % $\beta^{+}p$ decay=62.0 19 ⁹C-Q($\beta^{+}p$): from 2012Wa38.

1988Mi03: Implanted ⁹C into a thick Si detector and measured the total β -delayed breakup energy; deduced β -decay feeding to low-lying states. They missed several higherlying states that are fed and did not directly distinguish delayed p vs. α emission.

- 2000Ge09: ⁹C from the TRIUMF/TISOL facility was implanted in a thin carbon foil. Data were taken in two detector configurations; one configuration was sensitive to decay through the $p+^{8}Be_{g.s.}$ decay mode while the other configuration was sensitive to the $\alpha+^{5}Li_{g.s.}$ and $p+^{8}Be^{*}(3.0)$ decay channels. Breakup particles from ⁹C ->⁸Be+p -> $2\alpha+p$ and ⁹C ->⁵Li+ α -> $2\alpha+p$ were detected either in an array of 4 Δ E-E telescopes configured with two segmented Si annular detectors or with a similar array 2 Δ E-E telescopes configured with two doublesided position sensitive Si strip detectors and a plastic scintillator to count β -particles. Detector sensitivities and coincidence efficiencies were evaluated by Monte Carlo techniques, and a phenomenological approach was used to deduce the β -decay reaction branching ratios.
- 2001Be51: At the CERN/ISOLDE facility, doublesided strip detectors (DSSD) were coupled with thick stopping detectors to provide high-granularity and large solid angle coverage for detecting decay particles. Emphasis was placed on characterizing population and decay of the \approx 14.65 MeV IAS. Furthermore a thin Δ E DSSD was implemented to avoid threshold (efficiency) concerns that troubled (2000Ge09). Lastly, the experimenters evaluated the decay branching ratios for the ¹²B*(12.2) state. Little comment is given on other populated levels.
- 2001Bu05: The authors of (2000Ge09) give a more rigorous alternate interpretation of their data in a full R-matrix analysis. There is a poor agreement between deduced level energies and accepted energy values.

Comments:

Four relevant articles are given that discuss three different experimental efforts. Agreement is relatively mixed.

- The experiments that are most sensitive to decay to ${}^{9}B_{g.s.}$ find the largest feeding to that state, we take (54.1 *15*)% from (2001Be51). Data from TRIUMF produced the most comprehensive set of populated levels, though they are analyzed via two different methods in (2000Ge09) and (2001Bu05) yielding somewhat different results, due in part to differences in the ${}^{9}B_{g.s.}$ branch and subsequent renormalization. Lastly are the states above 14 MeV, (2000Ge09) reports only ${}^{9}B*(14.0: J^{\pi}=?)$ which decays mainly via proton emission, while (2001Be51) reports population of ${}^{9}B*(14.6: J^{\pi}=3/2^{-})$ which decays about evenly via p and α emission. On the other hand the analysis of (2001Bu05) reports population of both levels. Finally, in (2000Ge09, 2001Bu05) a previously unknown ${}^{9}B$ level at $E_x=13.3$ MeV is reported.
- The ⁹B ground state feeding from (2001Be51) is accepted here; the branching ratios from (2000Ge09) including the mostly α background component are then renormalized (×' 0.864). The branches feeding both of the E_x=14.0 and 14.6 MeV states are accepted, though it may be that only one level was populated. The particle breakup branching ratios for ⁹B*(12.2) are accepted from (2001Be51). And lastly, the weak branch to ⁹B*(13.3) is included with some uncertainty.

⁸Be Levels

E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$
0.0	0^{+}	5.57 eV 25
3030 10	2^{+}	1513 keV 15

[†] From Adopted dataset for ⁸Be in ENSDF database.

Delayed Protons (⁸Be)

E(p)	E(⁸ Be)	I(p)	E(⁹ B)
165.18 81	0.0	54.1 15	0
2249.6 98	0.0	0.156 17	2345
2.64×10 ³ 14	0.0	5.19 52	2780
8281 37	3030	1.47 44	12160

Continued on next page (footnotes at end of table)

${}^{9}C \beta^{+}p \text{ decay}$ 1988Mi03,2000Ge09,2001Be51 (continued)

Delayed Protons (continued)

E(p)	E(⁸ Be)	I(p)	E(⁹ B)
10499 24	3030	0.0033	14655
10974 <i>36</i>	0.0	0.53 8	12160
11987 89	0.0	0.0017 <i>3</i>	13300 ?
12619 62	0.0	0.164 17	14010
13192 22	0.0	0.0011	14655

⁹C β⁺p decay 1988Mi03,2000Ge09,2001Be51

Decay Scheme

I(p) Intensities: Relative I(p)

