⁷Li(**p**,γ) **2004Ti06**

	History		
Туре	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

1964Mi10: ⁷Li(p, γ) E_p=0.50-2.0 MeV, measured α -, γ -spectra.

1964Pr04: ⁷Li(p, γ) E_p=0.4-1.8 MeV, measured α -, γ -spectrum, α - γ -coin. ⁸Be deduced levels.

1964Sc19: ⁷Li(p, γ) E_p=0.2-1.7 MeV, measured p, $\gamma(\theta, E)$. ⁸Be deduced levels, J, π .

1969Sw01: ⁷Li(p, γ) E=0.44-2.45 MeV, measured σ (E, θ). ⁸Be deduced resonances, levels, Γ -level, γ -branching.

1969Sw02: ⁷Li(p, γ) E=0.44, 1.50 MeV, measured σ (E,E $_{\gamma}$,E $_{\alpha}$, θ (α - γ)). ⁸Be transition deduced γ -mixing.

1976Fi05: ⁷Li(p, γ) E=0.8-17.6 MeV, measured σ (E,E $_{\gamma}$, θ). ⁸Be deduced giant resonances, Γ_{γ} .

1977Ul02: ⁷Li(pol. p, γ) E=380-960 keV, measured A(E, θ). ⁸Be deduced level, Γ , J, π .

1981Ma33: ⁷Li(p, γ) E=11.5-30 MeV, measured E_{γ}, I_{γ}. Deduced σ (E, θ). ⁷Li(p, γ) E=4-30 MeV, measured σ (E). ⁸Be deduced possible GDR.

1983Fi13: ⁷Li(p, γ) E=400-550 keV, measured yield vs. E.

1984Se16: ⁷Li(pol. p, γ) E=14 MeV. Analyzed $\sigma(\theta)$, analyzing power data. Deduced j-dependence of polarization effects.

1989BrZO: ⁷Li(p, γ) E not given, measured 2α - γ -coin. Deduced ⁸Be level excitation σ .

1990Ri06: ⁷Li(p, γ) E=7.5, 8 MeV, measured E_{γ}, spectral shape at θ_{γ} =90°. ⁸Be level deduced intrinsic line shape.

1991Br11: ⁷Li(p, γ) E=25 MeV, measured σ (E, θ), γ (particle)-coin. Deduced reaction mechanism, σ upper limit.

1992Ce02: ⁷Li(p, γ) E=40-180 keV, measured capture E_{γ}, I_{γ}, $\gamma(\theta)$. Deduced astrophysical S-factor. ⁸Be levels deduced γ -ray to charged particle branching ratio.

1994Ch23: ⁷Li(pol. p, γ) E≤80 keV, measured $\sigma(\theta)$, analyzing power vs. θ . Deduced implications for astrophysical S-factor.

1994Ro16: ⁷Li(p, γ) E≤1.5 MeV. Analyzed astrophysical S-factor. Deduced resonance tail role.

1995Bb21: ⁷Li(pol. p, γ) E \approx 70 keV. Analyzed $\sigma(\theta)$, analyzing power. Deduced no evidence for large p-wave strength.

1995Za03: ⁷Li(p, γ) E=100-1500 keV, measured E_{γ}, I_{γ}(θ) ratios. Deduced σ (E), astrophysical S-factor vs. E, capture mechanism. ⁸Be deduced resonance energy, Γ .

1996Go01,1997Go13: ⁷Li(pol. p, γ) E=0-80 keV, measured α - γ -coin, A_y(θ), $\sigma(\theta)/A_0$. Deduced p-wave strength, astrophysical implications.

1996Ha06: ⁷Li(p, γ) E=80-450 keV, measured I_{γ}(θ), relative yields. Deduced Legendre coefficients.

1997Ba04: ⁷Li(p, γ) E=low. Analyzed p-wave strength in σ . Deduced projectile penetration factors dependence.

2000Sp01: ⁷Li(pol. p,γ) E=40-100 keV, measured yields, analyzing power. Deduced slope of astrophysical S-factor, role of subthreshold resonance.

⁸Be Levels

E(level)	E(level) J^{π} $T_{1/2}$		Comments		
0.0					
3.03×10^{5}					
16.626×10^{3}					
16.922×10^3					
17640.0 10	1^{+}	10.7 keV 4	=1.		
			Γ : From Γ_{lab} =12.2 keV 5.		
18150 5	1^{+}	147 keV	=1.		
18.91×10^{3}	(2^{-})	131 keV 44			
19.07×10 ³ 2	$(1,2,3)^{-}$	271 keV 17			
$20.\times 10^3$?					
21.5×10^{3}					
21.6×10^3	1-	≈4.5 MeV	T=1		
			=0.		
22.5×10^3					
23.8×10^{3}	$(1^{-}, 2^{-})$	≈7. MeV	T=1		
			=(0).		
$27.\times10^{3}$?					
28.6×10^3			Γ =broad.		

⁷Li(p, γ) **2004Ti06** (continued)

$\gamma(^{8}Be)$

 $E\gamma$ values are from recoil-corrected E(level) differences.

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f
718	17640.0	1^{+}	16.922×10^3	14596	17640.0	1^{+}	3.03×10^{3}
1014	17640.0	1^{+}	16.626×10^3	15105	18150	1^{+}	3.03×10^{3}
1228	18150	1^{+}	16.922×10^{3}	16013	19.07×10^{3}	$(1,2,3)^{-}$	3.03×10^{3}
1524	18150	1^{+}	16.626×10^3	17619	17640.0	1^{+}	0.0
1988	18.91×10^{3}	(2^{-})	16.922×10^{3}	18128	18150	1+	0.0
2284	18.91×10^{3}	(2 ⁻)	16.626×10^3				

⁷Li(p,γ) 2004Ti06

Level Scheme

