6 Li(d, α), 6 Li(d, $p\alpha$) 2004Ti06

History

Author Literature Cutoff Date Citation J. H. Kelley, J. L. Godwin, C. G. Sheu Update ENSDF 31-Mar-2004

1967Cl06: ⁶Li(d, α) E=3 to 12 MeV, measured $\sigma(E,\theta)$. ⁸Be deduced levels, J, π .

1969B114: ⁶Li(d, α) E=6.33-7.14 MeV, measured $\sigma(E,\theta)$. ⁸Be deduced resonance, Γ -level.

1971Ne12: ⁶Li(pol. d, α) E=0.4, 0.6, 0.8, 0.96 MeV, measured vector, tensor analyzing power. ⁸Be deduced resonances, J, π .

1975Mc02: ⁶Li(d, α) E=0.5-3.4 MeV, measured $\sigma(E,\theta)$.

1975Wi25: 6 Li(d, α) E=425 keV, measured polarization.

1977El09: ⁶Li(d, α) E=0.1-1.0 MeV, measured $\sigma(E,\theta)$.

1977Ri09: ⁶Li(d, α) E=1.5-11.5 MeV, measured σ (E, θ), α (E, θ). ⁸Be deduced resonance structure.

1977Mi13: ⁶Li(d,p α) E=7.5, 10, 10.5 MeV, measured (E,E1,E2, θ_1, θ_2). Deduced reaction mechanism.

1979Bo33: ⁶Li(d, α) E=100-180 keV, measured σ (E). Deduced astrophysical σ .

1979Ri03: ⁶Li(pol. d,α) E=5.0-6.5, 8.0-10.0 MeV, measured A_Y(THETA,E), A_{vv}(THETA,E).

1981Go19: ${}^{6}\text{Li}(d,\alpha) \to E_{C,M}$ = 35-110 keV, measured $\sigma(E)$.

1986So07: ⁶Li(pol. d,α), E≈6.9-7.05 MeV, measured $\sigma(\theta)$, T₂₀(THETA), T₂₁(THETA), T₂₂(THETA), iT₁₁(THETA). ⁸Be deduced isospin forbidden decay, channel spin dependent γ ratio.

1989Ba88: ⁶Li(d, α) E=18.2-36.8 MeV, measured $\sigma(\theta)$. Deduced model parameters.

1990Sa47: ⁶Li(pol. d, α) E=10 MeV, analyzed tensor analyzing power data. ⁶Li deduced D-state component.

1992En01: ⁶Li(d, α) E_{C.M.}=10-1004 keV, measured $\sigma(\theta, E)$. Deduced astrophysical S-factor vs. E, electron screening potential energy.

1993Ce02: ⁶Li(d,a) E_{C.M.}=20-135 keV, measured spectra, yield ratios.

1994Ar24: ⁶Li(d, α) E=18.2-44.5 MeV, measured $\sigma(\theta)$. Deduced $\sigma(E)$. ⁸Be deduced possible level.

1997Cz01: ⁶Li(d, α) E=50-180 keV, measured σ (E), astrophysical S-factor vs. E. Deduced subthreshold resonance contribution.

2002Ba77: ⁶Li(d, α) E=low, analyzed σ . Deduced electron screening potential.

2002Sa09: ⁶Li(d, α) E_{C.M.}=2.3-3.5 MeV. Deduced σ , astrophysical S-factor.

2003Pi13: ${}^{6}\text{Li}(d,\alpha) \text{ E(C.M.)} \approx 10\text{-}1000 \text{ keV}$, analyzed astrophysical S-factors, electron screening potential energy.

2003Sp02: ⁶Li(d, α) E=low, analyzed σ , astrophysical S-factors.

2004Ka13: ⁶Li(d, α) E=30-75 keV, measured thick-target yields for PdLi and AuLi targets. Deduced environmental effects.

⁸Be Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
22.24×10 ³ 2	2^{+}		E(level): from $E_{res} = -0.05$ MeV 2.
22.8×10^3		≈600 keV	E(level): from $E_{res}=0.8$ MeV and $\Gamma_{lab}\approx 800$ keV.
25.1×10^3	2^{+}	≈1.05 MeV	E(level): from E_{res} =3.75 MeV and $\Gamma_{lab}\approx$ 1.4 MeV.
25.5×10^3	4+		
27.49×10^3	0^{+}		T=2
$\approx 28. \times 10^3$			
$\approx 41. \times 10^{3}?$			
$\approx 43. \times 10^{3}$?			
$\approx 50. \times 10^3$?			