2 H(78 Zn,P),(78 Zn,p γ) 2015Or01

History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016								

2015Or01: $E(^{78}Zn)=2.83$ MeV/nucleon beam was produced in U(p,F) at E(p)=1 GeV from the CERN PS Booster, target=UC_x. ⁷⁸Zn atoms were laser ionized using the RILIS set up at CERN. Secondary target was 105 μ g/cm² thick deuterated polyethylene (DPE). Protons were detected using T-REX array of Si telescopes and γ rays were detected using eight triple-cluster HPGe detectors of Miniball array. Measured E(p), E γ , I γ , $\gamma\gamma$ -coin, p γ -coin, p (θ) , p $\gamma(\theta)$. DWBA analysis. Deduced levels, J, π , isomer.

⁷⁹Zn Levels

E(level)	$J^{\pi \ddagger}$	L	S	Comments
0 983 <i>3</i>	9/2 ⁺ 5/2 ⁺	2	0.38 5	J ^π : L(d,p)=2 from angular distribution of 983γ-gated proton spectrum; also L(d,p)=0+2 (41% 3 L=0 and 51% 4 L=2 component) for 850-1550-keV region
110,101 15	$(1/2^{+})$	(0)	0 41 10	proton spectrum and comparison with DWBA calculations; also shell-model predictions; γ to $9/2^+$ rules out $3/2^+$.
110×10 ⁻ 15	(1/2*)	(0)	0.41 10	E(level): from proton spectrum, expected to be an isomer from systematics; half-life and decay modes are not known. J^{π} : L(d,p)=0+2 for 850-1550 keV region proton spectrum and comparison with DWBA calculations.
1336 [†] 1	(1/2 ⁺ ,3/2 ⁺)			E(level): 1.34 MeV 15 from proton spectrum. J ^{π} : prompt 236 γ to (1/2 ⁺) is M1 or E1; feeding from higher states favors positive parity.
1424 <i>4</i>	(3/2+,5/2+)	(2)	0.05 2	J^{π} : L(d,p)=2 from angular distribution of 441 γ -gated proton spectrum; also L(d,p)=0+2 for 850-1550 keV region proton spectrum and comparison with DWBA calculations.
2312? 4				E(level): 2.35 MeV 15 from 888 γ -ray gated proton spectrum.
2521 [†] 3				E(level): 2.65 MeV 15 from 236γ-ray gated proton spectrum.
3195 [†] 4 3198? 6 3304? 5				E(level): 3.20 MeV 15 from 1859γ -ray gated proton spectrum. E(level): 3.30 MeV 15 from 1774γ -ray gated proton spectrum. E(level): 3.45 MeV 15 from 2321γ -ray gated proton spectrum.

[†] Uncertainty is relative with respect to the uncertainty in $E\gamma$ from this level, assuming fixed energy of 1100 keV for the (1/2⁺) isomer. Absolute uncertainty is 150 keV.

[‡] As proposed by 2015Or01 based on γ -gated proton angular distributions, DWBA analysis.

$\gamma(^{79}\text{Zn})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
236 [†] 1	1336	$(1/2^+, 3/2^+)$	110×10^{1}	$(1/2^+)$	(D)	Mult.: prompt γ ray is likely to be M1 or E1.
441 [†] 1	1424	$(3/2^+, 5/2^+)$	983	5/2+		
888 [‡] 3	2312?		1424	$(3/2^+, 5/2^+)$		
983 [†] 3 1185 3	983 2521	5/2+	0 1336	9/2 ⁺ (1/2 ⁺ ,3/2 ⁺)		
1774 [‡] 4 1859 4	3198? 3195		1424 1336	$(3/2^+, 5/2^+)$ $(1/2^+, 3/2^+)$		
2321 [‡] 4	3304?		983	5/2+		

[†] Prominent γ rays in the gamma-ray spectra, 983 γ being the most intense.

[‡] Placement of transition in the level scheme is uncertain.

 $^{79}_{30}$ Zn₄₉