⁷⁹Y ε decay (14.8 s) 1992Mu12,1992Gr09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016

Parent: ⁷⁹Y: E=0.0; J^{π} =(5/2⁺); $T_{1/2}$ =14.8 s 6; $Q(\varepsilon)$ =7.12×10³ 45; % ε +% β ⁺ decay=100.0

⁷⁹Y-J^{π},T_{1/2}: From ⁷⁹Y Adopted Levels.

⁷⁹Y-Q(ε): From 2012Wa38.

1992Mu12: measured T_{1/2}, γ , $\beta\gamma$, $\gamma\gamma$, $\beta\gamma(t)$. Source produced by ⁵⁴Fe(²⁸Si,p2n γ) E=92 MeV.

1992Gr09: source produced by mass separation of fission fragments. Measured $T_{1/2}(^{79}Y \text{ isotope})$ and one γ at 177 keV.

1987Lo10, 1987LeZT: source produced by ${}^{24}Mg({}^{58}Ni,p2n)$ E=177 MeV.

The level scheme is not sufficiently well known to allow calculation of absolute γ -ray intensities.

⁷⁹Sr Levels

E(level)	J^{π}	T _{1/2}		Comments	
0 177.4 <i>1</i> 329.9 <i>1</i> 1283.4 <i>10</i>	$ \frac{\overline{3/2^{(-)}}}{(5/2^+)} \\ (7/2^+) $	23 ns 2	T _{1/2} : $βγ(t)$ (1992Mu12).		

[†] From Adopted Levels.

ε, β^+ radiations

The ε,β^+ feedings and log *ft* values should be considered as approximate because of high Q(ε) values and lack of knowledge of decay scheme above 1300 keV.

E(decay)	E(level)	$I\beta^+$	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(5.8 \times 10^3 5)$	1283.4	<24.5	< 0.5	>5.1	<25	av Eβ=2224 220; εK=0.014 5; εL=0.0016 6; εM+=0.00035 12
$(6.8 \times 10^3 5)$	329.9	<14	< 0.1	>5.7	<14	av Eβ=2686 220; εK=0.0082 22; εL=0.0010 3; εM+=0.00021 6
6.94×10 ³ 45	177.4	<60.5	< 0.5	>5.1	<61	av Eβ=2761 220; εK=0.0076 20; εL=0.00088 23; εM+=0.00019 5
						E(decay): from $\beta^{+}(177\gamma)$ (1992Mu12).

[†] Absolute intensity per 100 decays.

 γ ⁽⁷⁹Sr)

I γ normalization: I(γ +ce)(177 γ)=100, assuming no $\varepsilon \beta^+$ feeding to g.s. In view of high Q(ε) value, the present decay scheme is not considered as well established, thus the deduced normalization factor is only an approximate value.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α@	Comments
152.5 <i>I</i>	1	329.9	(7/2 ⁺)	177.4	(5/2+)	M1+E2	-0.22 8	0.059 6	$ \begin{array}{c} \alpha(\text{K}) = 0.052 \ 6; \ \alpha(\text{L}) = 0.0061 \ 8; \\ \alpha(\text{M}) = 0.00102 \ 13 \\ \alpha(\text{N}) = 0.000127 \ 15; \ \alpha(\text{O}) = 7.8 \times 10^{-6} \ 7 \end{array} $
177.4 <i>1</i>	7.3 18	177.4	(5/2+)	0	3/2 ⁽⁻⁾	(E1(+M2))	-0.01 3	0.0189 4	$\begin{array}{l} \alpha({\rm K}){=}0.0168 \; 4; \; \alpha({\rm L}){=}0.00183 \; 5; \\ \alpha({\rm M}){=}0.000306 \; 8 \\ \alpha({\rm N}){=}3.80{\times}10^{-5} \; 10; \; \alpha({\rm O}){=}2.35{\times}10^{-6} \\ 6 \end{array}$
1106 <i>1</i>	1.8 5	1283.4		177.4	(5/2+)				I_{γ} : uncertainty=+13-23 (1992Mu12).

Continued on next page (footnotes at end of table)

⁷⁹Υ ε decay (14.8 s) 1992Mu12,1992Gr09 (continued)

$\gamma(^{79}\text{Sr})$ (continued)

[†] From 1992Mu12. 1992Gr09 report only the 177 γ . [‡] From Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by \approx 14. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁷⁹Y ε decay (14.8 s) 1992Mu12,1992Gr09

