⁷⁹Se IT decay (3.92 min) 1972De67,1968Ma12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016

Parent: ⁷⁹Se: E=95.73 3; $J^{\pi}=1/2^{-}$; $T_{1/2}=3.92 \text{ min } l$; %IT decay=99.944 11 ⁷⁹Se-%IT decay: % $\beta^{-}=0.056 + l3-8$ (1988Kl03).

Others: 1990Ab02, 1969Mu03, 1969Ba34, 1969Ad10, 1962We08, 1955Dr43, 1954Yt03, 1953Cu33, 1952Ru10, 1950Fl75, 1950Fl62.

⁷⁹Se Levels

E(level)	J^{π}	T _{1/2}	Comments				
0.0	7/2+						
95.73 <i>3</i>	$1/2^{-}$	3.92 min 1	T _{1/2} : from 1990Ab02. Others: 1969Mu03, 1954Yt03, 1953Cu33, 1952Ru10, 1950Fl62.				

[†] From Adopted Levels.

$\gamma(^{79}\text{Se})$

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}$ †	Comments
95.73 3	9.54 14	95.73	1/2-	0.0 7/2+	E3	9.48	99.944 11	$\begin{aligned} &\alpha(\text{K}) = 7.26 \ 11; \ \alpha(\text{L}) = 1.90 \ 3; \ \alpha(\text{M}) = 0.296 \ 5; \\ &\alpha(\text{N}) = 0.0197 \ 3 \end{aligned}$ $\begin{aligned} &\text{E}_{\gamma}: \ \text{from 1972De67.} \\ &\text{I}_{(\gamma + ce)}: \ \text{from IT branching.} \\ &\text{I}_{\gamma}: \ \text{from I}(\gamma + ce) \ \text{and } \alpha. \end{aligned}$ $\begin{aligned} &\text{Mult.: \ from } \alpha(\text{K}) \text{exp} = 10 \ 4 \ (\text{relative to } 7.1 \ 15 \ \text{for} \\ &103\gamma \ \text{in}^{\ 81}\text{Se} \ (1955\text{Dr43}). \ \alpha(\text{K}) \text{exp} = 7.4 \ 6 \\ &(1962\text{We08}). \ \alpha(\text{K}) = 7.26 \ (\text{theory}). \\ &\text{Ice}(\text{K})/\text{Ice}(\text{L}) = 3.0 \ 5 \ (1955\text{Dr43}), \ 2.9 \ 5 \\ &(1952\text{Ru10}), \ 3.8 \ (\text{theory}). \end{aligned}$

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁷⁹Se IT decay (3.92 min) 1972De67,1968Ma12

