⁷⁷Se(t,p) 1992Wa03

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 135, 193 (2016) 31-May-2016

E=17 MeV. Measured $\sigma(\theta)$ from 3.75° to 86.75° (lab angle) in 7.5° steps. Protons analyzed by multiangle spectrograph and recorded on emulsion plates, FWHM=18 keV.

 $J^{\pi}(^{77}Se g.s.)=1/2^{-}$.

L-transfers and enhancement factors deduced from comparison of $\sigma(\theta)$ data with DWBA calculations assuming following configurations for 2 neutrons: $(1g_{9/2},1g_{9/2})$ for L=0 and 2; $(2p_{1/2},3s_{1/2})$ for L=1; $(2p_{1/2},2d_{5/2})$ for L=3; $(1d_{5/2},1d_{5/2})$ for L=4 and $(2p_{1/2},1g_{9/2})$ for L=5.

Measured cross sections in mb/sr (maximum values) are given by 1992Wa03, values range between 0.004 and 1.42. The uncertainties are from 5% for strong groups to 25% for weak groups. The systematic uncertainty is given by 1992Wa03 as 10%.

⁷⁹Se Levels

E(level)	L	$\varepsilon(2J_f+1)^{\dagger}$	E(level)	L	$\varepsilon(2J_f+1)^{\dagger}$	E(level)	L	$\varepsilon(2J_f+1)^{\dagger}$
96 <i>3</i>	0	46	1737 10	1	0.04	2599 6	2	8.4
143 <i>4</i>	5	1.8	1865 [‡] <i>10</i>			2651 5	3	0.26
367 <i>3</i>	2	36	1957 6	2	3.3	2736 <i>6</i>	2	7.7
534 <i>4</i>	3	0.18	2129 7	2	5.5	2841 [‡] 8		
586 <i>6</i>	1	0.77	2168 8	3	0.07	2987 8	0	2.9
650 12	3	0.08	2252 10	2	1.8	3021 6	0	4.7
750 <i>10</i>	(1)	0.08	2306 11	2	2.8	3072 7	2	4.6
1134 8	0	9.9	2336 7	2	4.1	3121 5	3	0.25
1261 7	3	0.49	2416 9	2	3.2	3176 <i>4</i>	2	8.8
1346 9	3	0.059	2467 <i>6</i>	1	0.14	3221 7	1	0.26
1441 9	2	25.0	2543 [‡] 7					
1647 10	3	0.15	2552 6	1	0.24			

 $^{^{\}dagger}$ $\varepsilon(2J_f+1)=(\sigma(exp)(2L+1)(2J_i+1))/(N\times\sigma(DWBA))$ where $\varepsilon=$ enhancement factor, $J_f=$ spin of residual nucleus, $J_i=$ spin of target nucleus, L=angular momentum of transferred neutron pair, N=230. The uncertainty is expected to be at least 10%. Some of the values listed by 1992Wa03 have been rounded off.

 $[\]dot{\tau}$ $\sigma(\theta)$ fails to reproduce theoretical result for a single L value. Data fit equally well several different pairs of L values.