79 Br(p,n γ) 1980To07,1975Bh02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016

1980To07: E=2.82-3.50 MeV. γ , $\gamma\gamma$, $n\gamma$, $\gamma(\theta)$, and excitation functions. Enriched target. 1975Bh02: E=1.7-5.0 MeV. γ, γγ, nγ, ce. Low lying levels explained in terms of Coriolis coupling model (1974Ba75).

Others:

1980IrZZ: E=6 MeV. No details available.

1968Bl04: measured $\gamma(t)$ and $\gamma(\theta, H, t)$.

⁷⁹Kr Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$1/2^{-}$		
129.9 <i>3</i>	7/2+	50 s <i>3</i>	%IT=100 Tuo: from Adopted Levels
147.11 24	5/2-	77.7 ns 15	$g=+0.449 \ 4 \ (1968Bl04)$ T _{1/2} : from $\gamma(t)$ (pulsed-beam) (1968Bl04).
149.0 5	$9/2^{+}$		
182.90 22	$3/2^{-}$		
290.76 25	$5/2^{+}$		
383.92 24	3/2-		
401.98 25	$5/2^{-}$		
449.7 <i>4</i>	$7/2^{-}$		
533.5 <i>3</i>	$1/2^{+}$		
636.2 [#] 4	$5/2^{+}$		
659.3 <i>3</i>	$(5/2)^{-}$		
672.9 [#] 5	$7/2^{(+)}$		
675.9 6			
688.2 <i>3</i>	$3/2^{+}$		
694.6 <i>4</i>	$(7/2)^{-}$		
719.3 [@] 8			
752.1 4	$5/2^{+}$		
809.4 <i>3</i>	$1/2^{-}$		
835.6 <i>3</i>	(3/2)		
907.5 <i>3</i>	$(3/2, 5/2^{-})$		
931.1 [@] 8			
982.9 [#] 4	$(7/2)^{-}$		
986.9 [@] 6			
1027.9 @ 5			
1037.8 5			
±			

[†] From Adopted Levels.

[‡] From least-squares fit to $E\gamma$ data.

[#] Level proposed by 1980To07 only. [@] Level proposed by 1975Bh02 only.

 $^{79}_{36}$ Kr₄₃-1

⁷⁹Br(p,nγ) **1980To07,1975Bh02** (continued)

 $\gamma(^{79}\mathrm{Kr})$

 A_2 and A_4 are from 1980To07 at E(p)=3.50 MeV.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α ^a	Comments
129.9	7/2+	129.9 5	100	0.0	1/2-	E3		2.62 6	$ \begin{array}{l} \alpha(\text{K}) \exp = 1.9 \ l \\ \alpha(\text{K}) = 2.07 \ 5; \ \alpha(\text{L}) = 0.468 \ l2; \\ \alpha(\text{M}) = 0.0765 \ l9 \\ \alpha(\text{N}) = 0.00645 \ l6 \end{array} $
147.11	5/2-	17.0 [@] 5		129.9	7/2+	[E1]		14.0 12	α (K)=12.1 <i>10</i> ; α (L)=1.61 <i>15</i> ; α (M)=0.253 <i>23</i> α (N)=0.0224 <i>20</i>
		147.0 5	100	0.0	1/2-	E2		0.223 5	$\begin{array}{l} \alpha(K) \sin 2 \theta & \alpha \\ \alpha(K) \exp = 0.18 \ I \\ A_2 = +0.030 \ I5; \ A_4 = -0.011 \ 24 \\ \alpha(K) = 0.193 \ 4; \ \alpha(L) = 0.0252 \ 5; \\ \alpha(M) = 0.00407 \ 8 \\ \alpha(N) = 0.000382 \ 8 \end{array}$
149.0 182.90	9/2 ⁺ 3/2 ⁻	(19.1 <i>1</i>) 182.7 5	100	129.9 0.0	7/2 ⁺ 1/2 ⁻	[M1] M1+E2	0.36 9	15.5 0.034 <i>4</i>	δ (E2/M1)>2.3. E _{γ} : from Adopted Gammas. α (K)exp=0.030 3
	-)				,				A ₂ =-0.016 <i>11</i> ; A ₄ =-0.018 <i>19</i> $\alpha(K)$ =0.030 <i>4</i> ; $\alpha(L)$ =0.0035 <i>5</i> ; $\alpha(M)$ =0.00056 <i>8</i> $\alpha(N)$ =5.5×10 ⁻⁵ <i>7</i>
290.76	5/2+	108.3 5	1	182.90	3/2-				$\alpha(K) \exp=0.3$ Mult.: $\alpha(K) \exp$ implies E2+M1 with $\delta=0.8 \ 4$ but is inconsistent with ΔJ^{π} . For mult=E1+M2, $\delta=0.6 \ 2$.
		143.3 5	58	147.11	5/2-	(E1)		0.0310 6	$ α(K) exp = 0.077 30 A2 = +0.049 17; A4 = -0.023 31 α(K) = 0.0276 5; α(L) = 0.00296 6; α(M) = 0.000476 9 α(N) = 4.72 \times 10^{-5} 9 Mult.: α(K) exp agrees better with M1 but inconsistent with ΔJπ. δ=0.44 18 $
		160.7 5	42	129.9	7/2+	D			for E1+M2 and 0.5 3 for M1+E2. $A_2=-0.146\ 21;\ A_4=-0.03\ 4$ $\alpha(K)\exp=0.024\ 6$ Mult.: $\alpha(K)\exp$ implies E1 (δ <0.23) or M1. From Adopted Gammas, mult=M1+E2, δ =+0.29 10.
292.02	2/2-	291 ^{@b}	3	0.0	$1/2^{-}$				
383.92	5/2	201.0 <i>5</i> 236.9 <i>5</i>	2	182.90	3/2 5/2 ⁻	M1(+E2)	<0.8	0.0182 <i>51</i>	α (K)exp=0.014 7 α (K)=0.0161 45; α (L)=0.00182 55; α (M)=2.95×10 ⁻⁴ 89
		384.0 5	86	0.0	1/2-	M1		0.00399	$\begin{aligned} &\alpha(N) = 2.91 \times 10^{-5} \ 84 \\ &\alpha(K) \exp = 0.0034 \ 2 \\ &\alpha(K) = 0.00354 \ 5; \ \alpha(L) = 0.000382 \ 6; \\ &\alpha(M) = 6.19 \times 10^{-5} \ 9 \\ &\alpha(N) = 6.24 \times 10^{-6} \ 9 \end{aligned}$
401.98	5/2-	111 [@] 1	6	290.76	5/2+				
		219.1 5	53	182.90	3/2-	M1+E2	0.5 3	0.0232 68	$\begin{array}{l} \alpha(\text{K}) \exp = 0.020 \ 5 \\ \text{A}_2 = -0.020 \ 21; \ \text{A}_4 = -0.07 \ 5 \\ \alpha(\text{K}) = 0.0204 \ 60; \ \alpha(\text{L}) = 0.00234 \ 75; \end{array}$

Continued on next page (footnotes at end of table)

⁷⁹Br(p,nγ) 1980To07,1975Bh02 (continued)

γ ⁽⁷⁹Kr) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^a	Comments
401.98	5/2-	401.7 5	41	0.0	1/2-	(E2)	0.00637	$\begin{aligned} &\alpha(M) = 3.8 \times 10^{-4} \ 12 \\ &\alpha(N) = 3.7 \times 10^{-5} \ 12 \\ &\alpha(K) \exp = 0.0054 \ 8 \\ &A_2 = +0.118 \ 25; \ A_4 = -0.06 \ 4 \\ &\alpha(K) = 0.00562 \ 9; \ \alpha(L) = 0.000632 \ 10; \\ &\alpha(M) = 0.0001022 \ 15 \\ &\alpha(N) = 1.009 \times 10^{-5} \ 15 \\ &\delta(E2/M1) > 1.3. \end{aligned}$
449.7	7/2-	300.7 ^b 5 302.4 5	72	149.0 147.11	9/2 ⁺ 5/2 ⁻	M1,E2	0.0118 47	α (K)exp=0.011 7 A ₂ =+0.323 27; A ₄ =+0.04 4 α (K)=0.0104 42; α (L)=0.00118 50; α (M)=1.91×10 ⁻⁴ 81
		320.0 5	28	129.9	7/2+	E1	0.00310	$\begin{array}{l} \alpha(N)=1.89\times10^{-5} \ 77\\ \alpha(K)\exp=0.0030 \ 4\\ A_2=+0.16 \ 5; \ A_4=-0.11 \ 9\\ \alpha(K)=0.00275 \ 4; \ \alpha(L)=0.000293 \ 5;\\ \alpha(M)=4.74\times10^{-5} \ 7\\ \alpha(N)=4.74\times10^{-6} \ 7\\ \alpha(D)=4.74\times10^{-6} \ 7 \end{array}$
533.5	1/2+	350.5 5	81	182.90	3/2-	E1	0.00242	δ (M2/E1)<0.18. α (K)exp=0.0020 4 α (K)=0.00215 4; α (L)=0.000229 4; α (M)=3.70×10 ⁻⁵ 6 α (N)=3.71×10 ⁻⁶ 6
636.2	5/2+	533.3 5 345.6 5 487.1 5 506.2 5	19 11 20 69	0.0 290.76 149.0 129.9	$1/2^{-}$ $5/2^{+}$ $9/2^{+}$ $7/2^{+}$ $5/2^{-}$			A ₂ =+0.02 7; A ₄ =-0.08 10
039.3	(3/2)	237.4 3 275.0 5	44	401.98 383.92	3/2 ⁻	M1	0.00904	α (K)exp=0.0075 <i>10</i> A_2 =-0.10 <i>3</i> ; A_4 =+0.03 <i>6</i> α (K)=0.00801 <i>12</i> ; α (L)=0.000871 <i>13</i> ; α (M)=0.0001413 <i>21</i> α (N)=1.424×10 ⁻⁵ <i>21</i>
672.9	7/2 ⁽⁺⁾	476.4 5 512.6 5 382.1 5 524.0 ^b 543.1	18 34	182.90 147.11 290.76 149.0 129.9	3/2 ⁻ 5/2 ⁻ 5/2 ⁺ 9/2 ⁺ 7/2 ⁺			$A_2 = -0.03 5; A_4 = -0.09 9$
675.9		385 ^{^w} 1 493 [@] 1 676 [@] 1		290.76 182.90	5/2 ⁺ 3/2 ⁻ 1/2 ⁻			
688.2	3/2+	154.6 5 305 [@] 1 397.4 5 505.0 5 542 [@] 1	11 <1 13 16 2	533.5 383.92 290.76 182.90 147.11	$1/2^+$ $3/2^-$ $5/2^+$ $3/2^-$ $5/2^-$			
694.6	(7/2)-	688.1 5 292.8 5 511.4 5 695 ^{@b} 1	60 26 74	0.0 401.98 182.90 0.0	1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻			$A_2=+0.02 \ 4$; $A_4=-0.12 \ 6$ $A_2=-0.07 \ 6$; $A_4=+0.16 \ 11$ This transition with implied mult=E3 is considered
719.3		428 [@] 1		290.76	5/2+			as uncertain by the evaluator.

Continued on next page (footnotes at end of table)

				⁷⁹ Br(]	ο,n γ)	1980To07,19	075Bh02	2 (continued)	
						$\gamma(^{79}\text{Kr})$ (con	tinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α ^a	Comments
719.3 752.1	5/2+	537 [@] 1 461.4 5 569.0 5 622.2 5	14 10 76	182.90 290.76 182.90 129.9	3/2 ⁻ 5/2 ⁺ 3/2 ⁻ 7/2 ⁺	M1(+E2)	<1	0.00139 10	α (K)exp=0.0010 3 A ₂ =+0.07 3; A ₄ =-0.04 5
809.4	1/2-	425.6 5	81	383.92	3/2-				$\begin{aligned} \alpha(\mathbf{K}) &= 0.00124 \; 9; \; \alpha(\mathbf{L}) = 0.000133 \; 10; \\ \alpha(\mathbf{M}) &= 2.15 \times 10^{-5} \; 17 \\ \alpha(\mathbf{N}) &= 2.17 \times 10^{-6} \; 16 \\ \mathbf{A}_2 &= +0.003 \; 41; \; \mathbf{A}_4 &= -0.07 \; 7 \end{aligned}$
		626.7 ^b 662.0 5 809.6 5	11 8	182.90 147.11 0.0	3/2 ⁻ 5/2 ⁻ 1/2 ⁻				
835.6	(3/2)	199.5 ^b 301.8 5 433.5 5 451.8 5		636.2 533.5 401.98 383.92	5/2 ⁺ 1/2 ⁺ 5/2 ⁻ 3/2 ⁻				
		652.7 ^b 705.8 5 835.6 ^b		182.90 129.9 0.0	3/2 ⁻ 7/2 ⁺ 1/2 ⁻				
907.5	(3/2,5/2 ⁻)	505.0 5 524.0 ^b 616.8 5 724.9 5 907.7 5		401.98 383.92 290.76 182.90 0.0	5/2 ⁻ 3/2 ⁻ 5/2 ⁺ 3/2 ⁻ 1/2 ⁻				
931.1		243 [@] 1 931 [@] 1		688.2 0.0	3/2 ⁺ 1/2 ⁻				
982.9	(7/2)-	324.1 ^b 581.0 5 800 <i>I</i> 835.6 5		659.3 401.98 182.90 147.11	(5/2) ⁻ 5/2 ⁻ 3/2 ⁻ 5/2 ⁻				
986.9		603 [@] 1 803 [@] 1 988 [@] 1		383.92 182.90 0.0	3/2 ⁻ 3/2 ⁻ 1/2 ⁻				
1037.8		378 [@] & 1 654 [@] & 1 747 ^{&} 1 891 [@] 1		659.3 383.92 290.76	$(5/2)^{-}$ $3/2^{-}$ $5/2^{+}$ $5/2^{-}$				
		908 ^{@b}		147.11	5/2 7/2 ⁺				Doublet. Main component is with 908 level.

[†] From 1980To07, unless otherwise stated. Uncertainty of 0.5 to 1 keV assigned by the evaluator, based on accuracy indicated in 1980To07.

[‡] Photon branching ratio (1980To07). Uncertainties not available, but expected to be \approx 15%.

[#] From ce measurements by 1975Bh02.

^(a) From 1975Bh02. This transition to $1/2^{-}$ level implying (M3) multipolarity is considered as uncertain by the evaluator. Also it was reported only in this reaction, whereas the 695 level is populated quite strongly in other reactions as well.

& This placement is unlikely if the level is same as 1038.72, $(11/2^+)$ in Adopted Levels.

^{*a*} From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr. If No δ (E2/M1) value given, α overlaps pure M1 and pure

⁷⁹**Br**(**p**,**n** γ) 1980To07,1975Bh02 (continued)

 $\gamma(^{79}\text{Kr})$ (continued)

E2. b Placement of transition in the level scheme is uncertain.

⁷⁹₃₆Kr₄₃

6

