⁷⁸Se(α ,p2n γ),⁷⁷Se(α ,np γ) 1988Sc13

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 135, 193 (2016)	31-May-2016					

⁷⁸Se(α ,p2n γ) E=45 MeV and ⁷⁷Se(α ,np γ) E=27 MeV. Measured γ , $\gamma\gamma$, p γ , $\gamma(\theta)$, $\gamma(\text{lin pol})$, T_{1/2} by DSAM and RDDS methods.

Others: See also 78 Se(d,n γ) (1989DjZW) and 76 Ge(6 Li,3n γ) (1988NaZP).

1974GoYY: ⁷⁷Se(α ,np γ). Measured γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $T_{1/2}$ by DSA method. A₂: A₄ and $\gamma(\text{lin pol})$ coefficients are from ⁷⁸Se(α ,p2n γ), unless stated otherwise.

⁷⁹Br Levels

The placements of all transitions in the level scheme are from $\gamma\gamma$ data.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	3/2-		
207.5 [@] 1	9/2+	4.85 s 4	%IT=100
			$T_{1/2}$: from Adopted Levels.
217.1 ^{&} 1	5/2-	51 ps 12	T _{1/2} : RDDS method in $(\alpha, pn\gamma)$ $(\gamma\gamma \text{ coin})$.
201.4 <i>1</i> 397.79 <i>14</i>	3/2 1/2 ⁻ ,3/2 ⁻		Population of this level here is uncertain since 397γ (about 10 times as intense as 136γ (see Adopted Gammas)) has not been reported by 1988Sc13. However, in a spectrum shown by 1988Sc13 there is some evidence of a 397 γ -ray line which has been assigned to an impurity by 1988Sc13.
761.35 ^{&} 11	7/2-		
796.80 [@] 14	13/2+	9.0 ps 21	T _{1/2} : RDDS method in (α ,pn γ); weighted average of values from singles γ data at two distances.
954.06 <i>16</i> 1068.0 ^{&} 2 1114 <i>1</i>	(7/2 ⁻) 9/2 ⁻ 1/2 ⁻ 3/2 ⁻		
1180.7 2 1332? <i>I</i>	$\frac{1}{1}/2^+$ $\frac{3}{2}/2^-$	0.55 ps 14	T _{1/2} : DSA method in $(\alpha, pn\gamma)$ (py coin). Population of this level in this reaction is uncertain since 1115 γ or 1333 γ (intense γ rays from this level in Adopted Gammas) is not seen.
1333.0 <i>2</i> 1682.8 <i>2</i>	(5/2,7/2,9/2) 13/2 ⁺		(
1713.4 <mark>&</mark> 2	$11/2^{-}$	0.42 ps +35-14	$T_{1/2}$: DSA in (α ,pn γ).
1731.9 [@] 3	17/2+	1.18 ps 21	T _{1/2} : DSA in $(\alpha, pn\gamma)$ and $(\alpha, p2n\gamma)$; weighted average of four separate values from singles γ and p γ coin data.
1948.0 ^{&} 3	$13/2^{-}$		
1957.1 <i>3</i>	15/2+		
2393.1 2	13/2-	3.5 ps 21	$T_{1/2}$: DSA in (α,pnγ) and (α,p2nγ); weighted average of values from singles γ and p γ coin data. Feeding correction is not applied.
2421.4 3	17/2+		
2468.8 <i>4</i> 2479.0 ^{<i>a</i>} <i>3</i>	(13/2 ⁻)		Bandhead at 2393 ($J^{\pi}=13/2^{-}$) is also possible but 2479 is preferred (see discussion by 1988Sc13)
2580.4 ^a 2	$15/2^{-}$		
2725.2 ^{&} 3	17/2-		
2773.9 ^{<i>a</i>} 3	17/2-	8 ps <i>3</i>	T _{1/2} : RDDS in $(\alpha, pn\gamma)$; weighted average of values from $\gamma\gamma$ coin.
2865.9 [@] 4	21/2+	0.42 ps 14	T _{1/2} : DSA in $(\alpha, pn\gamma)$ and $(\alpha, p2n\gamma)$; weighted average of four separate values from singles γ and $p\gamma$ coin data.
2902.9 4			

⁷⁸Se(α ,p2n γ),⁷⁷Se(α ,np γ) 1988Sc13 (continued)

⁷⁹Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments				
3088.3 ^{<i>a</i>} 3 3366.3 5	(19/2)-	1.0 ps 5	T _{1/2} : DSA in $(\alpha, pn\gamma)$.				
3535.7 ^a 4	(21/2)-	0.76 ps 14	T _{1/2} : DSA in $(\alpha, pn\gamma)$ and $(\alpha, p2n\gamma)$; weighted average of values from singles γ and $p\gamma$ coin data.				
3560.3 <i>5</i> 3936.4 8							
4116.9 [@] 8	25/2+	0.28 ps 14	T _{1/2} : DSA in $(\alpha, pn\gamma)$ and $(\alpha, p2n\gamma)$; weighted average of values from singles γ and $p\gamma$ coin data.				

 † From least-squares fit to $E\gamma$ values.

[#] From $\gamma(\theta)$, $\gamma(\lim \text{pol})$ and band assignments. See Adopted Levels for details. [#] From DSA method, unless otherwise stated. [@] Band(A): $\pi g_{9/2} + ^{78}$ Se core.

[&] Band(B): *π*p_{3/2}.

^{*a*} Band(C): $\pi g_{9/2} + \nu$ (+ parity)+ ν (- parity).

							$\gamma(^{79})$	Br)	
	Re	elative ir (from A0 1	tensities term in $\gamma(heta$	in ⁷⁸ Se() data (α , pn γ)	E=27 MeV .3))			
	Εγ	Iγ	Εγ	 Iŋ	γ	Εγ	Iγ		
	101.4	1.6 1	544.2	21	1(@)				
	136.4	9.4 6	571.6	8.1	15(@)	935.1	42 2		
	187.3	4.1 3	589.3	100 5	5	944.9	5 1(#)		
	193.5	13.3 7	632.4	2.3	32	952.0	13 1		
	207.5	150 8	645.4	2.1	13	973.2	14 2		
	217.1	78 4(@)	692.7	/.5	8	10/0.5	2.84		
	201.4	16 1 (0)	730.5	· 4.0	y 4 	1134.0			
	314 4	10 1(@)	755 4	37	7 6(#)	1624 6	215		
	511.1	10.5 0	761.4	6.8	3 5	1783.8	5.1 5		
	383.9	2.0 30	(#) 777.2	5.9	9 5(#)				
	445.0	3.5 2	825.7	31	1(#)				
	447.4	5.5 4	851.0	22 2	2				
	464.5	4.2 3	867	2.7	7 6(#)				
	472.0	2.4 30	(#) 880.0	23 3	3				
	502.1	6.6 /							
(#)	531.0	4.0 50 at 00 ° ((#) 10885-13)						
(@)	includes d	ontributi	on from 79	r د deca	v				
					~) 				
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
101.4 1	1.9.7	2580.4	$15/2^{-}$	2479.0	$(13/2^{-})$	D(+0)	-0.08.8		$A_2 = -0.37$ 7: $A_4 = -0.08$ 9
136.4 <i>1</i>	5.2 2	397.79	$1/2^{-}, 3/2^{-}$	261.4	3/2-	-($A_2 = -0.295; A_4 = +0.018$
187.3 <i>1</i>	4.5 1	2580.4	$15/2^{-1}$	2393.1	$13/2^{-}$	D+Q	-0.07 3		$A_2 = -0.36 4; A_4 = +0.03 7$
193.5 <i>1</i>	17.6 <i>3</i>	2773.9	$17/2^{-}$	2580.4	$15/2^{-}$	M1+E2	-0.04 1	0.0198	$A_2 = -0.34 \ I; A_4 = -0.03 \ 2$
									$\alpha(K)=0.0176 \ 3; \ \alpha(L)=0.00191 \ 3; \ \alpha(M)=0.000304 \ 5$
									$\alpha(N)=2.84\times10^{-5} 4$
									pol=-0.22 20.
207.5 1	123 2	207.5	9/2+	0.0	3/2-	E3			$A_2=0.0 I; A_4=+0.02 2$
									Mult.: from Adopted Gammas.
217.1 <i>I</i>	60# 1	217.1	5/2-	0.0	3/2-	D(+Q)	+0.03 3		$A_2 = -0.13 \ 3; \ A_4 = -0.01 \ 4$
261.4 <i>I</i>	31 [#] 3	261.4	3/2-	0.0	$3/2^{-}$				A ₂ =-0.19 <i>16</i> ; A ₄ =-0.3 <i>3</i>
306.6 <i>3</i>	9.4 [#] 4	1068.0	9/2-	761.35	$7/2^{-}$				$A_2 = -0.18 \ 9; \ A_4 = -0.19 \ 10$
314.4 <i>1</i>	16.5 <i>3</i>	3088.3	$(19/2)^{-}$	2773.9	$17/2^{-}$	M1+E2	$-0.09\ 4$	0.00588 11	$A_2 = -0.42 \ 3; \ A_4 = -0.05 \ 5$
									$\alpha(K)=0.00522 \ 10; \ \alpha(L)=0.000561 \ 11; \ \alpha(M)=8.92\times10^{-5} \ 17$
									$\alpha(N) = 8.33 \times 10^{-6} \ 16$
									POL=-0.32 15.

ω

 $^{79}_{35}\mathrm{Br}_{44}$ -3

	⁷⁸ Se(α,p2nγ), ⁷⁷ Se(α,npγ) 1988Sc13 (continued)								
γ ⁽⁷⁹ Br) (continued)									
E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
363 ^b 1	≈2 ^{&}	3088.3	(19/2)-	2725.2	17/2-				
383.9 4	≈2 ^{@&}	1180.7	$11/2^+$	796.80	$13/2^+$				
397.54	3.3.2	397.79 2393.1	1/2 ,3/2 $13/2^{-}$	0.0 1948.0	$\frac{3}{2}$ $13/2^{-}$				E_{γ} : taken from Adopted Gammas. A ₂ =+0.14 6: A ₄ =+0.28 15
447.4 2	10.5 2	3535.7	$(21/2)^{-}$	3088.3	$(19/2)^{-}$	M1+E2	-0.09 2	0.00251	$A_2 = -0.42$ 2; $A_4 = +0.01$ 5
									$\alpha(K)=0.00223$ 4; $\alpha(L)=0.000238$ 4; $\alpha(M)=3.78\times10^{-5}$ 6
464 5 5	523	2421.4	$17/2^{+}$	1957 1	15/2+	$D(\pm 0)$	$\pm 0.04.4$		$\alpha(N)=3.53\times10^{-6}$ 5 $\Delta_{2}=-0.18$ 6: $\Delta_{4}=\pm0.08$ 11
+0+.5 5	5.2 5	2721.7	17/2	1957.1	15/2	$D(\mp Q)$	+0.0+ +		$A_2 = -0.16 0, A_4 = +0.08 17$ $A_2, A_4 \text{ from } (\alpha, \text{pn}\gamma).$
472.0 4	≈2 ^{@&}	3560.3		3088.3	(19/2)-				
502.1 <i>1</i>	71	1682.8	$13/2^{+}$	1180.7	$11/2^{+}$	D+Q	-0.35 5		$A_2 = -0.70 \ 3; \ A_4 = +0.11 \ 6$
									M_2 , M_4 from (α , pir γ). Mult.: most likely M1+E2 since E1+M2 would require
									$T_{1/2}(1683)>4.5$ ns.
531.0 <i>3</i>	≈4 ^{@&}	2479.0	(13/2 ⁻)	1948.0	$13/2^{-}$				
544.2 1	16.3 [#] 5	761.35	7/2-	217.1	5/2-	M1+E2	+0.19 6	0.00161 3	$A_2 = -0.12 6; A_4 = -0.04 15$
									$\alpha(\mathbf{K})=0.00143, 3; \alpha(\mathbf{L})=0.000152, 3; \alpha(\mathbf{M})=2.42\times10^{-6}, 3$
									A_2, A_4 from $(\alpha, pn\gamma)$.
571.6 2	6.9 [#] 2	1333.0	(5/2,7/2,9/2)	761.35	7/2-				$A_2 = -0.18 5; A_4 = +0.02 8$
589.3 1	100 2	796.80	$13/2^{+}$	207.5	9/2+	E2		0.00182	$A_2 = +0.30 I; A_4 = -0.09 J$
									$\alpha(\mathbf{N})=0.001013\ 2.5,\ \alpha(\mathbf{L})=0.0001748\ 2.5,\ \alpha(\mathbf{M})=2.77\times10^{-5}\ 4$
									POL=+0.41 9.
632.4 4	1.6 1	2580.4	15/2-	1948.0	$\frac{13}{2^{-}}$				$A_2 = -0.35 \ 11; \ A_4 = -0.26 \ 21$
043.4 2	2.0 2	1/13.4	11/2	1008.0	9/2				$A_2 = -0.5722$ A ₂ from (α , pn γ).
692.7 2	6 1	954.06	$(7/2^{-})$	261.4	3/2-				$A_2 = -0.09 \ 12$
726.0.2		054.06	(7/2-)	217.1	5/2-				A ₂ from $(\alpha, pn\gamma)$.
/30.9 2	≈4**	954.00	(7/2)	217.1	5/2				$A_2 = -0.44$ 9 A_2 from (α , pn γ).
738.5 <i>3</i>	≈5 <mark>&</mark>	2421.4	$17/2^{+}$	1682.8	$13/2^{+}$				$A_2 = +0.39 \ 18$
	Ø								A ₂ from $(\alpha, pn\gamma)$.
755.4 3	471	2468.8	7/2-	1713.4	$\frac{11}{2^{-}}$				$A_{2} = +0.31$ 12: $A_{1} = +0.10.20$
/01.4 2	4./ 1	/01.55	112	0.0	5/2				$A_2 = +0.51 + 12$, $A_4 = +0.10 + 20$ A_2 , A_4 from (α , pn γ).
777.2 2	6.7 [@] 3	2725.2	17/2-	1948.0	13/2-				A ₂ =+0.35 8
825.7 5	≈2 ^{@&}	2773.9	$17/2^{-}$	1948.0	$13/2^{-}$				
851.0 <i>3</i>	≈32 ^{@&}	1068.0	9/2-	217.1	5/2-				$A_2 = +0.28 \ 13$
									A ₂ from $(\alpha, pn\gamma)$.

4

From ENSDF

 $^{79}_{35}\mathrm{Br}_{44}$ -4

 $^{79}_{35}\mathrm{Br}_{44}$ -4

⁷⁸ Se(<i>α</i> , p2n <i>γ</i>), ⁷⁷ Se(<i>α</i> , np <i>γ</i>) 1988Sc13 (continued)											
γ ⁽⁷⁹ Br) (continued)											
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments			
867 <i>1</i> 880.0 <i>3</i> 886 <i>1</i> 897 <i>1</i>	$\approx 3^{@\&}$ 23.2 5 $\approx 2^{@\&}$ 1.5 3	2580.4 1948.0 1682.8 1114	15/2 ⁻ 13/2 ⁻ 13/2 ⁺ 1/2 ⁻ ,3/2 ⁻	1713.4 1068.0 796.80 217.1	11/2 ⁻ 9/2 ⁻ 13/2 ⁺ 5/2 ⁻	Q		A ₂ =+0.35 5; A ₄ =-0.20 7			
934 <i>1</i> 935.1 2	# 62 <i>1</i>	1332? 1731.9	3/2 ⁻ 17/2 ⁺	397.79 796.80	1/2 ⁻ ,3/2 ⁻ 13/2 ⁺	E2		A ₂ =+0.34 <i>1</i> ; A ₄ =-0.06 <i>2</i> POL=+0.43 <i>17</i> .			
944.9 <i>4</i> 952.0 <i>3</i>	11 <i>I</i>	3366.3 1713.4	11/2-	2421.4 761.35	17/2+ 7/2 ⁻	E2		$A_2 = +0.14 \ 8; \ A_4 = -0.18 \ 12$ $A_2, \ A_4 \ from \ (\alpha, pn\gamma).$			
973.2 2	12 <i>I</i>	1180.7	11/2+	207.5	9/2+	M1+E2	-2.6 9	$A_2 = -0.645; A_4 = +0.1624$ A_2, A_4 from (α ,pn γ).			
1070.5 7 1134.0 2 1160.3 3	2.9 <i>4</i> 29 <i>1</i> 10.3 [@] 6	3936.4 2865.9 1957.1	21/2 ⁺ 15/2 ⁺	2865.9 1731.9 796.80	21/2 ⁺ 17/2 ⁺ 13/2 ⁺	E2		$A_2 = +0.33 \ 3; \ A_4 = -0.20 \ 5$ $A_2 = -0.75 \ 6$			
1171.0 3	@	2902.9		1731.9	17/2+			A_2 from (α ,pn γ).			
1251.0 7 1325 <i>1</i>	9 <i>1</i> ≈0.6 ^{&}	4116.9 2393.1	25/2 ⁺ 13/2 ⁻	2865.9 1068.0	21/2 ⁺ 9/2 ⁻			A ₂ =+0.30 18			
1596.1 <i>3</i> 1624.6 <i>3</i> 1783.8 <i>4</i>	2.1 2 1.9 2 5.8 4	2393.1 2421.4 2580.4	13/2 ⁻ 17/2 ⁺ 15/2 ⁻	796.80 796.80 796.80	$13/2^+$ $13/2^+$ $13/2^+$	D		$A_{2}=+0.50 \ 16; \ A_{4}=0.0 \ 3$ $A_{2}=+0.30 \ 18; \ A_{4}=+0.18 \ 29$ $A_{2}=-0.22 \ 4; \ A_{4}=+0.16 \ 8$			

From ENSDF

[†] From ⁷⁸Se(α ,p2n γ) E=45 MeV. The values are from isotropic term (A0) in angular distribution function. When no $\gamma(\theta)$ data are available, values are at 125° to the beam direction. Intensities from ⁷⁸Se(α ,pn γ) are also given.

[‡] From $\gamma(\theta)$ data and RUL (for E2 and M2 transitions). [#] Includes contribution from ⁷⁹Kr ε decay. [@] Includes contribution from an impurity.

[&] From $\gamma\gamma$ data.

S

^{*a*} From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.

^b Placement of transition in the level scheme is uncertain.

7

 $^{79}_{35}{\rm Br}_{44}{\rm -8}$

⁷⁸Se(α,p2nγ),⁷⁷Se(α,npγ) 1988Sc13

 $^{79}_{35}{
m Br}_{44}$