⁵⁸Ni(²⁸Si,2αγ) 1997Ru03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009				

Includes reactions: ${}^{40}Ca({}^{40}Ca,2p\gamma);$ ${}^{58}Ni({}^{24}Mg,2p2n\gamma);$ ${}^{70}Ge({}^{12}C,4n\gamma).$

1997Ru03: E= 130 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) using Gammasphere array of 57 HPGe detectors and 4π charged particle ball of 95 CsI(Tl) detectors. Comparisons with self-consistent (including pairing and deformation) total Routhian surface calculations.

Others:

1994Gr01: ⁴⁰Ca(⁴⁰Ca,2p γ) E=128 MeV. Measured E γ , I γ , $\gamma\gamma$, recoil- γ coin using EUROGAM array of 45 Compton-suppressed Ge detectors and Daresbury recoil separator. The g.s. band (1939-1745-1692-1533-1369- 1210-1058-895-712-504-278 cascade) reported up to 22⁺.

1989Gr07: ⁵⁸Ni(²⁴Mg,2p2nγ) E=110 MeV. Measured Eγ, Iγ, nγ coin, γγ coin; neutron detectors and Compton suppressed Ge detectors. The g.s. band (1693-1534-1367-1210-1057-895-712.4-503.7- 278.5 cascade) reported up to 18⁺.

1982Li08: ⁵⁸Ni(²⁴Mg,2p2n γ): measured γ , $\gamma\gamma$, $\gamma(\theta)$ and level lifetimes. The g.s. band (1054-890-714-503-278 cascade) reported up to 10⁺.

1972InZO, 1972InZU: ⁷⁰Ge(¹²C,4nγ) E=69 MeV. Measured γ, γγ, γ(t), γ(θ); γ(θ) data taken at 45° and 90°. Authors reported 827-758-505 γ-ray cascade, as members of g.s. band. Only the 505γ is in agreement with 503γ from 1997Ru03, 1994Gr01, 1989Gr07 and 1982Li08, the other two γ rays are not confirmed in any of the other studies. Additional information 1.

All data are from 1997Ru03 unless otherwise stated. The γ -ray intensities are available only from this study.

⁷⁸Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 ^b	0^{+}		3230.6? ^c 18		7190 ^d 2	(14 ⁻)
277.60 ^{&b} 10	2^{+}	155 ps 19	3385.0 ^e 9	$7^{(-)}$	7559.1 ^b 8	16+
780.80 ^{ab} 15	4+	5.1 ps 5	3446.2 ^b 4	10^{+}	7671.3 ^e 14	(15 ⁻)
1477.6? ^C 10			3525.6 ^{<i>f</i>} 6	(7 ⁻)	8474 ^d 2	(16 ⁻)
1493.19 ^b 25	6+		3927.3 ^d 10	(8-)	8987 ^e 2	(17-)
1903.3 8			3963.9 <mark>8</mark> 9	(8 ⁻)	9253.8 ^b 9	18^{+}
2243.6? ^C 15			4251.1 ^e 9	(9 ⁻)	9870 ^d 3	(18 ⁻)
2310.5? ^f 8	(3 ⁻)		4400.6 ^{<i>f</i>} 12	(9 ⁻)	10448 ^e 2	(19 ⁻)
2388.4 ^b 4	8+		4657.5 ⁶ 5	12^{+}	10995 ^b 1	(20^{+})
2537.1? ^d 8	(4-)		4883.3 ^d 11	(10 ⁻)	11195 [@] 1	(20^{+})
2606.0 ^g 5	4(-)		5281.1 ^e 11	(11^{-})	11428 ^d 4	(20 ⁻)
2712.0? ^e 12	(5 ⁻)		5468.6 ^{<i>f</i>} 16	(11^{-})	12109? ^e 3	(21 ⁻)
2860.1^{f} 5	5(-)		5982.0 ^d 12	(12 ⁻)	12981 ^b 2	(22^{+})
3080.1 6	(6 ⁻)		6025.4 ^b 7	14^{+}	13294 [@] 2	(22^{+})
3138.9 ^d 8	6(-)		6035.8 [@] 9	14^{+}	15233? ^b 4	(24^{+})
3173.1 <mark>8</mark> 6	6(-)		6436.3 ^e 12	(13 ⁻)	17764? ^b 6	(26^{+})

[†] From least-squares fit to $E\gamma's$.

[‡] As proposed by 1997Ru03 based on $\gamma\gamma(\theta)$ (DCO) data and band associations. The assignments are the same In 'Adopted Levels'.

[#] From neutron-gated recoil-distance method (1982Li08).

- [@] Level connected with structure of g.s. band.
- [&] Q transition=3.29 *19* (deduced from lifetime data,1982Li08).
- ^a Q transition=3.47 17 (deduced from lifetime data,1982Li08).

^{*b*} Band(A): $K^{\pi}=0^+$, g.s. band.

^{*c*} Band(B): $\Delta J=2$ band (?).

⁵⁸Ni(²⁸Si,2αγ) **1997Ru03** (continued)

⁷⁸Sr Levels (continued)

^d Band(C): Band based on (4⁻).

^e Band(D): Band based on (5⁻).

 f Band(E): Band based on (3⁻).

^{*g*} Band(e): Band based on (4^{-}) .

$\gamma(^{78}\mathrm{Sr})$

DCO ratios are for angles of 32° and 86° with gates on $\Delta J=2$ quadrupole transitions. Expected DCO=1.0 for $\Delta J=2$, quadrupole and 0.5-0.6 for $\Delta J=1$, dipole transitions.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
219.8 3	2 1	3080.1	(6 ⁻)	2860.1	5(-)			
254.0 2	71	2860.1	$5^{(-)}$	2606.0	$4^{(-)}$	D	0.0252	$DCO = 0.53 \ 14.$
277.0 1	100 4	277.00	Ζ'	0.0	0.	E2	0.0252	$\alpha(\mathbf{N})=0.0220$ 5; $\alpha(\mathbf{L})=0.00200$ 4; $\alpha(\mathbf{M})=0.000447$ 7: $\alpha(\mathbf{N}+)=5.76\times10^{-5}$ 9
								$\alpha(N)=5.45\times10^{-5}$ 8; $\alpha(O)=3.11\times10^{-6}$ 5
								Additional information 2.
a (a)			$\epsilon(\cdot)$		-()	-		$DCO= 1.03 \ 4.$
313.0 4	31	3173.1	$6^{(-)}$	2860.1	$5^{(-)}$	D		$DCO= 0.48 \ 15.$
552 I 138 I	11	3063 0	(7) (8^{-})	31/3.1	(7^{-})			
445.4 4	21	3525.6	(7^{-})	3080.1	(7) (6 ⁻)			
475 1	21	3080.1	(6 ⁻)	2606.0	4(-)			
503.2 1	100 <i>3</i>	780.80	4+	277.60	2+	E2	0.00360	$\alpha(K)=0.00317 5; \alpha(L)=0.000360 5;$
								$\alpha(M) = 6.05 \times 10^{-5} \ 9; \ \alpha(N+) = 7.96 \times 10^{-6} \ 12$
								$\alpha(N)=7.50\times10^{-6}$ 11; $\alpha(O)=4.62\times10^{-7}$ 7
								Additional information 3. $DCO = 0.08.5$
550 1	21	2860-1	5(-)	2310 52	(3^{-})			DCO= 0.98 J.
567 1	21	3173.1	6 ⁽⁻⁾	2606.0	$4^{(-)}$			
601.7 5	41	3138.9	6 ⁽⁻⁾	2537.1?	(4 ⁻)			
665.6 <i>3</i>	61	3525.6	(7-)	2860.1	5(-)			
673 1	3 1	3385.0	7(-)	2712.0?	(5 ⁻)	Q		DCO= 1.03 25.
703 1	2 1	2606.0	4(-)	1903.3				
712.4 2	84 <i>3</i>	1493.19	6+	780.80	4+	Q		DCO= 1.09 7.
766 ^{^w} 1	21	2243.6?		1477.6?	-()	_		
788.4 5	8 1	3927.3	(8 ⁻)	3138.9	$6^{(-)}$	Q		DCO= 1.2 3.
/91 <i>I</i> 866 1 2	21	3963.9 4251-1	(8)	31/3.1	$5^{(-)}$			
875 1	81	4400.6	(9^{-})	3525.6	(7^{-})			
895.2 2	68 2	2388.4	8+	1493.19	6+	Q		DCO= 1.07 8.
956.0 5	8 1	4883.3	(10 ⁻)	3927.3	(8-)			
987 [@] 1	2 1	3230.6?		2243.6?				
1030.0 5	10 <i>1</i>	5281.1	(11^{-})	4251.1	(9^{-})	0		
1057.82	52.2	3446.2 5468.6	10^{+} (11 ⁻)	2388.4	$\binom{8}{(0^{-})}$	Q		DCO = 0.96 / .
1008 7 6	71	5982.0	(11^{-})	4400.0	(9^{-})			
1155.2 6	91	6436.3	(12^{-})	5281.1	(11^{-})			
1200 [@] 1	3 1	1477.6?		277.60	2+			
1208 [†] 1	61	7190	(14 ⁻)	5982.0	(12 ⁻)			
1211.3 [†] 3	43 2	4657.5	12^{+}	3446.2	10^{+}	(Q)		DCO= $1.11 9$ for a doublet.
1235.0 7	8 1	7671.3	(15 ⁻)	6436.3	(13-)			

Continued on next page (footnotes at end of table)

⁵⁸Ni(²⁸Si,2αγ) **1997Ru03** (continued)

$\gamma(^{78}\text{Sr})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
1284 <i>I</i>	51	8474	(16^{-})	7190	(14^{-})		
1316 <i>I</i>	71	8987	(17 ⁻)	7671.3	(15 ⁻)		
1367.9 4	31 2	6025.4	14+	4657.5	12+	Q	DCO= 1.07 15.
1378 <i>1</i>	11 <i>1</i>	6035.8	14^{+}	4657.5	12^{+}		
1396 2	41	9870	(18 ⁻)	8474	(16 ⁻)		
1461 <i>1</i>	51	10448	(19 ⁻)	8987	(17^{-})		
1523 1	8 1	7559.1	16+	6035.8	14^{+}		
1530 ^{†@} 1	3 1	2310.5?	(3 ⁻)	780.80	4+		E_{γ} : from level-energy difference.
1533.7 4	21 <i>I</i>	7559.1	16+	6025.4	14^{+}	Q	DCO= 1.00 <i>13</i> .
1558 <i>3</i>	21	11428	(20^{-})	9870	(18 ⁻)		
1626 <i>1</i>	31	1903.3		277.60	2+		
1646 <i>1</i>	61	3138.9	$6^{(-)}$	1493.19	6+		DCO= 1.3 4 consistent with $\Delta J=0$ transition.
1661 [@] 2	3 1	12109?	(21^{-})	10448	(19 ⁻)		
1694.7 5	16 <i>1</i>	9253.8	18^{+}	7559.1	16+	Q	Additional information 4.
							DCO= 1.00 <i>19</i> .
1741 <i>1</i>	8 1	10995	(20^{+})	9253.8	18^{+}		Additional information 5.
1756 <i>1</i>	41	2537.1?	(4 ⁻)	780.80	4+		
1825.0 5	11 <i>1</i>	2606.0	$4^{(-)}$	780.80	4+		DCO= 0.90 24 consistent with $\Delta J=0$ transition.
1862 2	51	4251.1	(9 ⁻)	2388.4	8^{+}		
1892 <i>1</i>	61	3385.0	$7^{(-)}$	1493.19	6+	D	DCO= 0.54 20.
1931 2	3 1	2712.0?	(5 ⁻)	780.80	4+		
1941 [†] <i>1</i>	61	11195	(20^{+})	9253.8	18^{+}		Additional information 6.
1986 2	51	12981	(22^{+})	10995	(20^{+})		
2080 2	51	2860.1	$5^{(-)}$	780.80	4+		
2099 2	3 1	13294	(22^{+})	11195	(20^{+})		
2252 [@] 3	31	15233?	(24 ⁺)	12981	(22 ⁺)		
2531 [@] 4	2 1	17764?	(26^{+})	15233?	(24 ⁺)		

[†] Unresolved doublet structure (1997Ru03).

^{\ddagger} From DCO ratios, also RUL used for γ 's from 277.6 and 780.8 levels for which lifetimes are known.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{78}_{38}{
m Sr}_{40}{
m -4}$

 $^{78}_{38}{
m Sr}_{40}$

 $^{78}_{38}{
m Sr}_{40}$