⁷⁸**Rb IT decay (5.74 min) 1975BaWR,1991McZZ,1972De54**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009					

Parent: ⁷⁸Rb: E=111.2 2; $J^{\pi}=4^{(-)}$; $T_{1/2}=5.74$ min 5; %IT decay=9 2

⁷⁸Rb-%IT decay: 1975BaWR estimate IT=10% 2 (based on I γ of 103 γ). They also used measured $\alpha(\exp)=0.25$ 5 for 103 γ , but theoretical $\alpha=0.1324$. The revised $\alpha(\exp)$ lowers %IT by 10%.

1991McZZ: ⁷⁸Rb produced in Fe(²⁸Si,X) reaction at 110 MeV beam energy. The Fe target was coated with Gold. The ⁷⁸Rb fragments were mass separated. Measured γ , ce, γ (ce) coin.

The level scheme is from 1991McZZ.

1993Al03: Measured total γ -ray absorption.

Others: 1981Ba40, 1974Sa32, 1973Ba03, 1973Br32, 1972LiZL, 1972Ar10, 1972No14, 1971Do01, 1969Ch18, and 1968To05. Total decay energy of 10 keV 2 calculated (by RADLIST code) from level scheme agrees with the expected value of 9 keV 2.

⁷⁸Rb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0(+)		
47.10 10	(1^{-})		
103.30 10	$1^{(+)}$		
111.2 2	$4^{(-)}$	5.74 min 5	$T_{1/2}$: from multispectrum studies.
			E(level): from 1991McZZ. Earlier estimate (103+x, x<15 keV) was quite close to this energy.

[†] From 'Adopted Levels'.

$\gamma(^{78}\text{Rb})$

I γ normalization: from Ti(103.3 γ +47.1 γ)=100.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α#	$I_{(\gamma+ce)}$ ‡	Comments
8.6		111.2	4(-)	103.30	1(+)	[E3]	4.88×10 ⁶	13.8 CA	α (L)=4.06×10 ⁶ 6; α (M)=7.59×10 ⁵ 11; α (N+)=6.39×10 ⁴ 9 α (N)=6.39×10 ⁴ 9; α (O)=6.78 10 I _(γ+ce) : from relative I(γ+ce) of 113.3γ. E _γ : L+M conversion line seen in coin with 103.3γ (1991McZZ).
47.10 10	1.6 4	47.10	(1 ⁻)	0.0	0(+)	(E1)	0.866		$\alpha(K)=0.764 \ 12; \ \alpha(L)=0.0870 \ 14; \alpha(M)=0.01415 \ 22; \ \alpha(N+)=0.001584 25 \alpha(N)=0.001528 \ 24; \ \alpha(O)=5.59\times10^{-5} \ 9 Placement based on study by 1991McZZ. E\gamma,Iγ: Eγ from 1972LiZL, with Iγ/Iγ(103γ)=0.13 \ 3. 1981Ba40 reported Eγ=46.8 and noted the absence of coincidences with any of the 78Kr transitions. Placement of the transition in cascade with the 103γ would lead to too many x rays (see comment on the 103γ). The placement of the 47γ in parallel with the 103γ is consistent with the Iγ and I(x ray) data.$

			KDTI	decay (5.74 II	IIII) IS	1972De54 (continued)				
		γ ⁽⁷⁸ Rb) (continued)								
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α [#]	$I_{(\gamma+ce)}$ ‡	Comments		
								Mult.: from α (K)exp=0.76 <i>11</i> (1991McZZ).		
64.4 [†]		111.2	4(-)	47.10 (1 ⁻)	(M3) [†]	105.4	3.0 <i>CA</i>	$\alpha(K)=79.4 \ 12; \ \alpha(L)=21.8 \ 3; \ \alpha(M)=3.81$ $6; \ \alpha(N+)=0.408 \ 6$ $\alpha(N)=0.397 \ 6; \ \alpha(O)=0.01151 \ 17$ Mult.: from $(\alpha(L)exp+\alpha(M)exp)/\alpha(K)exp=$ $0.37 \ 3 \ (1991McZZ).$		
103.30 <i>10</i>	12.2 6	103.30	1(+)	0.0 0 ⁽⁺⁾	(M1)	0.1324		α(K)=0.1167 I7; α(L)=0.01320 I9; α(M)=0.00218 4; α(N+)=0.000257 4 α(N)=0.000246 4; α(O)=1.043×10-5 I5 Eγ: unweighted average of 103.23 I0 (1975BaWR) and 103.36 I0 (1972De54). Iγ: from 1975BaWR relative to Iγ(455γ)=100. Mult.: from α(K)exp=0.10 2 (1991McZZ). But α(K)exp=0.0070 I0 (1995Gi13) suggests E2. M1 is supported in other considerations: using the experimental determination that %IT≈10, and that about 75% of the IT decay is accounted for by Iγ(103γ), 1975BaWR deduced that α(exp)≈0.3. They also quoted α(exp)=0.25 5, based on a measurement of the K-α x rays and corrected for higher-shell conversion and fluorescence yield (the authors actually quoted I(x ray)/Iγ(103γ)=0.25 5, but stated that the fluorescence yield had been corrected for, so presumably the quoted value is actually α(exp)).		

⁷⁸Rb IT decay (5.74 min) 1975BaWR,1991McZZ,1972De54 (continued)

[†] From 1991McZZ.

^{\ddagger} For absolute intensity per 100 decays, multiply by 0.54 *13*.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁷⁸Rb IT decay (5.74 min) 1975BaWR,1991McZZ,1972De54