64 Zn(16 O,np γ) 1979Ma09

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009

1979Ma09: E=44, 52 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$; $\gamma(\theta)$ from 0° to 90° in 15° steps.

⁷⁸Rb Levels

E(level) ^{†‡}	$J^{\pi \#}$	Comments
103.3+x	(4 ⁻)	E(level): corresponds to 5.74-min isomer.
255.9+x	(5 ⁻)	
411.1+x	$(6^+)^{@}$	
480.9+x	(6 ⁻)	
655.5+x	$(7^{+})^{@}$	
759.4+x	(7 ⁻)	
841.1+x	$(8^+)^{@}$	
1207.9+x	$(9^+)^{@}$	
1613.6+x	(10 ⁺)	E(level): level proposed (by evaluators) based on 'Adopted Levels'.

[†] From least-squares fit to $E\gamma's$.

[‡] Comparison with level scheme in 'Adopted Levels' gives x=8 for 103.3+x, 255.9+x, 480.9+x, 759.4+x levels and x=12 for 411.1+x, 655.5+x, 841.1+x and 1207.9+x levels. The 152.6 γ is a doublet with the other component deexciting the 411.1+x level and feeding a level at 258+x which further deexcites through the 155.2 γ feeding a level at 107+x. The 366.8-185.6-244.4-152.6-155.2 cascade feeds the 107+x level, instead of 103+x level.

As proposed by 1979Ma09 based on $\gamma(\theta)$ data and assumed 4⁻ for the lowest level. The 4⁻ level is now known as an isomer at 111 keV. The same assignments are given in 'Adopted Levels'.

[@] Note that parity is from 'Adopted Levels'. 1979Ma09 had proposed negative parity for this level.

$\gamma(^{78}\text{Rb})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
152.6 [#] 2	84 6	255.9+x	(5 ⁻)	103.3+x (4 ⁻)	D	$A_2 = -0.53 I$; $A_4 = +0.01 I$ Additional information 1.
155.2 [#] 2	57 5	411.1+x	(6 ⁺)	255.9+x (5 ⁻)	D	$A_2 = -0.47 I$; $A_4 = +0.01 I$ Additional information 2.
185.6 2	16 2	841.1+x	(8+)	655.5+x (7 ⁺)	D	$A_2 = -0.49$ 3; $A_4 = +0.05$ 3 Additional information 9.
225.0 2	16 2	480.9+x	(6 ⁻)	255.9+x (5 ⁻)	D	$A_2 = -0.64$ 3; $A_4 = +0.03$ I Additional information 4.
244.4 2	22 3	655.5+x	(7+)	411.1+x (6 ⁺)	D	$A_2 = -0.51$ 3; $A_4 = -0.03$ I Additional information 6.
278.5 2	18 4	759.4+x	(7 ⁻)	480.9+x (6 ⁻)		I_{γ} : $\gamma\gamma$ data suggest that only 25% of this peak belongs to ⁷⁸ Rb.
						Additional information 8.
307.7 2	6 1	411.1+x	(6+)	103.3+x (4 ⁻)	(Q)	$A_2 = +0.26 5$; $A_4 = +0.05 6$
366.8 2	10 2	1207.9+x	(9 ⁺)	841.1+x (8 ⁺)	D	$A_2 = -0.65 2; A_4 = +0.05 3$
377.6 2	10 2	480.9+x	(6 ⁻)	103.3+x (4 ⁻)		Additional information 11. Additional information 5.
397.5 ^{@&} 2	72	655.5+x	(7+)	255.9+x (5 ⁻)		I_{γ} : contribution from '' Kr has been subtracted. Additional information 7. Angular anisotropy (0° and 90°)=1.2 <i>6</i> .

Continued on next page (footnotes at end of table)

$^{64}\mathbf{Zn}(^{16}\mathbf{O,np}\gamma)$ 1979Ma09 (continued)

$\gamma(^{78}\text{Rb})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	Comments
405.7 [@] ^{&} 2 429.7 2	52 112	1613.6+x 841.1+x	(10 ⁺) (8 ⁺)	$\begin{array}{c} 1207.9 + x & (9^+) \\ 411.1 + x & (6^+) \end{array}$	D Q	$A_2 = -0.6 \ 2; \ A_4 = -0.4 \ 2$ $A_2 = +0.42 \ 4; \ A_4 = -0.11 \ 5$ Additional information 10.

[†] At E(¹⁶O)=52 MeV. Authors give I γ for 44 MeV also. [‡] Mult=D refers to Δ J=1 and mult=Q to Δ J=2 transitions As suggested by $\gamma(\theta)$ data.

[#] The 152.6 γ is doublet in 'Adopted Levels, gammas' and the ordering of the 155.2-152.6 cascade (for one component of 152.6 γ) is reversed in 'Adopted Levels, gammas'. ^(a) placement proposed by the evaluators based on 'Adopted Levels, gammas'. This γ was not placed by 1979Ma09. [&] Placement of transition in the level scheme is uncertain.

 $^{78}_{37}$ Rb₄₁