⁷⁸Ga IT decay (<500 ns)

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009	

Parent: 78 Ga: E=560.0 10; $T_{1/2}$ <500 ns; %IT decay \approx 100.0

Isomer with half-life of <500 ns discovered by C.M. Folden III et al., Phys. Rev. C 79, 064318 (2009) through measurement of delayed γ rays in correlation with implanted ⁷⁸Ga nuclei. ⁷⁸Ga produced through the ⁹Be(²³⁸U,X) reaction. ²³⁸U beam produced at E=8.00 MeV/nucleon by the K500 and K1200

⁷⁸Ga Levels

E(level)	$J^{\pi\dagger}$	$T_{1/2}$	Comments
0	(3 ⁺)		
281.0 7	$(1^+, 2^+, 3^+)$		
342.0 7	$(1^+, 2^+, 3^+)$		
560.0 10		<500 ns	$T_{1/2}$: from time correlations between implanted ⁷⁸ Ga nuclei and γ -ray events (C.M. Folden
			III et al., Phys. Rev. C 79, 064318 (2009)).

[†] From Adopted Levels.

$$\gamma$$
(⁷⁸Ga)

Iy normalization: listed γ -ray intensity is per 100 fragments of 78 Ga.

E_{γ}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathtt{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
218.0 7	>3.1	560.0		342.0	$(1^+,2^+,3^+)$
278 [#]		560.0		281.0	$(1^+, 2^+, 3^+)$
281.0 7	>4.9	281.0	$(1^+,2^+,3^+)$	0	(3^{+})
342.0 7	>1.7	342.0	$(1^+,2^+,3^+)$	0	(3^{+})

[†] Photons per 100 fragments.

⁷⁸Ga-%IT decay: assumed %IT=100.

⁷⁸Ga produced through the ⁹Be(²³⁸U,X) reaction. ²³⁸U beam produced at E=8.00 MeV/nucleon by the K500 and K1200 cyclotrons at the NSCL facility. Reaction products were separated using the A1900 fragment separator and detected using two parallel plate avalanche counters, a Si ΔE detector, four Si detectors, and a plastic scintillator. Measurements of the time-of-flight (TOF), Bρ and total kinetic energy were used to determine the atomic number, mass number and charge state of reaction products. The γ rays were detected with an HPGe detector. Isomer half-life were measured using the time difference between implantation events and HPGe events. Measured particle spectra, Eγ, Iγ, (particle)γ-coincidence and half-life of the isomeric state.

[‡] For absolute intensity per 100 decays, multiply by ≈ 1 .

[#] Placement of transition in the level scheme is uncertain.

78 Ga IT decay (<500 ns)

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays %IT \approx 100.0

$\begin{array}{c|c} & & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & & & & \gamma \text{ Decay (Uncertain)} \end{array}$

Legend

