⁷⁹Br(p,d) **1979Kl05**

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009	

 $J^{\pi}(^{79}Br \text{ g.s.})=3/2^{-}.$

E=22.8 MeV. Deuterons analyzed by magnetic spectrometers, FWHM=14 keV; DWBA analysis; $\sigma(\theta)$ measured from 5° to 55° in 5° steps. See also thesis by 1978KIZT.

⁷⁸Br Levels

E(level) [†]	_L#	C^2S^{\ddagger}	Comments
0	1+3	0.153,0.134	L=1(70%)+L=3(30%).
-		,	$C^2S=0.152$ for L=3.
30 4	1	0.016,0.014	J^{π} : the L-transfer value is inconsistent with the adopted parity of J^{π} .
52 4	1+3	0.021,0.019	L=1(70%)+L=3(30%).
32 ,	113	0.021,0.019	$C^2S=0.021, 0.014 \text{ for } L=3.$
125 4	1	0.153,0.134	C 5-0.021, 0.011 for E-3.
202 4	1	0.133,0.117	
242 <i>4</i>	4+2	0.461,0.263	L=4(90%)+L=1(10%).
		001,0.202	$C^2S=0.025, 0.020 \text{ for } L=2.$
263 4	4	1.24,0.701	C 5-0.025, 0.020 for E-2.
327 <i>4</i>	3+1	0.442,0.294	L=3(60%)+L=1(40%).
02	0.1	02,0.2>	$C^2S=0.101, 0.088 \text{ for } L=1.$
369 <i>4</i>	2	0.021,0.017	
389 <i>4</i>	4+2	0.703,0.402	L=4(90%)+L=2(10%).
		0.700,01.02	$C^2S=0.040, 0.033 \text{ for } L=2.$
435 <i>4</i>	1	0.172,0.151	0 0 0000, 0000 101 2 2.
475 <i>4</i>	(4)	1.80,1.03	
495 <i>4</i>	1	0.110,0.096	
551 <i>4</i>	1	0.059,0.052	
579 <i>4</i>	1	0.200,0.176	
643 <i>4</i>	1	0.068,0.060	
663 <i>4</i>	4+1	0.149,0.085	L=4(70%)+L=1(30%).
			$C^2S=0.016$, 0.014 for L=1.
717 <i>4</i>	3+1	0.660,0.439	L=3(70%)+L=1(30%).
			$C^2S=C^2S=0.104, 0.091 \text{ for } L=1.$
792 <i>4</i>	1(+3)	0.032,0.028	L=3(60%)+L=1(40%).
			$C^2S=0.134$, 0.089 for L=3.
854 <i>4</i>	3+1	0.100,0.066	L=3(50%)+L=1(50%).
			$C^2S=0.036$, 0.032 for L=1.
868 <i>4</i>	1(+3)	0.052,0.046	L=3(50%)+L=1(50%).
	. ,		$C^2S=0.100, 0.066 \text{ for } L=3.$
891 <i>4</i>	1+3	0.054,0.048	L=1(70%)+L=3(30%).
			$C^2S=0.050, 0.017$ for L=3.
916 <i>4</i>	1	0.065, 0.057	
930 <i>4</i>	3+1	0.134,0.090	L=3(60%)+L=1(40%).
			$C^2S=0.039, 0.034$ for L=1.
989 <i>4</i>	1	0.061,0.053	
1005 4	1(+3)	0.058,0.051	L=1(70%)+L=3(30%).
			$C^2S=0.052, 0.035 \text{ for } L=3.$
1026 4	1	0.046,0.040	
1039 <i>4</i>	1	0.032,0.028	
1060 4	1(+3)	0.028,0.018	L=1(50%)+L=3(50%).
			$C^2S=0.056$, 0.032 for L=3.
1130 4	(3+1)	0.028,0.019	L=3(70%)+L=1(30%).
			$C^2S=0.0047$, 0.0041 for L=1.

79 Br(p,d) 1979Kl05 (continued)

⁷⁸Br Levels (continued)

E(level) [†]	L#	C^2S^{\ddagger}	Comments
1173 4	(1)	0.030,0.026	
1188 4	(3+1)	0.028,0.022	L=1(50%)+L=3(50%).
			$C^2S=0.013, 0.011 \text{ for } L=1.$
1200 4	(1)	0.036,0.031	
1243 <i>4</i>	1	0.011,0.010	
1261 <i>4</i>	1	0.020,0.018	

[†] Energy calibration procedure gives≈4 keV accuracy for strongly populated levels.

 $^{^{\}ddagger}$ The first and second values are for L(n)-1/2 and L(n)+1/2, respectively. In case of mixed L transfers, the values on the table are for the first L value while those of the second L value are given in comments.

The assignments are as given in summary table 5 of 1979Kl05. In some cases the parentheses are absent in authors' table 1.