⁷⁸Br IT decay (119.4 μs) 1977DaZS,1972Ch34,1970De46

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110, 1917 (2009)	30-Jun-2009					

Parent: ⁷⁸Br: E=180.9 5; $J^{\pi}=(4^+)$; $T_{1/2}=119.4 \ \mu s \ 10$; %IT decay=100.0

Others: 1974FoYO, 1973Pl07, 1973BaYF, 1971Br31, 1971Br50, 1971In04, 1970Ru08, 1968Io01, 1967Iv03, 1965Mc03, 1961Sc11, 1961Ri02 and 1958Du80.

Total decay energy of 166 keV 13 calculated (by RADLIST code) from level scheme agrees with the expected value of 181 keV 1.

⁷⁸Br Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments		
0.0	1+				
32.3 1	(2 ⁻)	14.2 ns 3	T _{1/2} : pulsed beam technique (1972Ch34). g-factor= $-0.56\ 2\ (1973Pl07)$. This has been deduced with reference to g-factor for 198 keV level in ¹⁹ F= $+1.442\ 3$ (by differential perturbed angular distribution method). 1973BaYF get $-0.56\ 2$.		
180.9 5	(4+)	119.4 μs <i>10</i>	T _{1/2} : from 'Adopted Levels'. In ⁷⁸ Br it decay measured values from γ(t) are: 119.2 μs 10 (1970De46,pulsed beam), 80 μs 2 (1971In04), 111 μs 10 (1969Ru10), 123 μs 25 (1968Io01), 124 μs 25 (1967Iv03), 127 μs (1965Mc03), 118 μs (1961Sc11), 127 μs 5 (1958Du80). g-factor=+1.028 3 (1974FoYO), NMR-PAC method in ⁷⁸ Se(p,n). Others: +1.02 2 (1972Ch34) by differential perturbed angular distribution and stroboscopic observation of perturbed angular distribution of γ-rays; 1.025 3 (1971Br31) by NMR-PAC.		

[†] From 'Adopted Levels'.

 $\gamma(^{78}\text{Br})$

I γ normalization: from Ti(148 γ)=100. Ti(32 γ)=100 gives 0.61. The evaluators use the value for 148 γ since there could Be detector efficiency problems At low energies.

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\alpha^{@}$	$I_{(\gamma+ce)}^{\#}$	Comments
32.3 1	50	32.3	(2-)	0.0 1+	(E1)	2.29	100	ce(K)/(γ +ce)=0.614 6; ce(L)/(γ +ce)=0.0705 14; ce(M)/(γ +ce)=0.01098 23; ce(N+)/(γ +ce)=0.000949 20 ce(N)/(γ +ce)=0.000949 20 α (N)=0.00312 6 I _{γ} : the measured intensity is too high as compared to that of 148.6 γ . Expected intensity=30, from level scheme.
148.6 5	100	180.9	(4 ⁺)	32.3 (2 ⁻)	(M2)	0.295 6	100	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma + {\rm ce}) = 0.198 \ 3; \ {\rm ce}({\rm L})/(\gamma + {\rm ce}) = 0.0251 \ 5; \\ {\rm ce}({\rm M})/(\gamma + {\rm ce}) = 0.00403 \ 8; \\ {\rm ce}({\rm N}+)/(\gamma + {\rm ce}) = 0.000368 \ 7 \\ {\rm ce}({\rm N})/(\gamma + {\rm ce}) = 0.000368 \ 7 \\ {\rm \alpha}({\rm N}) = 0.000477 \ 9 \end{array}$

[†] The ratio $I\gamma(148\gamma)/I\gamma(32\gamma)$ suggests (E1,M1) for 32 γ and (E2,M2) for 148 γ . $\gamma(\theta)$ of 32 γ in in-beam γ -ray studies rules out J=0 for 32⁻ keV level. Thus J^{π}=(1⁻,2⁻) for 32 level and J^{π}=(1⁻, 2⁻, 3⁻, 4) for 181 level. Long half-life of 181 level suggests M2 rather than E2. γ to 32 level and no γ decay to g.s. from 181 level supports J^{π}=(4⁺) for 181 level, and J^{π}=(2⁻) for 32 level. This implies E1 for 32.3 γ and M2 for 148.6 γ . These assignments remain tentative in the absence of a direct measurement.

[‡] For absolute intensity per 100 decays, multiply by 0.77.

[#] Absolute intensity per 100 decays.

⁷⁸Br IT decay (119.4 μs) 1977DaZS,1972Ch34,1970De46 (continued)

$\gamma(^{78}\text{Br})$ (continued)

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

