⁷⁷Cu $β^-$ decay (469.8 ms) 2009II01,2009Pa35

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020

Parent: ⁷⁷Cu: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=469.8$ ms 20; $Q(\beta^{-})=9926.4$ 23; $\%\beta^{-}$ decay=100.0

- ⁷⁷Cu-Q(β^-): From measured mass excess for ⁷⁷Cu from 2017We16 and mass excess for ⁷⁷Zn from 2017Wa10. Other: 10170 *150* (syst, 2017Wa10).
- ⁷⁷Cu-J^{π},T_{1/2}: From ⁷⁷Cu Adopted Levels.
- ⁷⁷Cu- $\%\beta^-$ decay: $\%\beta^-$ n=30.3 20 (2009II01), weighted average of two measurements giving 31.6 12 and 28.0 16. Other: 30.0 27 (2009Wi03, from the same group as 2009II01).
- 2009II01, 2009Wi03: ⁷⁷Cu isotope produced in the reaction ²³⁸U(p,F) with a 50 MeV beam provided by the HRIBF facility at ORNL, RIB facility. The radioactive beams were extracted and mass separated. Detected decay products with a Micro-channel plate detector, an ionization chamber and a moving tape collector. In one experiment, the Cu ions were accelerated to 225 MeV and measured β -delayed neutron emission probabilities. In a second experiment, the low-energy ions (200 keV) were sent to Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS). Measured E γ , I γ , β , $\gamma\gamma$, $\beta\gamma$ coin, absolute branching ratios in ⁷⁷Cu β decay and 772.4-keV (1/2⁻) isomer in ⁷⁷Zn, half-life of ⁷⁷Cu g.s. using two plastic β -detectors and γ -rays with four clover Ge detectors. 2009Gr06 is from the same group as 2009Wi03.
- 2009Pa35: ⁷⁷Cu produced in the fission of uranium (target=uranium carbide) by spallation neutrons which were produced by 1 GeV protons hitting a tantalum target. The ⁷⁷Cu nuclei were selected by Resonant Ionization Laser Ion Source (RILIS) and General Purpose mass separator (GPS) at the CERN-ISOLDE facility. The separated ⁷⁷Cu nuclei at a typical energy of 60 keV were implanted on a tape surrounded by three E- Δ E plastic detectors for β -particle detection and two HPGe detectors. Measured γ , β , $\beta\gamma$ coin, $\beta\beta$ coin, $\gamma\gamma$ coin and delayed-neutron events. The neutrons were detected with the Mainz neutron long counter. Major contribution to γ -ray and β spectra are from ⁷⁷Ga decay as indicated by a comparison of 'laser-on' and 'laser-off' spectra. In both the spectra, lines from ⁷⁷Ga are quite prominent. The decay scheme of ⁷⁷Ga is poorly known. By subtraction procedures, 2009Pa35 obtained a spectrum which mainly contained lines from ⁷⁷Cu activity. In the presence of the impurities, singles β spectrum could not be obtained, thus no information could be obtained for β feeding to the ground state and the 772-keV isomeric state.
- All data are from 2009II01, unless otherwise stated. The level schemes are proposed by 2009II01 and 2009Pa35, more complete in the former work, thus adopted here.
- Total decay energy of 7231 keV 320 deduced (by RADLIST code) from proposed decay scheme is much lower than the expected value of 10490 keV 500, indicating that decay scheme is incomplete.

⁷⁷Zn Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0	$7/2^+$	2.08 s 5	Configuration= $vg_{9/2}^{-3}$.
772.440 15	$(9/2^{-1})$ $1/2^{-1}$	1.05 s 10	$\%\beta^{-}=66\ 7:\ \%IT=34\ 7\ (2009II01)$
,,		1100 5 10	Total feeding of this isomer is 31.4% 33, out of which 10.8% 3 proceeds via IT decay and 20.6% 33 via β - decay (2009II01). Probable $\gamma p_{1/2}$ orbital.
801.89 11	$(11/2^+)$		J^{π} : (11/2 ⁺) proposed in 2009Pa35 based on systematics.
1130.5 3			
1235.1 5	(5/0-2/0+)		I_{π}^{π} (2.0 ⁺) : 2000H01 = 1.(5.0 ⁻) = 1.: 2000D 25.1 = 1
1277.690 15	$(5/2, 3/2^{+})$		J^{n} : $(3/2^{+})$ in 20091101 and $(5/2^{-})$ proposed in 2009Pa35 based on systematics.
1363.786 25 1409.078 20 1427.3 3 1637.48 21 1875.66 11 2082.81 4 2152.6 23	(1/2+,3/2-)		J^{π} : (1/2 ⁺) in 2009II01 and (3/2 ⁻) proposed in 2009Pa35.
2235.378 24	$(5/2^+)$		

⁷⁷Cu $β^-$ decay (469.8 ms) 2009II01,2009Pa35 (continued)

$^{\prime\prime}$ Z	Zn	Level	s (con	itinu	(ed
---------------------	----	-------	-----	-----	-------	-----

E(level) [‡]	Comments
2380.4 3	
2527.2? 5	
2545.84 12	
2574.2? 4	
2654.14 9	
2872.67 5	
2891.8? <i>3</i>	
3001.12 10	
3083.18 9	
3095.1? 5	
3139.30 15	
3204.56 5	
3386.92 <i>13</i>	
3426.98 <i>13</i>	
3709.9 15	
3744.00 9	
3823.88 16	
4334.35 20	
4531.9 4	
4557.5+x	E(level): level introduced by compiler to account for population of neutron-unbound levels, as suggested by $\%\beta^-$ n values measured by 2010Ho10 and 2014XuZZ. 2009Pa35 estimate log <i>ft</i> =4.1 for level decaying by neutrons to first 2 ⁺ level in ⁷⁶ Zn and 4.4 for level decaying to first 4 ⁺ level in ⁷⁶ Zn, but the feeding pattern of ⁷⁶ Zn levels could be more complex x<5368.9 <i>34</i> from Q(β^-)-S(n)(⁷⁷ Zn), where Q(β^-)=9926.4 <i>23</i> and S(n)=4557.5 <i>25</i> (2017Wa10

4605.27 21

 † From Adopted Levels, based on systematics, decay pattern and β feedings.

and mass measurement by 2017We16).

[‡] From least-square fit to $E\gamma$ data. Due to poor fit in the level scheme, 2118.8 γ from 2235 level was not included in the fitting procedure.

0-		
12-	rodie	tione.
D	Taura	шонъ
1-		

E(decay)	E(level)	Ιβ ^{-†‡}	$\log ft^{\dagger}$	Comments
(5321.1 23)	4605.27	1.54 16	5.63 5	av Eβ=2403.1 12
$(3 \times 10^3 @ 3)$	4557.5+x	30.1 20		I β^- : from $\beta^- n=30.1 \ 20$ for ⁷⁷ Cu decay (see ⁷⁷ Cu Adopted Levels).
(5394.5 23)	4531.9	0.44 7	6.2 1	av E β =2438.7 12
(5592.1 23)	4334.35	1.17 <i>13</i>	5.84 5	av Eβ=2534.7 12
(6102.5 23)	3823.88	2.19 17	5.74 4	av $E\beta = 2783.0 \ 12$
(6182.4 23)	3744.00	3.0 4	5.6 1	av E β =2821.8 12
(6217 3)	3709.9	0.90 12	6.2 1	av $E\beta = 2838.4 \ 14$
(6499.4 23)	3426.98	1.55 18	6.02 5	av Eβ=2976.1 12
(6539.5 23)	3386.92	1.89 <i>16</i>	5.95 4	av E β =2995.6 12
(6721.8 23)	3204.56	5.1 <i>3</i>	5.57 3	av E β =3084.3 12
(6787.1 23)	3139.30	2.19 24	5.96 5	av E β =3116.1 <i>12</i>
(6831.3 [#] 24)	3095.1?	0.23 8	7.0 2	av E <i>B</i> =3137.6 <i>12</i>
(6843.2 23)	3083.18	2.26 19	5.96 4	av $E\beta = 3143.4$ 12
(6925.3 23)	3001.12	1.35 18	6.2 1	av $E\beta = 3183.3 \ 12$
$(7034.6^{\#} 2.3)$	2891.8?	0.35 8	6.8 1	av $E\beta = 3236.5$ 12
(7053.7 23)	2872.67	4.3.3	5.74 3	av $E\beta = 3245.8$ /2
(7272.3 23)	2654.14	1.69 15	6.21 4	av E β =3352.2 12
(7352.2 [#] 23)	2574.2?	0.36 8	6.9 1	av Eβ=3391.1 <i>12</i>

Continued on next page (footnotes at end of table)

77 Cu β^- decay (469.8 ms) 2009II01,2009Pa35 (continued)

β^- radiations (continued)

E(decay)	E(level)	Iβ ^{-†‡}	$\log ft^{\dagger}$	Comments
$(7380.6\ 23)$	2545.84	1.05 12	6.44.5	av $E\beta = 3404.9$ 12
(7399.2 24)	2527.2?	0.65 11	6.7 1	av $E\beta = 3414.0$ /2
(7546.0 23)	2380.4	0.66 12	6.7 1	av $E\beta = 3485.4$ 12
(7691.0 23)	2235.378	7.2 4	5.69 3	av $E\beta = 3556.0 \ 12$
				Log <i>ft</i> : value of 5.69 3 is lower than >5.9 expected for a first-forbidden β transition.
(7774 3)	2152.6	0.57 9	6.8 1	av E β =3596.3 16
(7843.6 23)	2082.81	0.6 3	6.8 2	av $E\beta = 3630.3 \ 12$
(8050.7 23)	1875.66	1.04 22	6.6 1	av E β =3731.1 12
(8288.9 23)	1637.48	0.45 8	7.0 1	av E β =3846.9 12
(8499.1 23)	1427.3	0.9 2	6.8 1	av E β =3949.2 12
(8517.3 23)	1409.078	3.9 4	6.16 5	av E β =3958.0 12
(8562.6 23)	1363.786	1.0 3	6.8 1	av E β =3980.1 12
(8641.8 23)	1284.62	2.4 2	6.40 4	av E β =4018.6 <i>12</i>
(8648.7 23)	1277.690	1.9 5	6.5 1	av E β =4021.9 <i>12</i>
(8691.3 24)	1235.1	0.18 7	7.5 2	av E β =4042.6 12
(8795.9 23)	1130.5	0.35 8	7.3 1	av E β =4093.5 12
(9124.5 [#] 23)	801.89	0.82 12	>7.0	av E β =4253.2 12
				$I\beta^{-1}$: 0.82 12 from in-out intensity balance is inconsistent with expected zero feeding for a 5/2 ⁻¹ to (11/2 ⁺) β transition, thus the β feeding to this level is considered by the evaluator as questionable if $J^{\pi} = (11/2^{+})$ for the 802 level. Log <i>ft</i> : considered by evaluator as a lower limit.
(9154.0 [#] 23)	772.440			Apparent β feeding of 6% 3 from in-out intensity balance is within 2σ of expected zero feeding for a $\Delta J=2$, $\Delta \pi=no \beta$ transition.
(9811.7 23)	114.721	1.9 4	9.1 ¹ <i>u</i> 1	av E β =4593.3 12
(9926.4 23)	0.0	8 <i>3</i>	6.2 2	av E β =4642.8 12
				<i>Iβ</i> ⁻ : from total (absolute) intensity of prompt <i>γ</i> rays, IT transition and 114 <i>γ</i> (assumed as M1+E2, δ ≈0.1)=41.1% <i>11</i> and absolute intensity out of the g.s. as 49.1% 26. If 114 <i>γ</i> is assumed E2 (an unlikely scenario), the <i>β</i> feeding to the g.s.=5% 3. The value is from 2009II01, none given in 2009Pa35.

[†] The β feedings are from γ -ray intensity balance at each level, unless otherwise stated. All β feedings are considered as upper limits and associated log ft values as lower limits since some γ rays may be below the detection limit of this experiment.

[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

[@] Estimated for a range of levels.

				⁷⁷ Cu β	[–] decay (469.	8 ms) 200	91101,200	9Pa35 (cor	ntinued)	
						γ (⁷⁷ Zi	n)			
Iγ normaliz of implan 2009Pa35 Values of re to first 4 ⁺	eation: From ted 77 Cu ion 5 seems in se elative γ -ray + level in 76 Z	2009II01. O as, as given i rious disagre intensities fr Zn. Correspon	ther: 0.198 obt n 2009Wi03. Notement. om β -delayed noted and on gradue in the second secon	ained from formalization neutron dec 2009Pa35 i	intensity data on factor of \approx ay to ⁷⁶ Zn fro s 89 <i>3</i> for 598	per 100 dec 0.37 implied om 20091101 3.3 <i>3 γ</i> .	ays of the from β fe are: 100.2	parent mea edings and 2 9 for 598.	asured by correlative γ -r. 56 5 γ to fi	pmparing γ -ray intensities to the number ay intensities in level-scheme figure of rst 2 ⁺ level and 2.89 <i>11</i> for 697.72 8 γ
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α &	$I_{(\gamma+ce)}^{@}$	Comments
114.72 <i>I</i>	40.5 11	114.721	(9/2+)	0.0	7/2+	[M1+E2]	0.10 3	0.046 2	42.4 11	α(K)=0.041 2; α(L)=0.0043 3; α(M)=0.00062 4; α(N)=2.38×10-5 12 Εγ=114.7 3, Iγ=33 4 (2009Pa35). Absolute Iγ=6.0 (2009Wi03) in agreement with 7.7 from 2009II01. I(γ+ce): from 2009II01. Iγ: deduced (by evaluators) from listed I(γ+ce) and α. δ: assumed in 2009II01 with an uncertainty of 0.03, from similar 9/2+ to 7/2+ transitions amongst low-lying levels in 73Ge and 75Ge.
131.35 22 352.86 15	1.37 24 2.3 4 2.0 8	1409.078 1637.48 1875.66		1277.690 1284.62	(5/2 ⁻ ,3/2 ⁺)					
505.25 1	100.0 7	1277.690	(5/2 ⁻ ,3/2 ⁺)	772.440	1/2-					$E\gamma$ =505.7 9, I γ =100 5 (2009Pa35). Absolute I γ =19.8 (2009Wi03) in agreement with 19.1 from 2009II01.
591.33 2 637.29 5 687.17 <i>11</i> 772.43 2	31.6 7 7.2 6 4.2 6	1363.786 2872.67 801.89 772.440	(1/2 ⁺ ,3/2 ⁻) (11/2 ⁺) 1/2 ⁻	772.440 2235.378 114.721 0.0	$1/2^{-}$ (5/2 ⁺) (9/2 ⁺) 7/2 ⁺	[E3]				Ey=591.1 2, Iy=34 4 (2009Pa35). Ey=638.0 10, Iy=7 2 (2009Pa35). Ey=685.5 5, Iy=4 1 (2009Pa35). Measured Iy=56.7 11 (2009II01), 64 9 (2009Pa35). Absolute Iy=10.8 (2009II01), 11.1 (2009Wi03). No intensity is given in the data field for Iy as it varies with time due to the long half-life of 1.05 s for the isomer as compared to the half-life 469.8 ms for the parent activity of ⁷⁷ Cu. Ey=772.0 2 (2009Pa35).
805.11 <i>3</i> 826.33 <i>18</i>	18.9 6 1.7 3	2082.81 2235.378	$(5/2^+)$	1277.690 1409.078	$(5/2^{-},3/2^{+})$					$E\gamma = 804.5 \ I0, \ I\gamma = 16 \ 2 \ (2009Pa35).$
8/1.45 9 903.8 <i>14</i> 957 69 2	0.3 0 3.3 6 36 2 8	2235.378 3139.30 2235.378	$(5/2^+)$	1303.786 2235.378 1277.690	$(1/2^+, 3/2^-)$ $(5/2^+)$ $(5/2^-, 3/2^+)$					$E\gamma = \delta / 1.9 \ IU, \ I\gamma = 10 \ 2 \ (2009Pa35).$ $E\gamma = 97.3.3 \ I\gamma = 40.3 \ (2009Pa35).$
997.29 15	2.9 4	2255.578 2872.67	(3/2)	1875.66	(3/2, 3/2)					$L_{\gamma} = 557.55, 1_{\gamma} = 40.5$ (2009ra55).

4

 $^{77}_{30}{\rm Zn}_{47}{\rm -4}$

$\gamma(^{77}Zn)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	J^{π}_i	E_f	${ m J}_f^\pi$	Comments
1000.33 14	3.4 5	3083.18		2082.81		
1015.8 <i>3</i>	1.8 4	1130.5		114.721	$(9/2^+)$	
1056.6 <i>3</i>	2.0 4	3139.30		2082.81		
1120.4 5	0.9 4	1235.1		114.721	$(9/2^+)$	
1169.81 <i>16</i>	3.9 5	1284.62		114.721	(9/2+)	$E\gamma = 1169.8 \ 10, \ I\gamma = 6 \ 1 \ (2009Pa35).$
1268.14 12	5.4 6	2545.84		1277.690	$(5/2^-, 3/2^+)$	
1277.68 2	37.3 8	1277.690	$(5/2^-, 3/2^+)$	0.0	7/2+	$E\gamma$ =1277.7 2, $I\gamma$ =46 4 (2009Pa35). Absolute $I\gamma$ =7.2 (2009Wi03) in agreement with 7.1 from 2009II01.
1284.8 5	12.1 7	1284.62		0.0	7/2+	
1290.34 8	8.7 7	2654.14		1363.786	$(1/2^+, 3/2^-)$	$E\gamma = 1290.8 \ 8, \ I\gamma = 17 \ 3 \ (2009Pa35).$
1409.07 2	34.4 10	1409.078		0.0	7/2+	$E\gamma = 1409.3 \ 3, \ I\gamma = 37 \ 3 \ (2009Pa35).$
1427.76	9.9.6	1427.3		0.0	7/2*	
1463.69 14	3.8 5	28/2.6/		1409.078		$E\gamma = 1463.770, 1\gamma = 6.2$ (2009Pa35).
1528.0 # <i>a</i> 3	1.8 4	2891.8?		1363.786	$(1/2^+, 3/2^-)$	
1594.8 1	7.0 7	28/2.67		12/7.690	$(5/2^-, 3/2^+)$	$E\gamma = 1595.3 \ I0, \ I\gamma = 8 \ 2 \ (2009Pa35).$
1661.16 9	10.4 15	3744.00		2082.81	(5/0-2/0+)	$E\gamma = 1662.1 \ I0, \ I\gamma = 7 \ 2 \ (2009Pa35).$
1720.19	0.99	3001.12		12/7.090	$(5/2^{-}, 3/2^{+})$	
1/30.18 18	5.70	3139.30		1409.078		
^x 1795.0 ⁺ 6	1.0 4	2002 10		1055 (00)	(5/2- 2/2+)	
1805.5 1	7.2.6	3083.18		1277.690	$(5/2^{-},3/2^{+})$	$E\gamma = 1805.0 \ I0, \ I\gamma = 8 \ 2 \ (2009Pa35).$
1817.4 ^{#4} 5	1.2 4	3095.1?		1277.690	$(5/2^-, 3/2^+)$	
1840.15 21	4.6 7	3204.56		1363.786	$(1/2^+, 3/2^-)$	$E\gamma = 1840.6 \ I0, \ I\gamma = 5 \ 2 \ (2009Pa35).$
18/5.86 17	5.37	18/5.66		0.0	$1/2^+$	
1926.8/4	21.5 /	3204.56		1277.690	(5/2, 3/2)	$E\gamma = 1926.0 \ 5, \ 1\gamma = 33 \ 2 \ (2009Pa35).$
2017.8# 4	1.5 4	3426.98		1409.078		
2023.04 14	5.1.5	3386.92		1363.786	$(1/2^+, 3/2^-)$	$E\gamma = 2023.0 \ 10, \ 1\gamma = 13 \ 2 \ (2009Pa35).$
2037.9 23	2.9.5	2152.6		114.721	$(9/2^{+})$	
^x 2063.0 ⁺ 6	1.8 7					
^x 2085.7 [‡] 4	1.6 4					
2109.4 [#] 3	3.3 5	3386.92		1277.690	$(5/2^{-}, 3/2^{+})$	Eγ=2108.4 10, Iγ=6 2 (2009Pa35).
2118.8 4	2.0 5	2235.378	(5/2 ⁺)	114.721	(9/2+)	E_{γ} : poor fit, not included in the least-squares fitting procedure. Level-energy difference=2120.6.
2141.7 5	1.2 4	3426.98		1284.62		
2149.32 14	5.3 6	3426.98		1277.690	$(5/2^{-},3/2^{+})$	
2234.3 4	1.3 4	2235.378	$(5/2^+)$	0.0	7/2+	
2265.6 3	3.4 6	2380.4		114.721	$(9/2^+)$	
^x 2310.5 [‡] 6	1.1 4					
2335.1 3	1.9 6	3744.00		1409.078		$E\gamma = 2335.0 \ 10, \ I\gamma = 7 \ 3 \ (2009Pa35).$
2396.6 [#] 3	3.6 5	3823.88		1427.3		
2432.2 15	4.6 6	3709.9		1277.690	$(5/2^-, 3/2^+)$	
2459.4 ^{#a} 4	1.9 4	2574.2?		114.721	$(9/2^+)$	

From ENSDF

$\gamma(^{77}$ Zn) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^{π}	E_f	J_f^π	Comments
2466.6 7	1.2 4	3744.00	12	77.690	(5/2 ⁻ ,3/2 ⁺)	$E\gamma=2463.6\ 10$, $I\gamma=6\ 2\ (2009Pa35)$, placed from 3826 level in 2009Pa35 on the basis of coin with 591 γ . The evaluators assume that same γ is seen in both 2009II01 and 2009Pa35. 2463.6-591.1 $\gamma\gamma$ coin result of 2009Pa35 seems in disagreement with that from 2009II01.
2527.2 5	3.3 6	2527.2?		0.0	$7/2^{+}$	
2546.12 16	7.6 6	3823.88	12	77.690	$(5/2^{-}, 3/2^{+})$	$E\gamma = 2549.0 \ 10, \ I\gamma = 13 \ 2 \ (2009Pa35).$
2757.9 5	1.3 4	2872.67	1	14.721	$(9/2^+)$	
2967.6 7	1.0 4	3083.18	1	14.721	$(9/2^+)$	
^x 2989.3 [‡] 5	1.6 4					
^x 3133.2 [‡] 5	1.6 4					
3139.1 [#] 6	2.2 6	3139.30		0.0	7/2+	
3178.0 <mark>#</mark> 6	1.9 4	4605.27	14	27.3		
3387.2 [#] 6	1.3 <i>3</i>	3386.92		0.0	$7/2^{+}$	
3743.6 4	2.2 5	3744.00		0.0	7/2+	
3826.7 ^a 10	31	3823.88		0.0	7/2+	E_{γ} , I_{γ} : γ from 2009Pa35 only, treated as uncertain by the evaluators since not reported in 2009II01.
4220.5 16	0.5 3	4334.35	1	14.721	$(9/2^+)$	
4334.2 2	5.5 6	4334.35		0.0	7/2+	
4417.0 4	2.3 <i>3</i>	4531.9	1	14.721	$(9/2^+)$	
4490.37 23	4.6 6	4605.27	1	14.721	$(9/2^+)$	
4605.3 6	1.4 3	4605.27		0.0	7/2+	

6

[†] From 2009II01. Values from 2009Pa35 are in general agreement but less precise. [‡] Assigned to ⁷⁷Cu decay based on half-life. It could not be placed in the level scheme due to lack of $\gamma\gamma$ coin data.

[#] Transition without strong coincidence evidence and/or other linking transitions.

[@] For absolute intensity per 100 decays, multiply by 0.191 6.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{77}_{30}Zn_{47}$

7

⁷⁷Cu β^- decay (469.8 ms) 2009II01,2009Pa35

