⁷⁷As β^- decay (38.79 h) 1983Da24,1971Ar24

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020

Parent: ⁷⁷As: E=0.0; J^{π}=3/2⁻; T_{1/2}=38.79 h 5; Q(β ⁻)=683.2 17; % β ⁻ decay=100.0

⁷⁷As-J^{π},T_{1/2}: From ⁷⁷As Adopted Levels.

⁷⁷As-Q(β^{-}): From 2017Wa10.

1983Da24, 1971Ar24 (also 1968Ar09): measured Εγ, Ιγ, γγ-coin.

The decay scheme is based on $\gamma\gamma$ data of 1971Ar24.

Others:

1981Ni04: measured half-life of ⁷⁷As decay and deduced chemical effect on decay constant.

1979ChZQ: measured E γ , I γ , $\gamma\gamma$ -coin.

1964Mu10: measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin.

1955Sc36: production of ⁷⁷As source in ⁸¹Br(γ, α) reaction, and measurement of half-life.

1955Bi96: measured $E\gamma$, $I\gamma$.

1953Re12, 1953Sa46, 1951Ca04, 1951Je01: measured β^- , $\beta\gamma$ -coin, $E\gamma$, $\gamma\gamma$ -coin:

Total decay energy of 683 keV 2 deduced (by RADLIST code) from proposed decay scheme is in perfect agreement with the expected value of 683 keV 2, indicating that decay scheme is well established.

⁷⁷Se Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †	Comments
0.0 161.942 7 175.329 24 239.012 6 249.800 6 301.169 14 439.493 12 520.653 7	1/2 ⁻ 7/2 ⁺ 9/2 ⁺ 3/2 ⁻ 5/2 ⁻ 5/2 ⁺ 5/2 ⁻ 3/2 ⁻	stable 17.36 s 5	%IT=100

 † From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments		
(162.5 17)	520.653	0.63 10	5.8 1	av E β =44.5 6		
(243.7 17)	439.493	0.0017 3	8.9 1	av $\mathbf{E}\beta$ =69.7 6		
(382.0 17)	301.169	0.013 2	8.7 1	av $E\beta = 116.2 \ 7$		
(433.4 17)	249.800	0.63 10	7.2 1	av $E\beta = 134.5 7$		
				$(450\beta)(250\gamma)$ reported (1953Re12,1953Sa46).		
(444.2 17)	239.012	1.6 2	6.8 1	av $E\beta = 138.3 7$		
(521.3 17)	161.942	0.092 16	8.4 ¹ <i>u</i> 1	av E β =189.6 7		
(683.2 17)	0.0	97.0 <i>3</i>	5.713 5	av $E\beta = 228.87$		
				$I\beta^{-1}$: from absolute intensity of $239\gamma + 250\gamma$, and intensity balance at each level.		
				E(decay): 684 9 is the weighted average of the measured end-point energies: 700		

keV 7 (1951Ca04) and 679 keV 4 (1951Je01).

[†] From %I γ (239 γ +250 γ)=2.0 3 and γ -ray intensity balance at each level.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{77}\text{Se})$

Iy normalization: From %Iy(239y+250y)=2.0 3, an average of 2.5 5 (1955La14), 1.4 4 (1953Re12), 2.3 5 (1953Ra18), 1.7 4 (1953Sa46). Uncertainties on values from 1953Ra18 and 1953Sa46 are estimated by the evaluator.

The 167γ and 177γ reported by 1979ChZQ only have been omitted. These lines were most likely due to scattering effects.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\&}$	$I_{(\gamma+ce)}^{@}$	Comments
13.4	< 0.01	175.329	9/2+	161.942	7/2+				0.10 1	E_{γ} : from level energy difference.
51.34 2	0.045 5	301.169	5/2+	249.800	5/2-	E1		0.570		$\alpha(K)=0.506\ 7;\ \alpha(L)=0.0549\ 8;\ \alpha(M)=0.00843\ 12;$
62.2 4	< 0.005	301.169	5/2+	239.012	3/2-	[E1]		0.325 8		$\alpha(K)=0.289\ 7;\ \alpha(L)=0.0310\ 8;\ \alpha(M)=0.00477\ 12;\ \alpha(N)=0.000389\ 10$
81.15 2	0.024 3	520.653	$3/2^{-}$	439.493	$5/2^{-}$					
87.854 5	12.7 7	249.800	5/2-	161.942	7/2+	E1		0.1165		α (K)=0.1037 <i>15</i> ; α (L)=0.01101 <i>16</i> ; α (M)=0.001698 <i>24</i> ; α (N)=0.0001402 <i>20</i>
125.84 2	0.075 7	301.169	5/2+	175.329	9/2+	E2		0.354		α (K)=0.308 5; α (L)=0.0396 6; α (M)=0.00613 9; α (N)=0.000477 7
139.243 15	0.62 4	301.169	5/2+	161.942	7/2+	M1+E2	0.75 3	0.114 4		α (K)=0.100 4; α (L)=0.0121 5; α (M)=0.00188 7; α (N)=0.000150 6
										δ : from ce data in ⁷⁶ Se(n, γ).
161.932 10	9.2 5	161.942	7/2+	0.0	1/2-	E3		0.881		α (K)=0.735 <i>11</i> ; α (L)=0.1251 <i>18</i> ; α (M)=0.0195 <i>3</i> ; α (N)=0.001413 <i>20</i>
200.47 2	0.067 7	439.493	5/2-	239.012	3/2-	M1+E2	+0.09 3	0.0165 4		$\alpha(K)=0.0146\ 4;\ \alpha(L)=0.00158\ 4;\ \alpha(M)=0.000245\ 6;$ $\alpha(N)=2.08\times10^{-5}\ 5$
										δ: from $\gamma(\theta)$ in ⁷⁴ Ge(α ,n γ).
239.011 6	100	239.012	3/2-	0.0	1/2-	M1+E2	+0.152 4	0.01080		$\alpha(\mathbf{K}) = 0.00960 \ 14; \ \alpha(\mathbf{L}) = 0.001031 \ 15;$ $\alpha(\mathbf{M}) = 0.0001607 \ 23; \ \alpha(\mathbf{N}) = 1.362 \times 10^{-5} \ 20$
249.805 8	24.8 10	249.800	5/2-	0.0	1/2-	E2		0.0284		$\alpha(M) = 0.000100725, \alpha(N) = 1.502\times10^{-2.0}$ $\alpha(K) = 0.02514; \alpha(L) = 0.002854; \alpha(M) = 0.0004427;$
			a /a -				0.00			$\alpha(N) = 3.62 \times 10^{-5} 5$
270.850 12	0.52 3	520.653	3/2-	249.800	5/2-	M1+E2	-0.30 6	0.0087 5		$\alpha(K)=0.00774; \alpha(L)=0.000835; \alpha(M)=0.0001298; \alpha(N)=1.09\times10^{-5}6$
281.642 8	3.64 18	520.653	3/2-	239.012	3/2-	M1+E2	+0.12 4	0.00699 16		$\alpha(\mathbf{K})=0.00622\ 15;\ \alpha(\mathbf{L})=0.000664\ 16;\ \alpha(\mathbf{M})=0.0001034\ 25;\ \alpha(\mathbf{N})=8\ 79\times10^{-6}$
439.493 20	0.064 7	439.493	5/2-	0.0	$1/2^{-}$	E2		0.00413 6		$\alpha(M) = 0.003666; \alpha(L) = 0.0003986; \alpha(M) = 6.19 \times 10^{-5}$ 9; $\alpha(N) = 5.18 \times 10^{-6} 8$
520.654 15	35.1 14	520.653	3/2-	0.0	1/2-	M1+E2	+0.17 7	0.00160 4		α (K)=0.00143 3; α (L)=0.000150 3; α (M)=2.34×10 ⁻⁵ 5; α (N)=2.00×10 ⁻⁶ 4

 \mathbf{b}

[†] From 1983Da24. [‡] From ce data in 76 Se(n, γ).

[#] From the Adopted Gammas.

⁷⁷As β^{-} decay (38.79 h) 1983Da24,1971Ar24 (continued)

 $\gamma(^{77}\text{Se})$ (continued)

ω

[@] For absolute intensity per 100 decays, multiply by 0.0159 24.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{77}_{34}$ Se $_{43}$ -3

⁷⁷As β^- decay (38.79 h) 1983Da24,1971Ar24

Decay Scheme

