Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020		

 $Q(\beta^{-})=12063 SY; S(n)=3240 SY; S(p)=19580 SY; Q(\alpha)=-16330 SY 2017Wa10,2017We16$

 $Q(\beta^{-})=12063\ 500\ \text{from mass excess}\ (^{77}\text{Ni})=-36800\ 500\ (\text{syst},\ 2017\text{Wa}10)\ \text{and measured mass excess}\ (^{77}\text{Cu})=-48862.8\ 12\ (2017\text{We}16).\ S(n),\ S(p)\ \text{and}\ Q(\alpha)\ \text{are from }2017\text{Wa}10.$

- Estimated uncertainties: 500 for Q(β^-) (2017Wa10, 2017We16), 640 for S(n) (2017Wa10), 780 (2017Wa10) for S(p), and 710 for Q(α) (2017Wa10).
- $Q(\beta^-n)=6110\ 500$, $S(2n)=8910\ 580$, $S(2p)=37740\ 780$ (syst, 2017Wa10). $Q(\beta^-2n)=1529\ 500$ deduced by evaluator from relevant mass excesses in 2017Wa10. The $Q((\beta^-n))$ and $Q(\beta^-2n)$ values are nearly the same when measured mass excesses of ^{76}Cu and ^{75}Cu from 2017We16 are considered.

1995En07: ⁷⁷Ni nucleus identified by thermal neutron fission of ²³⁵U followed by mass separation. A total of about 13 events were assigned to ⁷⁷Ni.

1997Be12, 1997Be70: ⁷⁷Ni observed in (²³⁸U,X) on Pb and Be targets at E(²³⁸U)=750 MeV/nucleon followed by fragment separation.

- 2005Ho08 (also 2007Sc29,2004St28,2005Sc28): 9 Be(86 Kr,X) E=140 MeV/nucleon; fully-ionized 86 Kr beam, A1900 fragment separator at NSCL facility. Detected β particles correlated with implanted nuclei in Si detectors. Measured yield and half-life of 77 Ni.
- 2014Xu07: ⁷⁷Ni nuclide produced in ⁹Be(²³⁸U,F) reaction with a ²³⁸U⁸⁶⁺ beam of 345 MeV/nucleon produced by the RIKEN accelerator complex. Identification of ⁷⁷Ni nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments (ΔE -B ρ -tof method) using BigRIPS fragment separator and and ZeroDegree Spectrometer (ZDS) at RIBF-RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot. Measured heavy fragment, β and γ spectra using wide-range active silicon strip stopper array (WAS3ABi) for beta and ion detection, and EUROBALL-RIKEN Cluster array for γ detection. Decay curves were obtained from time differences between implantation and correlated β decays. See also 2014XuZZ thesis.

2017Sa32, 2016Sa07: decay of ⁷⁷Ni to ⁷⁷Cu studies at RIBF-RIKEN facility.

Additional information 1.

Theoretical calculations: consult the NSR database at www.nndc.bnl.gov for 21 primary theory references dealing with nuclear structure calculations, and radioactive decays.

77Ni Levels

E(level)	J^{π}	T _{1/2}	Comments	
0	(9/2+)	158.9 ms 42		