⁷⁷Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020						

Parent: ⁷⁷Rb: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=3.78 \text{ min } 4$; $Q(\varepsilon)=5339.0\ 24$; $\%\varepsilon+\%\beta^{+}\ \text{decay}=100.0$

⁷⁷Rb-J^{π},T_{1/2}: From ⁷⁷Rb Adopted Levels.

⁷⁷Rb-Q(ε): From 2017Wa10.

Main references: 1975BaWR, 1975Li13, 1975We23, 1975Bo52.

1975We23 and 1975Bo52 report only intense γ transitions.

The level scheme is mainly from $\gamma\gamma$ data of 1975BaWR and 1975Li13.

Others: 1986Ho22, 1980DeZB, 1979SpZZ, 1976ScZK, 1976BaYW, 1974No08, 1972DiZK, 1972De40, 1972Ar02, 1971Do01.

Total decay energy of 5385 keV 505 deduced (by RADLIST code) from proposed decay scheme is in agreement with the expected value of 5339 keV 3, indicating that decay scheme is well established.

⁷⁷Kr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+	71.25 min 42	$\%\varepsilon + \%\beta^+ = 100$
((50 5	2/2-		$T_{1/2}, \% \varepsilon + \% \beta^+$: from Adopted Levels.
00.30 <i>3</i> 149 94 <i>9</i>	3/2 7/2+		
245 30 6	5/2-		
459.88 9	$1/2^{-}$		
499.58 12	7/2-		
577.3 6	$(3/2^-, 5/2, 7/2^-)$		
674.98 <i>21</i>	$(3/2^+, 5/2)$		
714.35 8	$(1/2^-, 3/2, 5/2^-)$		
733.3 6	(1/2, 3/2, 5/2)		
747.18 23	$(3/2^+, 5/2)$		
790.52 12	(1/2, 3/2, 5/2)		
8/2.01 /	(3/2, 5/2)		
955.5" 7	$(3/2^+, 5/2)$		
957.85 10	$(1/2^+ 2/2 5/2^-)$		
1013.00	(1/2, 5/2, 5/2)		
1020.76 22			
1024.8" 6	(3/2, 5/2)		
1037.42 6	(3/2,5/2)		
1055.5?" 10	(5.12)		
1108.67 12	(5/2)		
1154.2" 7	(1/2 + 2/2 + 2/2 - 1)		
1243.09 14	$(1/2^{-}, 3/2, 5/2^{-})$		
1312.44 15	1/2,3/2,5/2		
1444.1" 7	1/2,3/2,5/2		
1509.5 [#] 7	$(3/2^+, 5/2)$		
1672.48 [#] 12	(3/2,5/2)		
1782.23 [@] 11	1/2,3/2,5/2		
1838.37 [@] 8	$(1/2^+, 3/2, 5/2)$		
1865.6 [#] 9	$(3/2^+, 5/2)$		
1907.6 [#] 12	$(3/2^{-}, 5/2^{-})$		
1913.48 [@] 13	$(1/2^{-}.3/2.5/2)$		
$202573^{@}7$	$1/2^{-} 3/2^{-} 5/2^{-}$		
2023.13 /	$(2/2^{-} 5/2^{-})$		
2822.03 - 19	(3/2,3/2)		

⁷⁷Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23 (continued)

77Kr Levels (continued)

E(level)	$J^{\pi +}$
3007.72 [@] 19	(3/2,5/2)-
3054.30 [@] 15	$(1/2^-, 3/2^-, 5/2^-)$

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

[#] From 1975Li13 only.

[@] From 1975BaWR only.

ε, β^+ radiations

 β^+ measurements: 1975BaWR, 1975Li13.

 $\beta^+\gamma$ measurement: 1975We23, 1982Mo10.

Q value from total γ -absorption: 1993Al03.

Measured β^+ endpoint energy: 3860 150 (1975Li13), 3975 120 (1975BaWR) (both β + singles measurements. These values together with the adopted Q value do not show the strongest β + feeding to 66 level as given in the decay scheme. The discrepancy could be due to errors in these E(β +) values or in the β + feeding to 66 level).

E(decay)	E(level)	$I\beta^+$ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2284.7 24)	3054.30	0.17 3	0.14 3	5.8 1	0.31 6	av Eβ=552.4 11; εK=0.3829 14; εL=0.04449 16; εM+=0.00914 4
(2331.3 24)	3007.72	0.43 8	0.29 6	5.5 1	0.72 14	av Eβ=573.2 11; εK=0.3579 13; εL=0.04158 15; εM+=0.00854 3
(2516.4 24)	2822.65	0.38 8	0.17 3	5.8 1	0.55 11	av Eβ=656.5 11; εK=0.2728 10; εL=0.03167 12; εM+=0.006504 23
(3313.3 24)	2025.73	3.8 7	0.45 9	5.6 1	4.2 8	av Eβ=1022.2 12; εK=0.0934 3; εL=0.01082 4; εM+=0.002221 7
(3425.5 24)	1913.48	0.58 12	0.060 12	6.5 1	0.64 13	av Eβ=1074.5 12; εK=0.08189 23; εL=0.00948 3; εM+=0.001946 6
(3431 3)	1907.6	0.31 5	0.032 6	6.8 1	0.34 6	av Eβ=1077.2 13; εK=0.0813 3; εL=0.00942 3; εM+=0.001933 6
(3473 3)	1865.6	0.15 3	0.015 3	7.2 1	0.17 3	av Eβ=1096.8 12; εK=0.07753 23; εL=0.00898 3; εM+=0.001843 6
(3500.6 24)	1838.37	1.8 4	0.17 3	6.1 <i>1</i>	2.0 4	av Eβ=1109.5 12; εK=0.07519 21; εL=0.008704 24; εM+=0.001787 5
(3556.8 24)	1782.23	0.97 17	0.085 15	6.4 1	1.06 19	av Eβ=1135.8 <i>12</i> ; εK=0.07063 <i>19</i> ; εL=0.008176 <i>22</i> ; εM+=0.001678 5
(3666.5 24)	1672.48	1.22 23	0.094 18	6.4 1	1.31 25	av $E\beta$ =1187.2 <i>12</i> ; ε K=0.06271 <i>16</i> ; ε L=0.007257 <i>19</i> ; ε M+=0.001490 <i>4</i>
(3829.5 25)	1509.5	0.97 23	0.062 15	6.6 1	1.03 25	av $E\beta$ =1263.8 <i>12</i> ; ε K=0.05295 <i>14</i> ; ε L=0.006126 <i>16</i> ; ε M+=0.001258 <i>4</i>
(3894.9 25)	1444.1	0.8 3	0.05 2	6.8 2	0.8 3	av $E\beta$ =1294.7 <i>12</i> ; ε K=0.04960 <i>13</i> ; ε L=0.005737 <i>15</i> ; ε M+=0.001178 3
(4026.6 24)	1312.44	0.82 19	0.043 10	6.8 1	0.86 20	av $E\beta$ =1356.9 <i>12</i> ; ε K=0.04364 <i>10</i> ; ε L=0.005047 <i>12</i> ; ε M==0.0010360 2
(4095.9 24)	1243.09	1.1 3	0.056 14	6.7 1	1.2 3	av E β =1389.7 <i>12</i> ; ϵ K=0.04088 <i>10</i> ; ϵ L=0.004727 <i>11</i> ; ϵ M+=0.0009703 <i>2</i>
(4184.8 [@] 25)	1154.2	1.1 3	0.047 13	6.8 1	1.1 3	av E β =1431.8 12; ε K=0.03767 9; ε L=0.004355 10; ε M+=0.0008939 2
(4230.3 24)	1108.67	2.7 6	0.12 2	6.4 1	2.8 6	av $E\beta$ =1453.4 <i>12</i> ; ε K=0.03615 <i>8</i> ; ε L=0.004179 <i>9</i> ;

Continued on next page (footnotes at end of table)

75Li13,1975We23 (continued)
'

E(decay)	E(level)	Ιβ ⁺ #	Ιε [#]	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
						$\varepsilon M + = 0.0008578 I$
(4301.6 24)	1037.42	1.2 3	0.046 12	6.8 1	1.2 3	av $E\beta$ =1487.2 <i>12</i> ; ε K=0.03393 <i>8</i> ; ε L=0.003923 <i>9</i> ; ε M+=0.0008052 <i>1</i>
(4314.2 25)	1024.8	1.4 4	0.057 15	6.8 1	1.5 4	av $E\beta$ =1493.2 <i>12</i> ; ε K=0.03356 <i>8</i> ; ε L=0.003880 <i>9</i> ; ε M+=0.0007963 <i>1</i>
(4326.0 25)	1013.0	1.6 4	0.064 15	6.7 1	1.7 4	av E β =1498.8 12; ε K=0.03321 8; ε L=0.003840 9; ε M+=0.0007881 1
(4383.5 25)	955.5	0.55 19	0.021 7	7.2 2	0.57 20	av E β =1526.2 <i>12</i> ; ε K=0.03160 <i>7</i> ; ε L=0.003653 <i>8</i> ; ε M+=0.0007497 <i>1</i>
(4467.0 24)	872.01	2.1 7	0.074 23	6.7 2	2.2 7	av E β =1565.9 12; ε K=0.02944 6; ε L=0.003402 7; ε M+=0.0006983 1
(4548.5 24)	790.52	1.3 3	0.041 9	7.0 1	1.3 <i>3</i>	av E β =1604.8 12; ϵ K=0.02751 6; ϵ L=0.003180 7; ϵ M=-0.0006526 1
(4591.8 24)	747.18	0.54 10	0.017 3	7.3 1	0.56 10	av E β =1625.5 12; ε K=0.02655 6; ε L=0.003069 6; ε M+=0.0006298 1
(4605.7 25)	733.3	0.9 3	0.03 1	7.1 2	0.9 3	av E β =1632.1 12; ϵ K=0.02626 6; ϵ L=0.003034 6; ϵ M+=0.0006228 1
(4624.6 24)	714.35	2.8 6	0.085 18	6.6 1	2.9 6	av E β =1641.1 <i>I</i> 2; ϵ K=0.02586 <i>5</i> ; ϵ L=0.002988 <i>6</i> ; ϵ M+=0.0006133 <i>I</i>
(4664.0 24)	674.98	2.3 6	0.069 17	6.7 1	2.4 6	av E β =1659.9 <i>I</i> 2; ε K=0.02506 <i>5</i> ; ε L=0.002895 <i>6</i> ; ε H==0.0005943 <i>I</i>
(4761.7 [@] 25)	577.3	< 0.09	< 0.002	>8.2	< 0.09	av $E\beta$ =1706.6 <i>12</i> ; ε K=0.02320 <i>5</i> ; ε L=0.002681 <i>6</i> ; ε M+=0.0005502 <i>1</i>
(4839.4 [@] 24)	499.58	1.6 4	0.040 10	7.0 1	1.6 4	av Eβ=1743.9 <i>12</i> ; εK=0.02186 <i>4</i> ; εL=0.002525 <i>5</i> ; εM+=0.0005183 <i>1</i>
						log <i>ft</i> is too low for a $7/2^-$ to $3/2^-$ transition. There may be additional γ rays feeding this level.
(4879.1 24)	459.88	7.1 14	0.18 3	6.4 1	7.3 14	av $E\beta$ =1762.9 <i>12</i> ; εK =0.02121 <i>4</i> ; εL =0.002450 <i>5</i> ; εM +=0.0005029 <i>1</i>
(5093.7 24)	245.30	12.6 24	0.27 5	6.2 1	12.9 25	av Eβ=1865.8 12; εK=0.01812 4; εL=0.002093 4; εM+=0.0004294 8
						E(decay): measured endpoint energy= $3670 \ 490$ in coincidence with 393γ (1975We23).
(5189.1 24)	149.94	1.5 5	0.069 22	8.8 ¹ <i>u</i> 2	1.6 5	av Eβ=1919.8 <i>12</i> ; εK=0.03808 <i>7</i> ; εL=0.004420 <i>8</i> ; εM+=0.0009077 <i>1</i>
(5272.5 24)	66.50	27 5	0.51 9	6.0 1	28 5	av Eβ=1951.8 <i>12</i> ; εK=0.01598 <i>3</i> ; εL=0.001846 <i>3</i> ; εM+=0.0003788 <i>7</i>
(5339.0 [@] 24)	0.0	<29	<0.52	>5.9	<30	av Eβ=1983.9 <i>12</i> ; εK=0.015275 <i>25</i> ; εL=0.001764 <i>3</i> ; εM+=0.0003620 <i>6</i>

ϵ, β^+ radiations (continued)

[†] From γ -ray intensity balance, assuming <30% β feeding to g.s. based on log *ft*>5.9 for first-forbidden transition. As the decay does not seem well established, all the $\varepsilon + \beta^+$ feedings should be considered as upper limits.

^{\ddagger} All log *ft* values should be considered as lower limits as the decay scheme does not seem well established.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{77}{\rm Kr})$

Iγ normalization: from $\Sigma I(\gamma+ce)$ (gammas to g.s.)=85 15, assuming $\varepsilon+\beta^+$ feeding to g.s. as <30%, corresponding to log *ft*>5.9.

${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{d}	Comments
^x 39.2 ^{&g} 4 66.52 5	0.5 2 100	66.50	3/2-	0.0	5/2+	(E1)		0.300	α (K)=0.266 4; α (L)=0.0292 5; α (M)=0.00468 7; α (N)=0.000453 7
78.1 [#] 7	0.20 7	577.3	$(3/2^-, 5/2, 7/2^-)$	499.58	7/2-	[D,E2]		1.3 11	
x^{106} [#] 1	0.15 6								
129 [#] 1	≈0.1	1154.2		1024.8	(3/2,5/2)				
149.93 9	7.6 5	149.94	7/2+	0.0	5/2+	M1+E2	-0.16 10	0.047 7	$\alpha(K)=0.042\ 6;\ \alpha(L)=0.0047\ 8;$ $\alpha(M)=0.00076\ l2;\ \alpha(N)=7\ 6\times10^{-5}\ l1$
178.78 8	38.9 14	245.30	5/2-	66.50	3/2-	(M1(+E2))	-0.09 9	0.0278 20	$\alpha(K) = 0.0246 \ 17; \ \alpha(L) = 0.00272 \ 22; \alpha(M) = 0.00044 \ 4; \ \alpha(N) = 4.4 \times 10^{-5} \ 4$
216.0 ^{#g} 15	≈0.1	459.88	1/2-	245.30	5/2-				
237.1 [#] 5	0.7 2	1108.67	(5/2)	872.01	(3/2,5/2)				
245.24 10	1.3 5	245.30	5/2-	0.0	5/2+	[E1]			
254.3 3	3.12 4	499.58	7/2-	245.30	5/2-	(M1(+E2))	< 0.05	0.01102	α (K)=0.00976 <i>15</i> ; α (L)=0.001065 <i>16</i> ; α (M)=0.000173 <i>3</i> ; α (N)=1.74×10 ⁻⁵ <i>3</i>
254.5 3	1.04 16	714.35	$(1/2^-, 3/2, 5/2^-)$	459.88	$1/2^{-}$				
291.0 [#] 15	0.3 1	1444.1	1/2,3/2,5/2	1154.2					
306.43 25	0.5 3	1020.76		714.35	$(1/2^-, 3/2, 5/2^-)$				
354.1 [#] 8	0.6 2	1312.44	1/2,3/2,5/2(-)	957.83					
393.37 9	17.1 7	459.88	1/2-	66.50	3/2-				
433.06 14	1.47 11	499.58	7/2-	66.50	3/2-	E2			
468.99 19	2.08 13	/14.35	(1/2, 3/2, 5/2)	245.30	5/2				L determined from the depart scheme
5112	≈1.4	577.5	(3/2, 3/2, 1/2)	140.04	3/2 7/2+				I_{γ} . determined from the decay scheme.
525.0" 15 545.23.15	≈0.2	074.98	$(3/2^{+}, 5/2)$ $(1/2^{-}, 3/2, 5/2)$	245.30	1/2" 5/2 ⁻				
554# 1	0.6.2	1013.0	$(1/2^+, 3/2, 5/2^-)$	2 4 5.50 450.88	$\frac{3}{2}$				
568 0 [#] 10	0.0 2	1242.00	$(1/2^+, 3/2, 3/2^-)$	674.00	$\frac{1}{2}$				
$508.9 \ 10$	0.5 I	1245.09	(1/2, 3/2, 3/2)	074.90	(3/2, 3/2)				
577.2" 5	2.1 3	1154.2	$(2)(2^{+}, 5)(2)$	577.5	(3/2, 3/2, 1/2)				
597.25" 21	0.784	/4/.18	$(3/2^+, 5/2)$	149.94	1/2'				
609.04.29	4.3 5	1108.67	(5/2, 5/2)	499 58	$\frac{3}{2}$				
$617\frac{\#}{1}$	~0.3	1672.48	(3/2) (3/2, 5/2)	1055 52	112				
626.69.12	~0.5	872.01	(3/2, 5/2)	245.30	5/2-				
$634.0^{\#}$ 8	041	1672.01	(3/2, 5/2)	1037 42	(3/2 5/2)				
647.88 10	4.5 3	714.35	$(1/2^{-}, 3/2, 5/2^{-})$	66.50	3/2-				
			$\langle i \rangle = i \rangle = i = j$,				

 $^{77}_{36}\mathrm{Kr}_{41}$ -4

 $^{77}_{36}{
m Kr}_{41}{
m -4}$

			77 Rb ε de	cay (3.78 i	min) 1975BaWR,1975Li13,1975We23 (continued	I)
					γ ⁽⁷⁷ Kr) (continued)	
${\rm E_{\gamma}}^\dagger$	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	
666.8 [#] 7	2.4 3	733.3	(1/2, 3/2, 5/2)	66.50	3/2-	
674.9 <i>3</i>	0.48 18	674.98	$(3/2^+, 5/2)$	0.0	5/2+	
712.36 ^{<i>a</i>} 12	0.48 ^{<i>a</i>} 12	957.83		245.30	5/2-	
713.4 [@] 4	0.48 8	2025.73	1/2-,3/2-,5/2-	1312.44	$1/2, 3/2, 5/2^{(-)}$	
724.5 [#] 7	0.9 2	790.52	$(1/2^-, 3/2, 5/2)$	66.50	3/2-	
729.1 [#] 9	0.4 2	1444.1	1/2,3/2,5/2	714.35	$(1/2^{-}, 3/2, 5/2^{-})$	
745.0 [@] 3	0.32 4	1782.23	1/2,3/2,5/2	1037.42	(3/2,5/2)	
746.5 15	≈0.2	747.18	$(3/2^+, 5/2)$	0.0	5/2+	
756.0 [#] 15	≈0.2	1865.6	$(3/2^+, 5/2)$	1108.67	(5/2)	
776.1 [#] 9	0.8 2	1509.5	$(3/2^+, 5/2)$	733.3	(1/2,3/2,5/2)	
779.8 [#] 8	1.9 <i>3</i>	1024.8	(3/2,5/2)	245.30	5/2-	
782.6 5	0.74 26	1243.09	$(1/2^+, 3/2, 5/2^-)$	459.88	1/2-	
792.2 3	0.55 13	1037.42	(3/2, 5/2) (1/2 + 2/2, 5/2)	245.30	5/2	
800.94 11	0.884	1838.37	$(1/2^{-}, 3/2, 5/2)$	1057.42	(3/2, 5/2)	
805.6^{-1}	2.5° 0	8/2.01	(3/2, 5/2)	140.04	3/2	
805.6 ⁷ " /	1.07 3	955.5	$(3/2^+, 5/2)$	149.94	1/2	
^{826.0} 15	≈0.1	1500 5	(2)(2+ 5)(2)	(= 1 00		
834.1" 10	0.4 2	1509.5	$(3/2^+, 5/2)$	674.98	$(3/2^+, 5/2)$	
852.58 15	1.39 /	1312.44	1/2,3/2,3/2	459.88	1/2	
~800.0 [#] /	1.1 2	072.01	(2 0, 5 0)	0.0	5/0+	
$8/1.3^{"}8$	0.5 2	8/2.01	(3/2, 5/2)	0.0	5/2	
910.2° <i>1</i>	1.02 4	1782.23	1/2, 3/2, 5/2	872.01	(3/2,5/2)	
946.8" 10	0.72	1013.0	$(1/2^+, 3/2, 5/2^-)$	66.50	$3/2^{-}$	
966 34 10	1 13 6	1838 37	(3/2) $(1/2^+ 3/2 5/2)$	872.01	(3/2, 5/2)	
970.87 10	4.12 22	1037.42	(3/2, 5/2)	66.50	3/2-	
988.27 ^{ebg} 10	3.07 ^e 18	1055.5?		66.50	3/2-	
988.27 ^e 10	3.07 ^e 18	2025.73	1/2-,3/2-,5/2-	1037.42	(3/2,5/2)	
991.67 [@] 20	0.52 4	1782.23	1/2,3/2,5/2	790.52	(1/2 ⁻ ,3/2,5/2)	
1012.3 8	1.6 3	1013.0	$(1/2^+, 3/2, 5/2^-)$	0.0	5/2+	
1023.9 [#] 10	0.8 2	1024.8	(3/2,5/2)	0.0	5/2+	
1037.43 10	2.08 10	1037.42	(3/2,5/2)	0.0	5/2+	
100/./9 10	1.10 0	2025.73	1/2 ,3/2 ,5/2	957.83	5 /0 ⁺	
1109" 1	0.6 2	1108.67	(5/2)	0.0	$S/2^{+}$	
1123.83° 30	0.34 1	1838.37	$(1/2^+, 3/2, 5/2)$ $1/2^-, 3/2^-, 5/2^-$	714.35	$(1/2, 3/2, 5/2^{-})$ (2/2, 5/2)	
1135.79 10	1.88 II 0.77 9	2023.73	1/2, $3/2$, $3/2(1/2+3/2, 5/2-)$	66 50	(3/2,3/2) 3/2 ⁻	
1199.2 4	0.43 10	1913.48	$(1/2^-, 3/2, 5/2)$	714.35	$(1/2^-, 3/2, 5/2^-)$	

 $_{36}^{77}\mathrm{Kr}_{41}$ -5

			77 Rb $arepsilon$ de	cay (3.78 1	min)	1975BaV	WR,1975Li13,1975We23	(continued)
						$\gamma(^{77}\mathrm{Kr})$ (c	continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	${ m J}^{\pi}_i$	E_f		J_f^π		
1235.35 [@] 25	0.14 3	2025.73	1/2-,3/2-,5/2-	790.52	$(1/2^{-})$,3/2,5/2)	-	
1242.9 <i>3</i>	0.28 4	1243.09	$(1/2^+, 3/2, 5/2^-)$	0.0	$5/2^+$			
1311.37 10	0.57 3	2025.73	1/2-,3/2-,5/2-	714.35	$(1/2^{-})$,3/2,5/2 ⁻)		
1360 [#] 2	≈0.3	1509.5	$(3/2^+, 5/2)$	149.94	$7/2^{+}$			
1378.1 [#] 15	0.7 3	1444.1	1/2,3/2,5/2	66.50	3/2-			
1408 [#] 2	≈0.1	1907.6	$(3/2^{-}, 5/2^{-})$	499.58	7/2-			
1427.2 4	0.34 12	1672.48	(3/2,5/2)	245.30	5/2-			
1448 [#] 2	≈0.2	1907.6	$(3/2^{-}, 5/2^{-})$	459.88	$1/2^{-}$			
1511 [#] 2	≈0.3	1509.5	$(3/2^+, 5/2)$	0.0	$5/2^{+}$			
^x 1541.5 [#] 15	0.5 2							
1606.00 12	0.72 4	1672.48	(3/2,5/2)	66.50	3/2-			
^x 1631.5 [#] 15	0.4 2							
1662 [#] 2	≈0.3	1907.6	$(3/2^{-}, 5/2^{-})$	245.30	$5/2^{-}$			
1668.15 [@] 12	0.70 3	1913.48	$(1/2^{-}, 3/2, 5/2)$	245.30	5/2-			
1672.4 <i>3</i>	0.53 3	1672.48	(3/2,5/2)	0.0	$5/2^{+}$			
1716 [#] 1	≈0.1	1865.6	$(3/2^+, 5/2)$	149.94	$7/2^{+}$			
1801.9 <i>3</i>	0.23 3	2822.65	$(3/2^{-}, 5/2^{-})$	1020.76				
1838.41 <i>13</i>	1.23 6	1838.37	$(1/2^+, 3/2, 5/2)$	0.0	$5/2^+$			
2340.03 [@] 25	0.21 3	3054.30	$(1/2^-, 3/2^-, 5/2^-)$	714.35	$(1/2^{-})$,3/2,5/2 ⁻)		
$2508.00^{\textcircled{0}}25$	0.22 3	3007.72	$(3/2, 5/2)^{-}$	499.58	$7/2^{-}$			
2577.28 [@] 25	0.49 5	2822.65	$(3/2^{-}, 5/2^{-})$	245.30	$5/2^{-}$			
2594.33 [@] 14	0.33 3	3054.30	$(1/2^{-}, 3/2^{-}, 5/2^{-})$	459.88	$1/2^{-}$			
2762.45 [@] 25	1.04 8	3007.72	$(3/2,5/2)^{-}$	245.30	5/2 ⁻			
2822.6 [@] 4	0.24 3	2822.65	$(3/2^{-}, 5/2^{-})$	0.0	5/2+			

[†] Weighted average of 1975BaWR, 1975Li13, 1975We23 and 1975Bo52. In some cases uncertainties quoted by 1975BaWR are unrealistically low. The evaluator has increased these to 0.1 keV for E γ and 5% for I γ .

^{\ddagger} From Adopted Gammas, unless otherwise stated or assumed for the purpose of γ -ray intensity balance.

[#] γ reported by 1975Li13 only.

^{*@*} γ reported by 1975BaWR only.

[&] Placed between 500 and 460 levels (1975Li13); however, evaluator considers this placement unlikely from adopted J^{π} values of 7/2⁻ and 1/2⁻ for 500 and 460 levels, respectively.

^{*a*} From $\gamma\gamma$ data of 1975BaWR. A doublet is proposed near this energy.

^b Placement from 1975Li13. $\gamma\gamma$ data of 1975BaWR support main placement with 2026 level.

^c For absolute intensity per 100 decays, multiply by 0.57 10.

⁷⁷ Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23 (continued)

 $\gamma(^{77}\text{Kr})$ (continued)

 d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^{*g*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 \neg

⁷⁷ Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23

Decay Scheme

8

⁷⁷Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23

 $^{77}_{36}{
m Kr}_{41}$

9

⁷⁷Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23

⁷⁷ Rb ε decay (3.78 min) 1975BaWR,1975Li13,1975We23

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

⁷⁷₃₆Kr₄₁