⁶³Cu(¹⁶O,pnγ) E=42 MeV 1975No11

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020				

1975No11: ⁶³Cu(¹⁶O,pn γ) E=42 MeV. Measured γ , $\gamma\gamma$, $\gamma(\theta)$, excitation functions. Other reactions used: ⁶⁴Ni(¹⁶O,3n γ) E=42-57 MeV; measured γ , RDDS. ⁶⁴Zn(¹⁶O,n2p γ) and ⁶⁶Zn(¹⁶O, α n γ) E=44-58 MeV; measured γ .

Others:

1982ZoZY, 1982ZoZZ: ${}^{66}Zn({}^{14}N,n2p\gamma)$ E=52 MeV. $\gamma(\theta)$, RDDS.

1977WeZQ: 74 Se(4 He,n γ). 1975PeZC: 63 Cu(16 O,pn γ).

1975FoZW (also 1975InZZ): 76 Se(α ,3n γ).

⁷⁷Kr Levels

E(level) [†]	J π ‡	T _{1/2}	Comments
0.0 [#]	$5/2^{+}$		
66.5 <mark>&</mark> 4	$(3/2)^{-}$	118 ns 12	$T_{1/2}$: $\gamma\gamma(t)$ (1975No11).
150.0 [@] 4	$7/2^{+}$		
245.2 ^a 5	$(5/2)^{-}$	33 ps 9	
279.2 [#] 4	$9/2^{+}$		
499.5 <mark>&</mark> 5	$(7/2)^{-}$	<11 ps	
784.8 [@] 5	$11/2^{+}$		
799.4 <mark>a</mark> 5	(9/2)-		
1003.2 [#] 5	$13/2^{+}$		
1176.9 <mark>&</mark> 6	$(11/2)^{-}$		
1569.2 ^a 6	$(13/2)^{-}$		
1659.8 [@] 6	$15/2^+$		
1918.3 [#] 7	$(17/2^+)$		
2062.8? ^{&} 6	$(15/2)^{-}$		

[†] From least-squares fit to $E\gamma$ data.

[‡] From 1975No11 based on $\gamma(\theta)$ data, multipolarity assignments, and band associations. The assignments are essentially the same in Adopted Levels, except for the difference in parentheses for some of the levels.

[#] Band(A): $\pi = +, \alpha = +1/2$. Q(transition)=1.1 to 2.9 implies $\beta_2 = 0.20$ to 0.36 for the two signature partners.

[@] Band(a): $\pi = +, \alpha = -1/2$.

& Band(B): $\pi = -, \alpha = -1/2$. Q(transition)=1.4 to 3.7 implies $\beta_2 = 0.23$ to 0.45 for the two signature partners.

^{*a*} Band(b): $\pi = -, \alpha = +1/2$.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π} Mult. [†]	Comments
66.5 4	7.3×10 ² 27	66.5	$(3/2)^{-}$	0.0 5/2	'2 ⁺	$A_2 = +0.03 8; A_4 = +0.01 11$
129.2 5	75 27	279.2	$9/2^{+}$	150.0 7/2	2 ⁺ D	$A_2 = -0.27 \ 32; \ A_4 = 0.0 \ 4$
150.1 4	300 18	150.0	7/2+	0.0 5/2	2+ D	A ₂ =-0.36 4; A ₄ =0.00 4
178.8 4	182 9	245.2	$(5/2)^{-}$	66.5 (3)	$(2)^{-}$ D	$A_2 = -0.23 4; A_4 = -0.03 4$
218.9 10		1003.2	$13/2^{+}$	784.8 11	1/2+	
245 1	94	245.2	$(5/2)^{-}$	0.0 5/2	'2 ⁺	
254.3 <i>3</i>	100 7	499.5	$(7/2)^{-}$	245.2 (5)	j/2) ⁻ D	$A_2 = -0.28 \ 4; \ A_4 = -0.05 \ 5$
258.6 ^{‡#} 6		1918.3	$(17/2^+)$	1659.8 15	5/2+	

$\gamma(^{77}\mathrm{Kr})$

Continued on next page (footnotes at end of table)

				Cu(100, phy) E=42 MeV		wiev	1975No11 (continued)
$\gamma(^{77}\mathrm{Kr})$ (continued)							
Eγ	Iγ	E_i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}]	Mult. [†]	Comments
279.1 4	47 6	279.2	9/2+	0.0 5/2	2+	(O)	$A_2 = +0.296; A_4 = 0.009$
299.9 <i>3</i>	49 6	799.4	$(9/2)^{-}$	499.5 (7)	/2)- 1	D	$A_2 = -0.376; A_4 = -0.097$
377.8 <i>3</i>	24 4	1176.9	$(11/2)^{-}$	799.4 (9/	/2)- 1	D+Q	$A_2 = -0.59 \ 12; A_4 = -0.01 \ 15$
392.6 5	13 6	1569.2	$(13/2)^{-}$	1176.9 (1	1/2)- 1	D	$A_2 = -0.16 \ 11; \ A_4 = -0.03 \ 14$
433.0 [‡] 3	27 4	499.5	$(7/2)^{-}$	66.5 (3/	$(2)^{-}$		$A_2 = +0.20 \ 10; \ A_4 = 0.00 \ 12$
			,		,		I_{γ} : intensity is too low by a factor of ≈ 2 as compared to that of 254 γ in several other studies and in Adopted Gammas.
493.3 [#] 4	94	2062.8?	$(15/2)^{-}$	1569.2 (13	3/2)- 1	D+Q	$A_2 = -0.8 \ 3; \ A_4 = +0.9 \ 5$
505.7 5	67 11	784.8	$11/2^{+}$	279.2 9/2	2+ 1	D+Q	$A_2 = -0.66 \ 10; \ A_4 = +0.01 \ 12$
554.2 <i>3</i>	40 6	799.4	$(9/2)^{-}$	245.2 (5/	/2)- ((Q)	$A_2 = +0.24 9; A_4 = -0.12 12$
634.7 10		784.8	$11/2^{+}$	150.0 7/2	2+		
656.8 <i>5</i>	22 4	1659.8	$15/2^{+}$	1003.2 13	/2+ 1	D	$A_2 = -0.50 \ 20; \ A_4 = -0.13 \ 25$
677.4 10	24 4	1176.9	$(11/2)^{-}$	499.5 (7/	/2)-	Q	$A_2 = +0.48 \ 20; \ A_4 = -0.36 \ 26$
724.0 4	100 7	1003.2	$13/2^{+}$	279.2 9/2	2+ ((Q)	$A_2 = +0.326; A_4 = -0.057$
769.5 <i>3</i> 874.9 <i>6</i>	38 7	1569.2 1659.8	(13/2) ⁻ 15/2 ⁺	799.4 (9/ 784.8 11	/2) ⁻ /2 ⁺		A ₂ =+0.12 <i>18</i> ; A ₄ =-0.07 <i>21</i>
886.1 ^{‡#} 4	18 6	2062.8?	$(15/2)^{-}$	1176.9 (1)	1/2)-	(Q)	A ₂ =+0.36 20; A ₄ =-0.2 3
915.0 5	36 6	1918.3	$(17/2^+)$	1003.2 13	$/2^{+}$		A ₂ =+0.09 11; A ₄ =-0.08 14

63Cu(16O pp2)) F-42 MeV 1075No11 (continued)

[†] From comparison with RUL for transitions from states with measured lifetime and from $\gamma(\theta)$ data for stretched E2 transitions. [‡] Shown as tentative by authors, but later studies confirm the placement. [#] Placement of transition in the level scheme is uncertain.

⁷⁷₃₆Kr₄₁

1569.2

799.4

245.2

770

554

(9/2)-

(5/2)-

(11/2)-

(7/2)-

(3/2)-

677

433

1176.9

499.5

66.5

875

11/2+

7/2+

635

784.8

150.0

13/2+

9/2+

5/2+

724

279

1003.2

279.2

0.0

⁶³Cu(¹⁶O,pnγ) E=42 MeV 1975No11

