History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020					

⁷⁷Kr Levels

1997Sy01 (also 1999Ta17,1998Ta20): E=128 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO), (particle) γ coin using Gammasphere array with 36 high efficiency Ge detectors and Microball array of 95 CsI(Tl) detectors for charged particles. Comparison with Hartree-Fock-Bogoliubov cranking and total Routhian surface calculations.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 [#]	5/2+	2604.6 ^b 8	15/2-	5019.2 ^b 6	$27/2^{-}$	8968.3 ^a 15	37/2-
66.4 ^{&} 4	$3/2^{-}$	2706.8 [@] 5	$19/2^{+}$	5353.5 <mark>&</mark> 8	$27/2^{-}$	9116.3 ^b 14	39/2-
150.26 [@] 10	7/2+	2937.6 ^c 5	$17/2^{-}$	5373.1 [#] 7	$29/2^+$	9486.9 [@] 16	39/2+
245.2 ^{<i>a</i>} 4	$5/2^{-}$	2988.4 [#] 6	$21/2^+$	5829.2 [°] 12	$29/2^{-}$	9904.9 [#] 14	$41/2^{+}$
279.12 [#] 13	9/2+	3109.9 ^{&} 5	19/2-	5964.9 ^a 8	$29/2^{-}$	10336 ^c 5	$41/2^{-}$
499.1 ^{&} 4	7/2-	3254.5 <mark>b</mark> 5	19/2-	6080.9 [@] 8	$31/2^+$	10853.2 ^b 15	43/2-
784.0 [@] 3	$11/2^+$	3602.1 ^{<i>a</i>} 5	$21/2^{-}$	6207.2 ^b 12	31/2-	11747.1 [#] 19	$45/2^{+}$
798.8 ^a 4	9/2-	3677.9 [°] 6	$21/2^{-}$	6670.3 ^{&} 9	31/2-	11839.5 <i>16</i>	$45/2^{+}$
1002.5 [#] 3	$13/2^{+}$	3768.7 [@] 9	$23/2^+$	6703.1 [#] 8	$33/2^{+}$	12183 ^c 6	$(45/2^{-})$
1176.0 <mark>&</mark> 4	$11/2^{-}$	4024.7 <mark>b</mark> 5	$23/2^{-}$	7178.8 ^c 23	33/2-	12796.1 ^b 17	47/2-
1567.8 ^{<i>a</i>} 4	13/2-	4150.8 [#] 6	$25/2^+$	7388.4 ^a 14	33/2-	14955.0 ^b 20	$(51/2^{-})$
1658.8 [@] 3	$15/2^{+}$	4231.7 <mark>&</mark> 6	$23/2^{-}$	7572.2 ^b 14	35/2-	17354 ^b 3	$(55/2^{-})$
1917.0 [#] 4	$17/2^{+}$	4642.4 [°] 6	$25/2^{-}$	7639.0 [@] 11	$35/2^+$		
2061.5 ^{&} 5	$15/2^{-}$	4743.8 ^a 6	$25/2^{-}$	8207.8 [#] 11	$37/2^+$		
2518.6 ^a 5	$17/2^{-}$	4810.6 [@] 6	$27/2^+$	8677 [°] 3	37/2-		

[†] From least-squares fit to $E\gamma$ data.

[‡] As proposed by 1997Sy01 based on DCO ratios, decay and feeding patterns and band assignments. These assignments may differ somewhat from those given in Adopted Levels.

[#] Band(A): v5/2[422], $\alpha = +1/2$. $g_{9/2}$ neutron orbital. First band crossing at $\hbar\omega = 0.5$ -0.6 MeV due to $\pi g_{9/2}^2$ alignment. The second band crossing at $\hbar\omega = 0.8$ MeV is due to $vg_{9/2}^2$ alignment.

[@] Band(a): v5/2[422], $\alpha = -1/2$. $g_{9/2}$ neutron orbital. First band crossing at $\hbar\omega = 0.5$ -0.6 MeV due to $\pi g_{9/2}^2$ alignment.

& Band(B): v3/2[501], α =-1/2. First band crossing at $\hbar\omega$ ≈0.55 MeV due to $\pi g_{9/2}^2$ alignment.

^{*a*} Band(b): v3/2[501], $\alpha = +1/2$. First band crossing at $\hbar\omega = 0.5$ -0.6 MeV due to $\pi g_{9/2}^2$ alignment. The second band crossing at $\hbar\omega = 0.7$ MeV due to alignment of protons.

^b Band(C): 3-qp band, $\alpha = -1/2$. Possible configuration= $\nu 1/2[431] \otimes \pi 3/2[312] \otimes \pi 3/2[431]$.

^c Band(c): 3-qp band, $\alpha = +1/2$. Possible configuration= $\nu 1/2[431] \otimes \pi 3/2[312] \otimes \pi 3/2[431]$.

 $\gamma(^{77}\mathrm{Kr})$

DCO values correspond to gates on known $\Delta J=2$, E2 transitions in a geometry with forward angles and 90°. Expected DCO ratios are 1 for $\Delta J=2$, quadrupole and ≈ 0.5 for $\Delta J=1$, dipole transitions. For significant mixing ratio in $\Delta J=1$ transitions, DCO can vary from 0 to 2 in extreme cases.

⁵⁸Ni(29 Si,2 α 2p γ) **1997Sy01** (continued)

$\gamma(^{77}\mathrm{Kr})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
128.9.7	>94	279.12	$9/2^{+}$	150.26	$7/2^{+}$	D	DCO=0.45.3
150.3 1	>106	150.26	7/2+	0.0	5/2+	$D \pm 0$	DCO=0.13.5
178 9 1	>80	245.2	5/2-	66.4	3/2-	D+Q	DCO=0.61.3
21851	12	1002.5	$\frac{3}{2}$ $13/2^+$	784.0	$\frac{3/2}{11/2^+}$	D	DCO=0.51.5
210.5 I 245 1 A	0	245.2	5/2-	0.0	5/2+	D	DCO=0.54.8
243.14)	243.2	5/2	0.0	5/2		Mult : DCO overlaps $\Delta I = 2$ and $\Delta I = 1$ or 0
254 1 1	15	400.1	7/2-	245.2	5/2-	D	DCO=0.50.6
254.11	-5	1017.0	17/2+	1658.8	$\frac{3/2}{15/2^+}$	D	DCO=0.48.3
238.2 3	27	270.12	$0/2^+$	1056.6	5/2+	0	DCO=0.485
270.0 5	21	279.12	9/2 21/2+	2706.8	$\frac{3}{2}$	Q	DC0=0.99 J
201.0 0	27	2900.4	$\frac{21}{2}$	2700.8	19/2	D	$DCO_{-0} 40.7$
299.7 1	21	190.0	9/2 10/2-	499.1	1/2	D	DC0=0.497
310.9 1	/	3234.3	19/2	2937.0	$\frac{1}{15}\frac{7}{2}$	D	DCO = 0.576
333.0 8	4	2937.0	1//2	2004.0	15/2	D	DC0=0.58 4
347.4 0	/	4024.7	23/2	3677.9	21/2	D	DC0=0.56 19
376.74	3	5019.2	27/2	4642.4	25/2	D	DC0=0.51 7
377.27	27	11/6.0	11/2	/98.8	9/2	D	DC0=0.51 /
382.1 10	4	4150.8	25/21	3/68./	23/2		DCO=1.02.18
201.0.1	10	1567.0	10/0-	1176.0	11/0-	D	Mult.: DCO suggests $\Delta J=2$, but $\Delta J=1$ from level scheme.
391.8 1	12	1567.8	13/2	11/6.0	11/2	D	DC0=0.51 4
423.1 10	2	4024.7	23/2	3602.1	21/2	D	DCO=0.56 17
423.8 6	8	3677.9	$21/2^{-}$	3254.5	19/2-		DCO=0.7 3
						-	Mult.: DCO overlaps $\Delta J=2$ and $\Delta J=1$ or 0.
432.5 1	18	499.1	7/2-	66.4	3/2-	Q	DCO=1.2 3
457.1 <i>I</i>	7	2518.6	17/2-	2061.5	15/2-	D+Q	DCO=0.64 5
491.8 4	4	3602.1	$21/2^{-}$	3109.9	19/2-	D+Q	DCO=0.68 14
493.9 4	9	2061.5	$15/2^{-}$	1567.8	13/2-	D+Q	DCO=0.68 14
505.1 4	21	784.0	$11/2^{+}$	279.12	$9/2^{+}$	D	DCO=0.44 5
512.1 5	2	4743.8	$25/2^{-}$	4231.7	23/2-	D+Q	DCO=0.70 4
553.5 2	38	798.8	9/2-	245.2	5/2-	Q	DCO=0.94 16
562.6 4	8	5373.1	$29/2^{+}$	4810.6	$27/2^{+}$	D	DCO=0.46 12
568.8 <i>5</i>	5	8207.8	$37/2^{+}$	7639.0	$35/2^+$		
591.5 <i>3</i>	5	3109.9	$19/2^{-}$	2518.6	$17/2^{-}$	D+Q	DCO=0.69 16
608.8 17	2	5353.5	$27/2^{-}$	4743.8	$25/2^{-}$		DCO=0.72 24
613.5 10	2	5964.9	$29/2^{-}$	5353.5	$27/2^{-}$	D	DCO=0.5 3
617.8 <i>4</i>	4	4642.4	$25/2^{-}$	4024.7	23/2-	D	DCO=0.54 5
622.2 4	7	6703.1	$33/2^{+}$	6080.9	$31/2^{+}$	D	DCO=0.57 15
629.8 10	3	4231.7	$23/2^{-}$	3602.1	$21/2^{-}$	D+Q	DCO=0.70 4
634.0 <i>14</i>	12	784.0	$11/2^{+}$	150.26	$7/2^{+}$	Q	DCO=1.1 3
650.0 15	12	3254.5	$19/2^{-}$	2604.6	$15/2^{-}$	Q	DCO=0.92 9
656.3 <i>1</i>	21	1658.8	$15/2^{+}$	1002.5	$13/2^{+}$	D	DCO=0.50 3
659.8 2	10	4810.6	$27/2^{+}$	4150.8	$25/2^+$	D	DCO=0.44 11
676.9 2	34	1176.0	$11/2^{-}$	499.1	7/2-	Q	DCO=0.95 12
707.8 4	8	6080.9	$31/2^{+}$	5373.1	$29/2^+$	D	DCO=0.57 14
719 <i>1</i>	2	7388.4	33/2-	6670.3	31/2-		DCO=0.8 5
							Additional information 2.
723.3 <i>3</i>	100	1002.5	$13/2^{+}$	279.12	9/2+	Q	DCO=1.01 5
735 [#]		3254.5	$19/2^{-}$	2518.6	$17/2^{-}$		E_{γ} : γ shown only in level scheme Fig. 1 of 1997Sv01.
740.6 7	5	3677.9	$21/2^{-}$	2937.6	$17/2^{-}$	(\mathbf{O})	DCO=1.1 4
769.8 4	45	1567.8	$\frac{13}{2^{-1}}$	798.8	9/2-	õ	DCO=0.98 7
770.1 2	25	4024.7	$23/2^{-}$	3254.5	19/2-	ò	DCO=1.02.5
780.6 21	18	3768.7	$\frac{23}{2^+}$	2988.4	$21/2^+$	Ď+O	DCO=0.69 10
789.8 3	11	2706.8	$19/2^+$	1917 0	$17/2^+$	D+O	DCO=0.34 5
874 9 11	21	1658.8	15/2+	784.0	$11/2^+$	0	DCO=1.14.21
885 3 3	37	2061 5	15/2-	1176.0	$11/2^{-1}$	ŏ	DCO=1.15.6
914 5 3	91	1917.0	$17/2^+$	1002.5	$13/2^+$	õ	DCO=1.00.5
014 8 A	13	4024 7	23/2-	3100.0	$10/2^{-1}$	Ň	DCO-1.003
117.0 4	15	7024.7	25/2	5107.7	19/4	Y	

Continued on next page (footnotes at end of table)

 $^{77}_{36}$ Kr₄₁-3

⁵⁸Ni(²⁹Si, $2\alpha 2p\gamma$) **1997Sy01** (continued)

$\gamma(^{77}\text{Kr})$ (continued)

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	Comments
951.2 5	40	2518.6	$17/2^{-}$	1567.8	$13/2^{-}$	0	DCO=1.11 19
964.6 10	12	4642.4	$25/2^{-}$	3677.9	$21/2^{-}$	ò	DCO=0.89 10
994.5 6	38	5019.2	$27/2^{-}$	4024.7	$23/2^{-}$	ò	DCO=1.04 5
1040.2 5	6	4642.4	$25/2^{-}$	3602.1	$21/2^{-}$	ò	DCO=0.95 4
1042.0 21	30 20	4810.6	$27/2^{+}$	3768.7	$23/2^{+}$		DCO=1.1 4
1048.0 21	45 20	2706.8	$19/2^{+}$	1658.8	$15/2^{+}$	0	DCO=1.1 4
1048.0 5	30	3109.9	$19/2^{-}$	2061.5	$15/2^{-}$	ò	DCO=1.05 16
1062.0 11	25 15	3768.7	$23/2^{+}$	2706.8	$19/2^{+}$	ò	DCO=0.91 12
1071.2 5	78	2988.4	$21/2^{+}$	1917.0	$17/2^{+}$		
1083.5 4	30	3602.1	21/2-	2518.6	17/2-	Q	DCO=1.20 18
1122.4 [‡] 5	14 [‡]	4231.7	23/2-	3109.9	19/2-	(Q)	DCO=0.97 7 DCO for doublet.
1122.4 [‡] 5	8‡	5353.5	$27/2^{-}$	4231.7	$23/2^{-}$	(Q)	Additional information 1.
1141.2 4	16	4743.8	$25/2^{-}$	3602.1	$21/2^{-}$	Q	DCO=1.09 7
1159 <i>3</i>	9	3677.9	$21/2^{-}$	2518.6	$17/2^{-}$	Q	DCO=1.12 6
1162.4 2	43	4150.8	$25/2^+$	2988.4	$21/2^+$	Q	DCO=1.01 11
1186.7 10	20	5829.2	$29/2^{-}$	4642.4	$25/2^{-}$	Q	DCO=0.96 13
1188.0 10	35	6207.2	$31/2^{-}$	5019.2	$27/2^{-}$	Q	DCO=0.96 13
1193.0 <i>1</i>	8	3254.5	$19/2^{-}$	2061.5	$15/2^{-}$		DCO=1.1 5
1220.6 5	12	5964.9	29/2-	4743.8	$25/2^{-}$	Q	DCO=1.04 7
1222.3 4	28	5373.1	$29/2^{+}$	4150.8	$25/2^+$	(Q)	DCO=1.1 3
1270.1 12	32	6080.9	$31/2^{+}$	4810.6	$27/2^+$		DCO=1.0 5
1279.1 <i>11</i>	1	2937.6	$17/2^{-}$	1658.8	$15/2^{+}$		DCO=1.00 8
							Mult.: DCO suggests $\Delta J=2$, but ΔJ^{π} gives $\Delta J=1$.
1316.8 4	6	6670.3	$31/2^{-}$	5353.5	$27/2^{-}$	(Q)	DCO=1.1 3
1330.2 12	24	6703.1	33/2+	5373.1	29/2+	Q	DCO=0.92 5
1349.6 20	16	7178.8	33/2-	5829.2	$29/2^{-}$	Q	DCO=1.21 21
1365.0 6	25	7572.2	$35/2^{-}$	6207.2	$31/2^{-}$	Q	DCO=1.06 14
1368.4 <i>10</i>	3	2937.6	$17/2^{-}$	1567.8	$13/2^{-}$	Q	DCO=1.06 14
1423.5 11	8	7388.4	33/2-	5964.9	$29/2^{-}$	Q	DCO=1.17 19
							Additional information 3.
1498.0 20	14	8677	37/2-	/1/8.8	33/2-		DCO=0.9 6
1505 0 15	22	0007.0	27/2+	(702.1	22/2+	0	Mult.: DCO overlaps $\Delta J=2$ and $\Delta J=1$ or 0.
1505.2 15	22	8207.8	37/21	6703.1	33/2	Q	DCO=1.06 <i>12</i>
1544.1 5	16	9116.3	39/2	7572.2	35/2	Q	DCO=1.02 7
1557.98	1/	/639.0	35/21	6080.9	31/2	Q	DCO=0.93 6
15/9.9 5	8	8968.3	37/2	/388.4	33/2	Q	DC0=1.1.3
1602.5 22	4	2604.6	15/2	1002.5	13/21		DCU=1.0.4 Mult : DCO overlaps AI=2 and AI=1 or 0
1659 3	12	10336	$41/2^{-}$	8677	37/2-		DCO=0.9.6
1057 5	12	10550	11/2	0077	51/2		DCO overlaps $AI=2$ and $AI=1$ or 0
1697.0 9	20	9904.9	$41/2^{+}$	8207.8	$37/2^{+}$	0	DCO=1.05.16
1736.9.5	18	10853.2	$43/2^{-}$	9116.3	39/2-	õ	DCO=1.04.11
1842.2.12	9	11747.1	$45/2^+$	9904.9	$41/2^+$	õ	DCO=1.07 14
1847.3	10	12183	$(45/2^{-})$	10336	$41/2^{-}$	×	
1847.9 12	10	9486.9	39/2+	7639.0	$35/2^+$	0	DCO=1.07 14
1934.6 6	10	11839.5	$45/2^{+}$	9904.9	$41/2^{+}$	ò	DCO=1.08 21
1942.9 7	10	12796.1	$47/2^{-}$	10853.2	$43/2^{-}$	(Ò)	DCO=1.0 3
2158.8 10	2	14955.0	$(51/2^{-})$	12796.1	$47/2^{-}$	~	
2398.7 20	1	17354	(55/2-)	14955.0	(51/2-)		

[†] 1997Sy01 do not explicitly list multipolarities. From their DCO values the evaluator assigns mult=Q for $\Delta J=2$ and D or D+Q for $\Delta J=1,0$ transitions based on expected DCO values. Mult=Q transitions are most likely E2 transitions and $\Delta J=1,0$ transitions with

⁵⁸Ni(²⁹Si, $2\alpha 2p\gamma$) **1997Sy01** (continued)

 $\gamma(^{77}\text{Kr})$ (continued)

significant admixtures are likely to be M1+E2, while others may be M1 or E1. When DCO value overlaps that expected for $\Delta J=2$ or $\Delta J=1,0$, the assignment as suggested by ΔJ^{π} in level scheme is given in parentheses.

[#] Placement of transition in the level scheme is uncertain.

[‡] Multiply placed with intensity suitably divided.

5

Level Scheme (continued)

Intensities: Relative I_{γ} @ Multiply placed: intensity suitably divided

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$
 $\dot{\gamma}$ Decay (Uncertain)

Legend

 $^{77}_{36}{
m Kr}_{41}$

 $^{77}_{36}$ Kr₄₁

 $^{77}_{36}$ Kr₄₁