	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020

Parent: ⁷⁷Zn: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=2.08 \text{ s}$ 5; $Q(\beta^-)=7203 3$; % β^- decay=100.0 ⁷⁷Zn- J^{π} , $T_{1/2}$: From ⁷⁷Zn Adopted Levels.

⁷⁷Zn-Q(β^{-}): from 2017Wa10. Measured mass excess for ⁷⁷Ga=-65995.0 keV 42 (2019Hu15), as compared to -65992.3 keV 24 in 2017Wa10 leads to Q(β^{-})=7205.8 keV 47.

1986Ek01 (also 1981Ru07, 1977Al17): measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t), $\beta\gamma$.

⁷⁷Zn isotope produced as a fission fragment.

Additional information 1.

Total decay energy of 7487 keV 233 deduced (by RADLIST code) from proposed decay scheme is in agreement with the expected value of 7203 keV 3, indicating that decay scheme is fairly complete.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡#	E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger \#}$
0.0	$3/2^{(-)}$	13.2 s 2	2028.29 5		
105.66 4	$(1/2^{-})$	<4 ns	2028.81 7	$(9/2^+)$	4.4 ns 8
160.95 <i>3</i>	$(3/2^{-})$	<2 ns	2138.04 4	(+)	
189.49 <i>3</i>	$(5/2^{-})$	<2 ns	2149.31 6		
474.059 25	$(5/2^{-})$		2327.5 8		
626.41 <i>3</i>	$(7/2^{-})$		2348.53 5		
873.36 <i>3</i>	$(7/2^{-})$		2357.17 5		
1116.34 4	$(9/2^{-})$		2385.01 6		
1233.96 5	$(3/2^{-}, 5/2^{-})$		2425.68 5		
1282.32 5	$(7/2^{-}, 9/2^{-})$		2698.77 5	$(^{+})$	
1403.19 8			2805.74 6	(+)	
1477.33 6	$(11/2^{-})$		2828.60 21		
1515.88 6			2861.8 <i>3</i>		
1797.11 21			3242.97 12		
1831.99 4	(*)		3267.63 5	$(^{+})$	
1857.85 6			3529.92 16		
1872.56 4			3945.89 21		
1970.03 4	$(11/2^{-})$				

[†] From least-squares fit to $E\gamma$ data. Reduced $\chi^2=2.2$. Uncertainties of five γ -ray energies were increased by a factor of 2 or 3 to get an acceptable fit.

[±] From $\gamma\gamma(t)$ for excited states (1986Ek01).

[#] From Adopted Levels. For levels above 200, log *ft* values restrict J to 5/2, 7/2 or 9/2, assuming 7/2⁺ for ⁷⁷Zn g.s. J=9/2 is not likely for levels that decay to g.s. of $J^{\pi}=3/2^{(-)}$.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
(3257 <i>3</i>) (3673 <i>3</i>) (3935 <i>3</i>)	3945.89 3529.92 3267.63	0.20 6 1.24 <i>13</i> 4.8 <i>10</i>	6.2 <i>1</i> 5.66 <i>5</i> 5.2 <i>1</i>	av $E\beta$ =1403.6 <i>15</i> av $E\beta$ =1603.3 <i>15</i> av $E\beta$ =1729.7 <i>15</i>
(3960 <i>3</i>) (4341 <i>3</i>) (4374 <i>3</i>) (4397 <i>3</i>)	3242.97 2861.8 2828.60 2805.74	0.79 9 0.22 3 0.39 9 6.5 9	6.00 5 6.7 1 6.5 1 5.3 1	E(decay): 3930 920 from $\beta(3268\gamma)$ coin. av E β =1741.6 15 av E β =1925.7 15 av E β =1941.8 15 av E β =1952.9 15

Continued on next page (footnotes at end of table)

⁷⁷Ga Levels

77 Zn β^- decay (2.08 s) 1986Ek01 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
				E(decay): 4490 230 from $\beta(836\gamma)$ coin.
(4504 3)	2698.77	8.9 <i>13</i>	5.2 1	av $E\beta = 2004.6 \ 15$
				E(decay): 4560 170 from $\beta(561\gamma)$ coin and $\beta(670\gamma)$ coin.
(4777 3)	2425.68	0.53 17	6.5 2	av E β =2136.9 15
(4818 3)	2385.01	2.64 21	5.86 4	av E β =2156.6 15
(4846 3)	2357.17	2.92 21	5.82 4	av E β =2170.1 15
(4854 3)	2348.53	3.4 4	5.8 1	av E β =2174.3 15
(4876 3)	2327.5	0.59 9	6.5 1	av E β =2184.5 <i>16</i>
(5054 3)	2149.31	1.46 19	6.2 2	av $E\beta = 2270.9 \ 15$
(5065 3)	2138.04	12.2 14	5.29 5	av E β =2276.4 15
(5174 3)	2028.81	2.8 9	6.0 2	av E β =2329.4 15
(5175 3)	2028.29	5.3 10	5.7 1	av $E\beta = 2329.6 \ 15$
(5233 [#] 3)	1970.03	1.4 11	$8.1^{1u} 4$	av E β =2359.2 15
(5330 3)	1872.56	2.22 23	6.13 5	av $E\beta = 2405.2$ 15
(5345 3)	1857.85	1.8 <i>3</i>	6.2 1	av $E\beta = 2412.3 \ 15$
(5371 3)	1831.99	9.5 <i>13</i>	5.5 2	av E β =2424.9 15
(5406 3)	1797.11	0.96 10	6.52 5	av $E\beta = 2441.8 \ 15$
(5687 3)	1515.88	1.32 11	6.48 4	av E β =2578.4 15
(5726 [#] 3)	1477.33	< 0.7	$> 8.7^{1u}$	av E β =2597.8 15
(5800 3)	1403.19	1.69 22	6.4 1	av E β =2633.2 15
(5921 3)	1282.32	1.9 11	6.4 <i>3</i>	av E β =2691.9 15
(5969 <i>3</i>)	1233.96	1.7 <i>3</i>	6.5 1	av E β =2715.4 15
(6087 3)	1116.34	2.3 13	6.4 <i>3</i>	av E β =2772.6 15
(6330 3)	873.36	1.8 12	6.6 <i>3</i>	av E β =2890.7 15
(6577 3)	626.41	8.1 10	6.0 1	av E β =3010.8 15
(6729 [#] 3)	474.059	<3	>6.5	av E β =3084.9 15
(7014 3)	189.49	6.2 15	6.2 1	av E β =3223.2 15
(7042 3)	160.95	2.3 15	8.8 ¹ <i>u</i> 3	av E β =3237.6 16
(7203 [#] 3)	0.0	<5	$> 8.5^{1u}$	av Eβ=3315.9 <i>15</i>
				$I\beta^-$: from log $f^{lu}t > 8.5$.

[†] From γ-ray intensity balance at each level, unless otherwise stated.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{77}\text{Ga})$

I γ normalization: From I(γ +ce)(gammas to g.s.)=97.5% 25 based on I(β - to g.s.) <5% corresponding to log $f^{1u}t$ >8.5.

Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α b	Comments
55.1 2	7.0 3	160.95	(3/2 ⁻)	105.66	(1/2 ⁻)	(M1)	0.364 7	α (K)=0.324 6; α (L)=0.0348 6; α (M)=0.00510 9; α (N)=0.000268 5
105.66 5	28 5	105.66	$(1/2^{-})$	0.0	3/2 ⁽⁻⁾	(M1)	0.0602	α (K)=0.0536 8; α (L)=0.00568 8; α (M)=0.000830 12; α (N)=4.41×10 ⁻⁵ 7
152.43 6	15.0 <i>13</i>	626.41	$(7/2^{-})$	474.059	$(5/2^{-})$	[D,E2]	0.08 6	
160.93 5	30 3	160.95	(3/2 ⁻)	0.0	3/2 ⁽⁻⁾	[M1,E2]	0.07 5	α (K)=0.06 5; α (L)=0.007 5; α (M)=0.0010 8; α (N)=5.E-5 4
168.09 5	1.3 <i>3</i>	2138.04	$(^{+})$	1970.03	$(11/2^{-})$			
189.49 <i>4</i>	100 4	189.49	(5/2 ⁻)	0.0	$3/2^{(-)}$	(M1)	0.01298	α (K)=0.01159 <i>17</i> ; α (L)=0.001206 <i>17</i> ; α (M)=0.0001766 <i>25</i> ; α (N)=9.45×10 ⁻⁶ <i>14</i>

Continued on next page (footnotes at end of table)

	77 Zn β^- decay (2.08 s) 1986Ek01 (continued)									
					$\gamma(^{77}\text{Ga})$ (con	tinued)				
Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments			
195.0 2	1.2 3	1477.33	$(11/2^{-})$	1282.32	(7/2 ⁻ ,9/2 ⁻)					
196.8 [#] 2	1.2 3	2028.29		1831.99	(*)		E_{γ} : level-energy difference=196.3.			
219.07 5	4.2 4	2357.17		2138.04	(*)					
235.68 5	1.5 3	2385.01	$(7/2^{-})$	2149.31	$(7/2^{-})$					
240.90 5	6.3.6	474.059	$(7/2^{-})$	189.49	$(7/2^{-})$					
291.42 5	4.8 5	2149.31	(0/2)	1857.85	(0/=)					
305.94 5	21 2	2138.04	(*)	1831.99	(*)					
313.12 6	8.4 6	474.059	$(5/2^{-})$	160.95	$(3/2^{-})$					
357.58	2.13	2327.5	$(11/2^{-})$	19/0.03	(11/2)					
368.44.5	14.4.5	474.059	(11/2) $(5/2^{-})$	105.66	$(3/2^{-})$ $(1/2^{-})$					
378.48 5	2.8 3	2348.53	(0/2)	1970.03	$(11/2^{-})$					
387.0 1	1.1 <i>3</i>	2357.17		1970.03	$(11/2^{-})$					
399.16 [#] 5	18 2	873.36	$(7/2^{-})$	474.059	$(5/2^{-})$		E_{γ} : level-energy difference=399.30.			
408.5 ^{‡c} 2	2.0 2	1282.32	$(7/2^-, 9/2^-)$	873.36	$(7/2^{-})$					
436.80 8	11.6 9	626.41	$(7/2^{-})$	189.49	$(5/2^{-})$					
*441.10 7	2.7 3	626 11	$(7/2^{-})$	160.05	$(2/2^{-})$					
403.3 2	70 7	474 059	(7/2) $(5/2^{-})$	0.0	(3/2) $3/2^{(-)}$					
489.7 2	1.0 5	1116.34	$(9/2^{-})$	626.41	$(7/2^{-})$					
516.57 6	12 <i>I</i>	2348.53		1831.99	(+)					
551.47 5	14.5 7	2028.81	$(9/2^+)$	1477.33	$(11/2^{-})$					
560.74 5	13.6 6	2698.77	(+)	2138.04	$(^+)$					
597.8 3 626 40 5	/.1 /	626.41	$(^{+})$	1233.96	(3/2, 5/2)					
667.7 1	62	2805.74	(1/2)	2138.04	$(^+)$					
669.95 10	93	2698.77	(+)	2028.81	$(9/2^+)$					
670.46 10	9 <i>3</i>	2698.77	(*)	2028.29						
684.0 <i>1</i>	6.6 4	873.36	$(7/2^{-})$	189.49	$(5/2^{-})$					
688.0 [#] 1	1.5 7	1970.03	$(11/2^{-})$	1282.32	$(7/2^{-}, 9/2^{-})$		E_{γ} : level-energy difference=687.7.			
74664	2.5 4	8/3.30	(1/2) $(9/2^+)$	100.95	(3/2) $(7/2^{-}0/2^{-})$					
756.17 5	3.1 6	1872.56	$(j_{1}2)$	1116.34	$(9/2^{-})$					
759.82 6	2.1 3	1233.96	$(3/2^-, 5/2^-)$	474.059	$(5/2^{-})$					
800.3 2	1.4 3	2828.60		2028.29						
808.29 5	14 2	1282.32	$(7/2^{-}, 9/2^{-})$	474.059	$(5/2^{-})$					
842.00.9	414	2805.74	$\binom{+}{+}$	2425.68	(11/2)					
850.89 7	12 <i>I</i>	1477.33	$(11/2^{-})$	626.41	$(7/2^{-})$					
853.70 6	10 3	1970.03	$(11/2^{-})$	1116.34	(9/2-)					
855.7 6	83	2138.04	(*)	1282.32	$(7/2^{-}, 9/2^{-})$					
873.44 5	25 3	873.36	$(7/2^{-})$	0.0	$3/2^{(-)}$					
912.0 <i>10</i> 919.0 <i>10</i>	3.3 / 2.8 6	2028.81	$(9/2^{+})$	1110.54 2348 53	(9/2)					
926.84 5	27 3	1116.34	$(9/2^{-})$	189.49	$(5/2^{-})$					
999.22 4	4.8 4	1872.56		873.36	(7/2-)					
1021.6 5	0.5 2	2138.04	$(^{+})$	1116.34	$(9/2^{-})$					
1041.81 5	3.8 3	1515.88	(7) (2 - 2) (2 - 1	474.059	$(5/2^{-})$					
1093.1^{m} I	3.5 3	1282.32	$(1/2^{-},9/2^{-})$	189.49 872 26	$(5/2^{-})$		E_{γ} : level-energy difference=1092.8.			
111663	071	1970.05	(11/2) $(9/2^{-})$	075.50	(1/2) $3/2^{(-)}$	[M3]				
1128.34 9	2.3 3	1233.96	$(3/2^{-}, 5/2^{-})$	105.66	$(1/2^{-})$	[[11]]				
1154.86 5	6.9 4	2028.29		873.36	$(7/2^{-})$					
1234.1 1	8.6 5	1233.96	$(3/2^-, 5/2^-)$	0.0	$3/2^{(-)}$					

Continued on next page (footnotes at end of table)

			77	$^{77}\mathbf{Zn}\beta^{-}\mathbf{decay}(\mathbf{2.08s})$		1986Ek01 (continued)
					γ(⁷⁷ Ga) (6	continued)
Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Comments
1242.1 <i>I</i>	1.0 5	1403.19		160.95	$(3/2^{-})$	
1264.60 5	15 <i>I</i>	2138.04	$(^{+})$	873.36	$(7/2^{-})$	
1269.0 2	1.1 2	2385.01		1116.34	$(9/2^{-})$	
1326.8 4	0.9 1	1515.88		189.49	$(5/2^{-})$	
1343.9 5	3.1 <i>3</i>	1970.03	$(11/2^{-})$	626.41	$(7/2^{-})$	
1357.90 5	19.0 15	1831.99	$(^{+})$	474.059	$(5/2^{-})$	
1385.1 <i>I</i>	2.8 3	3242.97		1857.85		
1401.5 6	2.7 3	2028.29		626.41	$(7/2^{-})$	
1403.3 <i>1</i>	5.0 5	1403.19		0.0	$3/2^{(-)}$	
1436.0 ^{&} 1	2.1 3	3267.63	$(^{+})$	1831.99	(*)	
1483.96 [#] 7	5.1 <i>3</i>	2357.17		873.36	$(7/2^{-})$	E_{γ} : level-energy difference=1483.79.
1511.73 7	6.3 6	2138.04	$(^{+})$	626.41	$(7/2^{-})$	
1554.55 ^{#@} 7	4.0 6	2028.29		474.059	$(5/2^{-})$	E_{γ} : level-energy difference=1554.22.
1560.4 4	1.2 2	3529.92		1970.03	$(11/2^{-})$,
1607.6 2	3.4 <i>3</i>	1797.11		189.49	$(5/2^{-})$	
^x 1641.9 9	2.5 3					
1663.93 7	15 <i>I</i>	2138.04	$(^{+})$	474.059	$(5/2^{-})$	
1751.60 ^{#&} 7	8.9 7	1857.85		105.66	$(1/2^{-})$	E_{γ} : level-energy difference=1752.18.
1758.8 2	3.8 4	2385.01		626.41	$(7/2^{-})$	
1832.0 2	44 <i>3</i>	1831.99	$(^{+})$	0.0	$3/2^{(-)}$	
1838.75 8	14.3 5	2028.29		189.49	$(5/2^{-})$	
1857.82 7	5.0 5	1857.85		0.0	$3/2^{(-)}$	
1988.7 <mark>&</mark> 1	1.9 2	2149.31		160.95	$(3/2^{-})$	
2195.43 8	3.0 <i>3</i>	2385.01		189.49	$(5/2^{-})$	
2264.74 7	3.0 <i>3</i>	2425.68		160.95	$(3/2^{-})$	
2425.64 7	3.0 <i>3</i>	2425.68		0.0	$3/2^{(-)}$	
^x 2545.5 2	1.6 2				,	
2672.3 <i>3</i>	0.8 1	2861.8		189.49	$(5/2^{-})$	
2793.6 1	2.0 3	3267.63	$(^{+})$	474.059	$(5/2^{-})$	
x2960.0 2	1.5 2					
3056.3 <i>3</i>	2.1 2	3529.92		474.059	$(5/2^{-})$	
3106.4 ^{‡c} 1	6.3 6	3267.63	$(^{+})$	160.95	(3/2-)	
3267.5 1	2.5 3	3267.63	$(^{+})$	0.0	$3/2^{(-)}$	
3340.0 2	1.1 3	3529.92		189.49	$(5/2^{-})$	
x3380.0 1	1.8 <i>3</i>					
3756.3 2	0.7 2	3945.89		189.49	$(5/2^{-})$	

[†] From ce data. However, details of such data are not available. When internal conversion is expected to be significant and no ΔJ^{π} information is available, multipolarity is assumed as D,E2, based on general occurrence of such transitions.

[‡] Placement suggested by the evaluators on the basis of $\gamma\gamma$ (1986Ek01).

[#] Somewhat poor fit in the level scheme.

[@] For least-squares fit, uncertainty increased by a factor of 2.

& For least-squares fit, uncertainty increased by a factor of 3.

^a For absolute intensity per 100 decays, multiply by 0.281 12.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

5

⁷⁷₃₁Ga₄₆

6

