⁷⁷Ge $β^-$ decay (53.7 s) 2000Ke08,1970Me20,1970Im01

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020						

Parent: ⁷⁷Ge: E=159.71 *6*; $J^{\pi}=1/2^{-}$; $T_{1/2}=53.7$ s *6*; $Q(\beta^{-})=2703.5$ *17*; % β^{-} decay=81 2

 $^{77}\text{Ge-E}, J^{\pi}, T_{1/2}$: From ^{77}Ge Adopted Levels.

⁷⁷Ge-Q(β^{-}): From 2017Wa10.

⁷⁷Ge-% β^- decay: From I $\gamma(215\gamma)/I\beta=0.265$ 27 (1970Im01) and I($\gamma+ce$)(159 γ)/I($\gamma+ce$)(215 γ)=0.881 23 (1969Im02). Others: I $\gamma(215\gamma)/I\beta=0.27$ 3 (1969Im02), I $\gamma(215\gamma)/I\beta=0.28$ (1957Ly49).

2000Ke08: measured $E\gamma$, $I\gamma$.

1970Me20: measured $E\gamma$, $I\gamma$, $\gamma\gamma$.

1970Im01 (also 1969Im02): measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $T_{1/2}$.

Additional information 1.

Others $(\gamma, T_{1/2})$: 1965Va12, 1962We08, 1957Ly49.

Total decay energy of 2319 keV *112* deduced (by RADLIST code) from proposed decay scheme is in agreement with the expected value of 2318 keV *57*, indicating that decay scheme is well established.

⁷⁷As Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †
0.0	3/2-	38.79 h 5
194.76 <i>12</i>	3/2-	
215.53 6	3/2-	
264.4 4	5/2-	
503.88 17	$1/2^{-}$	
614.43 15	3/2-	
1604.68 9	$1/2^{-}, 3/2^{-}$	
1676.48 12	$1/2^{-}, 3/2^{-}$	

[†] From the Adopted Levels.

β^{-} radiations

β and $\beta\gamma$ data: 1955Bo36, 1954Bu94.

I β (264.7 level)=0.007 4 gives log *ft*=8.7 3, which is too low for ΔJ =2, $\Delta \pi$ =no. Apparent weak β^- feeding is probably due to undetected weak γ rays feeding this level.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(1186.7 17)	1676.48	0.23 3	5.8 1	av Eβ=439.22 79
(1258.5 17)	1604.68	0.37 5	5.7 1	av E β =470.58 79
(2248.8 17)	614.43	0.111 22	7.2 1	av $E\beta = 921.88 85$
(2359.3 17)	503.88	0.043 7	7.7 1	av $E\beta = 973.67~85$
(2647.7 17)	215.53	22 4	5.3 1	av $E\beta = 1109.56\ 86$
(2668.4 17)	194.76	0.26 10	7.2 2	av Eβ=1119.39 86
(2863.2 17)	0.0	58 4	4.96 4	av E β =1211.75 86
				E(decay): measured value: 2900 50 (1955Bo36). Others: 1954Bu94, 1947Ar01.
				$I\beta^-$: deduced from $I\gamma(215\gamma)/I\beta=0.265\ 27\ (1970Im01)$ and
				$I(\gamma + ce)(159\gamma)/I(\gamma + ce)(215\gamma) = 0.881 \ 23 \ (1969Im02).$

[†] From $I\gamma(215\gamma)/I\beta=0.265\ 27\ (1970Im01)$ and γ -ray intensity balance at each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{77}As)$

I γ normalization: From I γ (215 γ)/I β =0.265 27 (1970Im01).

E_{γ}^{\dagger}	I_{γ} [†] &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{a}	Comments
194.8 [‡] 2	109×10 ¹ [#] 18	194.76	3/2-	0.0	3/2-	[M1,E2]		0.04 3	$\alpha(K)=0.036\ 23;\ \alpha(L)=0.004\ 3;\ \alpha(M)=0.0006\ 4;$ $\alpha(N)=4.E-5\ 3$ $E_{\nu}:$ not observed by 2000Ke08 due to lead absorber.
215.53 6	48×10 ³ [#] 7	215.53	3/2-	0.0	3/2-	(M1+E2)	-0.164 16	0.01277 25	$\alpha(K)=0.01136\ 22;\ \alpha(L)=0.001213\ 25;\ \alpha(M)=0.000185$ 4; $\alpha(N)=1.40\times10^{-5}\ 3$ δ : from ⁷⁷ Ge β^- decay (11.211 h) (1974LeXO)
264.4 [@]	49 22	264.4	5/2-	0.0	3/2-	[M1,E2]		0.014 8	$\alpha(K)=0.013 \ 7; \ \alpha(L)=0.0014 \ 8; \ \alpha(M)=0.00021 \ 11; \ \alpha(N)=1.6\times10^{-5} \ 8 \ E_{\gamma}: rounded energy from Adopted Gammas. Ly: from absolute Iy>0.012 and <0.031 (2000Ke08).$
410 4 2 5	214# 28	614 42	2/2-	104 76	2/2-				iy. from absorate 177 0.012 and <0.051 (20001600).
503.86.18	214 Jo 113 IO	503.88	$\frac{3}{2}$	194.70	3/2-				
614 43 18	100.0	614 43	$\frac{1}{2}$	0.0	3/2-				
990 3 3	53.6	1604.68	$\frac{3/2}{1/2^{-}}$ $\frac{3}{2^{-}}$	614 43	3/2-				
1061.6.5	12.3	1676.48	$1/2^{-}$ $3/2^{-}$	614.43	$3/2^{-}$				
1100.8.5	74	1604.68	$1/2^{-}, 3/2^{-}$ $1/2^{-}, 3/2^{-}$	503.88	$1/2^{-}$				
1172.4.5	94	1676 48	$1/2^{-}$ $3/2^{-}$	503.88	$1/2^{-}$				
1340.0.5	34.5	1604.68	$1/2^{-},3/2^{-}$	264.4	5/2-				
1389.1 5	16 3	1604.68	$1/2^{-},3/2^{-}$	215.53	$3/2^{-}$				
1409.94 16	238 12	1604.68	$1/2^{-}.3/2^{-}$	194.76	$3/2^{-}$				
1412.5 7	15 4	1676.48	$1/2^{-}.3/2^{-}$	264.4	5/2-				
1461.3 5	14 3	1676.48	$1/2^{-}, 3/2^{-}$	215.53	$3/2^{-}$				
1481.73 24	103 7	1676.48	$1/2^{-}, 3/2^{-}$	194.76	$3/2^{-}$				
1604.65 10	482 22	1604.68	$1/2^{-}, 3/2^{-}$	0.0	3/2-				
1676.46 14	363 17	1676.48	$1/2^{-}, 3/2^{-}$	0.0	$3/2^{-}$				

[†] From 2000Ke08, except as noted.

11

[‡] From 1970Me20.

x2006.2

[#] From 1970Me20, normalized to $I\gamma$ =100 of 614 γ (I γ =0.21 3 in 1970Me20).

^(a) In 2000Ke08, the line is strongly contaminated by decays of other Ge isotopes. [&] For absolute intensity per 100 decays, multiply by $4.5 \times 10^{-4} 5$.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

