	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	30-Sep-2020

 $Q(\beta^-)=683.2$ 17; S(n)=9696.3 19; S(p)=7992.4 17; $Q(\alpha)=-6641.9$ 24 2017Wa10 S(2n)=17024.8 19, S(2p)=20029.7 30 (2017Wa10).

1947Ar01, 1950St02: 77 As isotope identified and produced as fission activity, and subsequent counting of β spectra. Other reaction:

⁷⁷Se(n,p) E=13-16.6 MeV: 1989Ho20: measured cross section.

 80 Se(p, α) E=15 MeV: 1982Zu04: Q value measured.

Theoretical calculations: consult the NSR database at www.nndc.bnl.gov for 13 primary theory references dealing with nuclear structure calculations.

Additional information 1.

⁷⁷As Levels

Cross Reference (XREF) Flags

			A 77	⁷ Ge β^- decay (11.211 h) E ⁷⁶ Ge(³ He,d)
			B 77	⁷ Ge β^- decay (53.7 s) F ⁷⁶ Ge(α ,p2n γ)
			C 77	As IT decay (114.0 μ s) G 78 Se(μ^- ,n γ)
			D 76	⁵ Ge(p, γ),(p,n) H ⁷⁸ Se(d, ³ He),(pol d, ³ He)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	3/2-	38.79 h 5	ABC EFC	GH $%β^-=100$ μ=+1.2940 13 (1999Oh01,2019StZV) J ^π : L(³ He,d)=(d, ³ He)=1; log ft=7.2 to 5/2 ⁻ state in ⁷⁷ Se. T _{1/2} : weighted average of 38.83 h 5 (1968Re04), 38.5 5 (1959Ki49), 38.7 h 5
				(1955Sc36), 38.68 h 9 (1953Bu57), 38.0 h 5 (1953Su04), 39 h 1 (1953Re12). Others: 38 h (1951Tu01), ≈40 h (1950St02). μ : NMR on oriented nuclei by detecting β and γ rays (1999Oh01). 1999Oh01 point out that this value is smaller than Schmidt value of +3.79 for p _{3/2} orbital,
				the deviation may be explained by the core-polarization effects. Calculated value of +1.50 for $\pi[(2p_{3/2})^3(1g_{9/2})^2]$ and +1.92 for $\pi[(2p_{3/2})^3(1f_{5/2})^2]$ favors the former configuration. Measured μ =+1.2946 <i>13</i> by 1999Oh01 is re-evaluated to μ =+1.2940 <i>13</i> by 2019StZV.
194.71 6	3/2-	7.4 ns <i>3</i>	AB E	H J^{π} : L(³ He,d)=(d, ³ He)=1; log $f^{4u}t=11.0$ from 7/2 ⁺ rejects 1/2. T _{1/2} : from $\gamma\gamma(t)$ in ⁷⁷ Ge decay (1970Dr09).
215.54 3	3/2-	<0.3 ns	AB EFO	GH J^{π} : $L({}^{3}\text{He,d})=(d,{}^{3}\text{He})=1; \log f^{4u}t=10.0 \text{ from } 7/2^{+} \text{ rejects } 1/2.$ T ₁ : T_{1} : from $\gamma\gamma(t)$ in ${}^{77}\text{Ge}$ decay (1970Tu03)
264.426 20	5/2-	304 ps 3	ABC EF	H μ =+0.736 22 (1989Mo14,2014StZZ) Q<0.75 (1990Mo23)
				J [*] : L(*He,d)=(d,*He)=3; $\gamma\gamma(\theta)$ in [*] Ge decay (19/4LeYO) is consistent with J=5/2, not 7/2.
475.48 [@] 4	$9/2^{+}$	114.0 <i>u</i> s 25	ACEF	G: DPAC method (1990M025). Value not listed in 2014StZZ compilation.
	~ /			μ=+5.525 9 (1970BeYN,2014StZZ) J ^π : L(³ He,d)=(d, ³ He)=4; γγ(θ) in ⁷⁷ Ge decay (1974LeYO). T _{1/2} : from 1980Jo11 (time digitized multiscaling). Others: 116 μs 4 (1968Io01,1957Sc11), >2 μs (1997Is13).
				μ : PAD method (1970BeYN).
503.88 17	1/2-		ΒE	H J^{n} : L(³ He,d)=(d, ³ He)=1; Ay(θ) in (pol d, ³ He).

Continued on next page (footnotes at end of table)

77As Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Х	REF	Comments
614.48 4	3/2-		AB	н	J^{π} : L(d, ³ He)=1; log $f^{lu}t=10.2$ from 7/2 ⁺ rejects 1/2.
631.88 <i>3</i>	5/2+	60 ps 6	Α	EF H	μ =+2.53 40 (1974Ch31,1974LiYP,2014StZZ)
					XREF: H(638).
					J^{π} : L(³ He,d)=(d, ³ He)=2; $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay (1974LeYO) is consistent with J=5/2, not 3/2.
					$T_{1/2}$: from $\beta\gamma(t)$ in ⁷⁷ Ge decay (1974ChXP). Other: 75 ps 15
					<i>u</i> : IPAC method (1974Ch31 1974I iYP)
634.47 5	$5/2^+, 7/2^-$		A		J^{π} : gammas to $3/2^-$ and $9/2^+$.
784.70 4	7/2-		A	ЕН	J^{π} : L(d, ³ He)=3; Ay(θ) in (pol d, ³ He).
875.22 5	3/2-,5/2+		A	Е	J^{π} : log ft=9.3 from 7/2 ⁺ ; γ to 3/2 ⁻ ; γ from 1/2 ⁺ .
889.02 6	3/2-,5/2,7/2-		A	F H	J^{π} : log ft=9.3 from 7/2 ⁺ ; γ to 3/2 ⁻ .
1008 10	$(1/2^{-}, 3/2^{-})$			Н	J^{π} : L(d, ³ He)=1.
1048.36 [@] 18	$(13/2^+)$			F	J^{π} : $\Delta J=2 \gamma$ to $9/2^+$.
1052 4	1/2-,3/2-			ЕН	E(level): weighted average of $E({}^{3}He,d)=1052 5$ and $E(d,{}^{3}He)=1052 6$.
					J^{π} : L(³ He,d)=(d, ³ He)=1.
1058.66 8	$(9/2^{-})$		Α	F	J^{π} : $\Delta J=2 \gamma$ to $5/2^-$.
1158 5	$1/2^{+}$			E	J^{π} : L=0 in (³ He,d).
1165.00 9	5/2-		Α	Н	J^{π} : L(d, ³ He)=3; Ay(θ) in (pol d, ³ He).
1189.83 4	7/2-	<0.2 ns	Α	EF	J ^{π} : L(³ He,d)=3; $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; log ft=7.2 (log f ^{1u} t=8.0) from
					$7/2^+$; γ to $9/2^+$.
					$T_{1/2}$: from $\beta\gamma(t)$ in ⁷⁷ Ge β^- decay.
1201.41 6	$1/2^{+}$		Α	Н	J^{π} : L(d, ³ He)=0.
1221.30 7	$(11/2^+)$		A	F	J^{π} : $\Delta J=1 \gamma$ to $9/2^+$.
1279.99 9	$(\leq 7/2)$		A		J^{π} : γ to $3/2^{-}$.
1319.76 6	7/2-		A	Н	J^{π} : L(d, ³ He)=3; Ay(θ) in (pol d, ³ He).
1345.19 7	$(3/2^{-}, 5/2, 7/2^{-})$		A		J^{n} : log ft=8.99 from 7/2 ⁺ ; γ to 3/2 ⁻ .
1350.29 13	(3/2, 3/2, 1/2)		A		J [*] : log $ft=9.6$ from $1/2^+$; γ to $3/2^-$.
1397.037 23	(3/2, 7/2)		A		J : possible gammas to 5/2 and (9/2). I^{π} , $an(0)$ in 7^{7} Ga decay: log ft=7.0 (log $f^{10}t=8.7$) from $7/2^{+}$; sommas
1398.70 5	(1/2)		A		$J : \gamma \gamma(6)$ in Generally, $\log f = 7.9$ ($\log f = 7.9$) from $7/2$, gammas to $5/2^+$ and $(11/2^+)$.
1457.75 5	$(5/2,7/2^{-})$		Α	н	J^{π} : $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; gammas to $3/2^{-}$ and $7/2^{-}$; log ft=7.9
					$(\log f^{1u}t=8.2)$ from $7/2^+$.
1528.33 4	5/2+		A	E	J^{π} : L(³ He,d)=2; $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; γ to 9/2 ⁺ ; log ft=7.8
1538 86 6	(1/2+3/25/2+)		٨		$(\log f^{**}t=8.4)$ from $1/2^+$.
1558.80 0	(1/2 ,5/2,5/2)		л		and $3/2^+$.
1560.46 5	5/2+	<0.1 ns	A		J^{π} : $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; gammas to $9/2^+$ and $3/2^-$. Parity from 1085 γ
					to $9/2^+$ not M2 from RUL.
1573 77 5	$(3/2^{-} 5/2, 7/2^{-})$		Α	н	$\Gamma_{1/2}$: from $\beta\gamma(t)$ in γ Ge β decay. XREF: H(1576)
10/0.// 0	(3/2 ,3/2,7/2)				E(level): level is weakly populated in (d ³ He).
					J^{π} : log ft=7.7 (log f ^{1u} t=8.3) from 7/2 ⁺ : gammas to 3/2 ⁻ and 7/2 ⁻ .
1604.67 8	$1/2^{-}.3/2^{-}$		В	н	J^{π} : log $ft=5.68$ from $1/2^-$: L(d, ³ He)=1.
1617 5	$1/2^{-},3/2^{-}$			ЕН	J^{π} : L(d, ³ He)=1. L=1+3 in (³ He.d) indicates a doublet with $J^{\pi}=1/2^{-}.3/2^{-}$
	-/- ,-/-				and $5/2^-, 7/2^-$, respectively.
1654 5	$1/2^{-}, 3/2^{-}$			ЕН	E(level), J^{π} : doublet with L(d, ³ He)=L(³ He,d)=1+4.
1654 5	$7/2^+, 9/2^+$			ЕН	E(level), J^{π} : doublet with L(d, ³ He)=L(³ He,d)=1+4.
1676.46 12	1/2-,3/2-		В		J^{π} : log ft=5.81 from 1/2 ⁻ .
1732.80 9	$(3/2^{-}, 5/2^{+})$		Α		J^{π} : log ft=8.8 from 7/2 ⁺ ; γ to 1/2 ⁺ .
1736.81 21	$(13/2^+)$			F	
1760 10	(-7/0)			E	
1837.73 12	$(\leq 1/2)$		A	Е	XKEF: $E(1825)$. I^{π} : γ to $3/2^{-}$
1888.43 <i>23</i>	$(15/2^+)$			F	<i>J</i> . <i>J</i> to <i>J</i> / <i>L</i> .
				ontine	ad an next page (factnotes at end of table)
			, c	Jonana	a on next page (noundles at end of lable)

⁷⁷As Levels (continued)

E(level) [†]	J#‡	X	REF	Comments
1929.9 4			F	
1971.17 6	7/2+,9/2+	A	E	XREF: E(1960). J ^{π} : L(³ He,d)=4(+0); log <i>ft</i> =6.8 (log <i>f</i> ^{1u} <i>t</i> =7.2) from 7/2 ⁺ ; gammas to 5/2 ⁺ , 9/2 ⁺ and (11/2 ⁺).
				E(level): this level may be a doublet with $J^{\pi}=(1/2^+)$ from L(³ He,d)=(0) for the second component.
2000.19 4	5/2+	A	H	J ^{π} : L(d, ³ He)=2; $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; log <i>ft</i> =6.3 (log <i>f</i> ^{4u} <i>t</i> =6.6) from 7/2 ⁺ ; gammas to 1/2 ⁺ and 7/2 ⁻ .
2000.4 [@] 3	$(17/2^+)$		F	
2110.94 5	5/2+	Α	E H	J ^{π} : L(d, ³ He)=2; log <i>ft</i> =6.6 (log <i>f</i> ^{1u} <i>t</i> =6.8) from 7/2 ⁺ ; gammas to 5/2 ⁻ , 5/2 ⁺ , 7/2 ⁻ and
2122 5 10			_	(7/2 ⁺). E(level): L(³ He,d)=0+2 suggests a doublet with $J^{\pi}=1/2^{+}$ for one level and $3/2^{+}, 5/2^{+}$ for the other.
2123.7 10	1/2-		F	
2195.8 3	1/2	A	E H	XREF: A(<i>t</i>). J ^π : L(d, ³ He)=L(³ He,d)=1; Ay(θ) in (pol d, ³ He). An uncertain 1411γ to 7/2 ⁻ implying mult=M3 is unlikely; the placement may be incorrect.
2335 10	1/2-,3/2-		E	J^{π} : L(³ He,d)=1.
2341.75 4	(5/2)	Α		$J^{\prime\prime}$: $\gamma\gamma(\theta)$ in γ Ge decay; log $ft=5.8$ (log $f^{1a}t=5.7$) from $7/2^{\circ}$; gammas to $3/2^{\circ}$ and $7/2^{\circ}$
2354.21 5	(7/2 ⁻)	A		J^{π} : $\gamma\gamma(\theta)$ in ⁷⁷ Ge decay; log <i>ft</i> =6.1 (log $f^{1u}t=5.9$) from 7/2 ⁺ ; gammas to 3/2 ⁻ , 9/2 ⁺ and (9/2 ⁻).
2372	$(3/2^+, 5/2^+)$		Е	J^{π} : L(³ He,d)=(2).
2424.53 9	$(7/2^{-})$	Α	E	XREF: $E(2410)$.
2463.3 <i>3</i> 2512.8 <i>3</i>	(5/2,7/2,9/2 ⁺)	A	F	J [*] : log ft =6.6 (log $f^{1u}t$ =6.3) from $7/2^+$; gammas to $3/2^-$, $9/2^+$ and $(9/2^-)$. J ^{π} : log ft =7.17 (log $f^{1u}t$ =6.8) from $7/2^+$; γ to $5/2^+$.
2513.47 8	$(7/2)^+$	Α	E	XREF: E(2516).
				J^{π} : L(³ He,d)=4; log <i>ft</i> =5.84 (log <i>f</i> ¹ <i>ut</i> =5.3) from 7/2 ⁺ ; gammas to 5/2 ⁻ , 5/2 ⁺ , 9/2 ⁺ and (9/2 ⁻).
2543.96 8	$(5/2,7/2^{-})$	Α		J^{π} : log ft=5.98 (log f ^{1u} t=5.4) from 7/2 ⁺ ; gammas to 3/2 ⁻ and 7/2 ⁻ .
2544 6	1/2-,3/2-		Н	J^{π} : L(d, ³ He)=1.
				E(level): this level agrees in energy with 2545.88 level populated in β decay, but probably is a different level due to different I^{π} assignments
2585.0 <mark>&</mark> 4	$(13/2^{-})$		F	
2623 10	$1/2^{-}.3/2^{-}$		ЕН	E(level).J ^{π} : doublet with L(d. ³ He)=L(³ He.d)=1+4.
2623 10	7/2+,9/2+		Е Н	E(level), J^{π} : see comment for 2623; $1/2^{-}$, $3/2^{-}$ component.
2655 5	1/2-,3/2-		E	J^{π} : L(³ He,d)=1.
2745.3 ^{&} 4	$(15/2^{-})$		F	
2750 10	3/2+,5/2+		E	J^{π} : L(³ He,d)=2.
2846 10	(2/2 (0/2))+		E	
2934 10	$(3/2 \text{ to } 9/2)^{-1}$		E _	J [*] : L(³ He,d)=2+4 suggests a doublet with $J^{*}=3/2^{+}, 5/2^{+}$ and $1/2^{+}, 9/2^{+}$, respectively.
3002.8 4	$(1^{7}/2)$		F	π T (3) (3) T (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
3009 5	(5/2 ,7/2,9/2)		E	J [*] : L(³ He,d)=5,4 suggests a doublet with $J^{*}=5/2$, $J/2^{-}$ and $J/2^{+}$, $9/2^{+}$, respectively.
3118 5	(3/2+5/2+)		E	J [*] : L(⁻ He,d)=1+4 suggests a doublet with $J^{*}=1/2$, $3/2^{-}$ and $1/2^{+}$, $9/2^{+}$, respectively. $I^{\pi}: L = (2)$ in $({}^{3}\text{He d})$
3110 J $3151 0^{@} I$	(3/2, 3/2)		E	J : L = (2) III (IIIC, u).
3190 <i>10</i>	(21/2)		E	J ^{π} : L(³ He,d)=0+3,4 suggests either a doublet with $J^{\pi}=1/2^+$ and $5/2^-,7/2^-$ or a single level with $J^{\pi}=7/2^+,9/2^+$, respectively.
3258 10			E	J^{π} : L(³ He,d)=(1+4) suggests a doublet with J^{π} =(1/2 ⁻ ,3/2 ⁻) and (7/2 ⁺ ,9/2 ⁺), respectively.
3312 10	3/2+,5/2+		E	J^{π} : L=2 in (³ He,d).
3363.7 <mark>&</mark> 5	(19/2 ⁻)		F	
3376 10			Е	J ^{π} : L(³ He,d)=1+4 suggests a doublet with J ^{π} =1/2 ⁻ ,3/2 ⁻ and 7/2 ⁺ ,9/2 ⁺ , respectively.
				Continued on next page (footnotes at end of table)

⁷⁷As Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3483 10	$1/2^{+}$	E	J^{π} : L(³ He,d)=0.
3559 10	1/2-,3/2-	Е	J^{π} : L(³ He,d)=1.
3593 10	$1/2^+ \& 3/2^+, 5/2^+$	Е	J^{π} : L(³ He,d)=0+2.
3633 15	1/2+	Е	J^{π} : L(³ He,d)=0.
3676 15	1/2+&7/2+,9/2+	Е	J^{π} : L(³ He,d)=0+4.
3742 15	1/2+	Е	J^{π} : L(³ He,d)=0.
3770 15	(3/2 to 9/2) ⁺	E	J^{π} : L(³ He,d)=2(+4) suggests a doublet with $J^{\pi}=3/2^+, 5/2^+$ and $7/2^+, 9/2^+$, respectively.
3835 15	1/2+&7/2,9/2+	Е	J^{π} : L(³ He,d)=0+4.
3855.7 <mark>&</mark> 5	$(21/2^{-})$	F	
3885 15	1/2+&1/2-,3/2-	Е	J^{π} : L(³ He,d)=0+1.
3960 15	1/2+&3/2+,5/2+	Е	J^{π} : L(³ He,d)=0+2.
4022 20	$1/2^{+}$	Е	J^{π} : L(³ He,d)=0.
4102 20	3/2+,5/2+	Е	J^{π} : L(³ He,d)=2.
4192 20	(1/2 to 9/2)	E	J^{π} : L(³ He,d)=1+3+4 suggests a triplet with $J^{\pi}=1/2^{-},3/2^{-}$; $5/2^{-},7/2^{-}$ and $7/2^{+},9/2^{+}$, respectively.
4325 20	1/2+&3/2+,5/2+	Е	J^{π} : L(³ He,d)=0+2.
4456.3 [@] 7	$(25/2^+)$	F	
12070 7	$(1/2^{-})^{\#}$	D	
12128 7	(9/2 ⁺) [#]	D	
12426 5	$(5/2^+)^{\#}$	D	
12544 5	$(3/2^{-})^{\#}$	D	
12804 5	$(5/2^+)^{\#}$	D	
12924 5		D	
13094 <i>14</i>		D	
13243 9		D	
13439 12	$(1/2^+)^{\#}$	D	
13697 <i>12</i>		D	

[†] From least-squares fit to E γ data for levels populated in γ -ray studies. Reduced $\chi^2 = 1.3$. Seven gamma-ray energies are fitted poorly, but most of these are doublets.

[‡] For high-spin states (J>9/2), the assignments are from $\gamma\gamma(\theta)$ (DCO) data with the assumptions of ascending spins with excitation energy, and multipolarities of dipole and E2.
Identified as an isobaric analog state of ⁷⁷Ge (see ⁷⁷Ge Adopted Levels).

[@] Band(A): $\Delta J=2$, $\pi g_{9/2}$ band. Band from 1996Do05.

& Band(B): $\Delta J=1$ band. Band from 1996Do05 with probable 3-quasiparticle configuration= $\pi g_{9/2} \otimes v g_{9/2} \otimes v (p_{1/2}, p_{3/2}, f_{5/2})$.

					Adopted	L <mark>evels, Gam</mark> i	mas (continue	ed)	
						$\gamma(^{77}\text{As})$)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
194.71	3/2-	194.74 10	100	0.0	3/2-	[M1,E2]		0.04 3	B(M1)(W.u.)<0.00041; B(E2)(W.u.)<14
215.54	3/2-	215.51 4	100	0.0	3/2-	(M1+E2)	-0.164 16	0.01278 25	B(M1)(W.u.) > 0.0070; B(E2)(W.u.) > 4.4
264.426	5/2-	264.450 25	100	0.0	3/2-	M1+E2		0.014 8	δ: from $\gamma\gamma(\theta)$ in ¹⁷ Ge decay. δ: -1.46 2 or -0.321 11 from (211γ)(264γ)(θ) and (367γ)(264γ)(θ) (1974LeYO). Other: -0.8 3 from (211γ)(264γ)(θ) (1989Mo14). B(M1)(W.u.)=0.00193 4, B(E2)(W.u.)=36.5 6 for δ(E2/M1)=1.0
475.48	9/2+	211.03 <i>4</i> 475.46 <i>10</i>	100.0 25 3.6 3	264.426 0.0	5/2 ⁻ 3/2 ⁻	(M2+E3) [E3]	+0.100 7	0.0734 0.00910	$B(M2)(W.u.)=0.0321 \ 14; B(E3)(W.u.)=14.5 \ 21 B(E3)(W.u.)=0.179 \ 16$
503.88	$1/2^{-}$	503.86 18	100	0.0	3/2-	[]			
614.48	3/2-	350.10 <i>15</i> 398.97 <i>11</i> 419.73 <i>11</i> 614.36 ^{&} <i>10</i>	1.35 <i>4</i> 8.6 8 100 <i>3</i> 44 ^{&} 7	264.426 215.54 194.71 0.0	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻				
631.88	5/2+	156.35 <i>11</i> 367.49 <i>4</i> 416.35 <i>4</i> 631.85 <i>10</i>	3.1 5 64 3 100 5 32.5 19	475.48 264.426 215.54 0.0	9/2 ⁺ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻	[E2] (E1) [E1] [E1]		0.1484	B(E2)(W.u.)=80 <i>16</i> B(E1)(W.u.)= 4.0×10^{-5} <i>5</i> B(E1)(W.u.)= 4.3×10^{-5} <i>5</i> B(E1)(W.u.)= 4.0×10^{-6} <i>5</i>
634.47	5/2+,7/2-	159.3 <i>3</i> 634.40 <i>10</i>	2.0 8 100 4	475.48 0.0	9/2+ 3/2 ⁻	[21]			
784.70	7/2-	150.46 <i>15</i> 520.6 <i>10</i> 784.80 <i>10</i>	3.0 6 20 10 100 5	634.47 264.426 0.0	5/2 ⁺ ,7/2 ⁻ 5/2 ⁻ 3/2 ⁻				
875.22	3/2-,5/2+	610.88 <i>14</i> 659.99 <i>15</i> 680.40 <i>14</i> 875 23 <i>10</i>	8.3 9 3.8 6 4.9 5 100 6	264.426 215.54 194.71 0.0	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻				
889.02	3/2-,5/2,7/2-	254.66 <i>11</i> 624.75 <i>11</i>	100 <i>4</i> 96 <i>4</i>	634.47 264.426	5/2 ⁺ ,7/2 ⁻ 5/2 ⁻				
		673.12 ^{&} 10 889.3 6	67 ^{&} 7 5.2 19	215.54 0.0	3/2 ⁻ 3/2 ⁻				E_{γ} : poor fit, level-energy difference=673.48.
1048.36	$(13/2^+)$	572.9 2	100	475.48	9/2 ⁺	Q			
1058.66	(9/2)) 5/2 ⁻	794.37 11 900.74 13 970.34 19	100 100 <i>12</i> 25 <i>4</i>	264.426 264.426 194.71	5/2 5/2 ⁻ 3/2 ⁻	Q			
1189.83	7/2-	1164.72 <i>15</i> 557.92 8	37 9 100 6	0.0 631.88	3/2 ⁻ 5/2 ⁺	(E1+M2)	-0.139 6		B(E1)(W.u.)>7.1×10 ⁻⁶ Mult.: B(M2)(W.u.)>1.8, compared to the limit <1 from RUL. The discrepancy could be due to too large a value of δ .
		714.37 10	44.6 25	475.48	9/2+				

S

 $^{77}_{33}As_{44}$ -5

From ENSDF

 $^{77}_{33}\mathrm{As}_{44}$ -5

L

	Adopted Levels, Gammas (continued)											
					$\gamma(^{77}\text{As})$	(continued	<u>)</u>					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments					
1189.83	7/2-	925.49 ^{&} 11 974 1	4.2 ^{&} 4	264.426 215.54	5/2 ⁻ 3/2 ⁻							
1201.41	1/2+	325.5 <i>10</i> 569.39 <i>16</i> 985.76 <i>11</i> 1007.46 <i>25</i> 1201 43 <i>14</i>	16 4 100 46 75 10 9.3 21 51 5	875.22 631.88 215.54 194.71 0.0	3/2 ⁻ ,5/2 ⁺ 5/2 ⁺ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻		E_{γ} : poor fit, level-energy difference=1006.69.					
1221.30 1279.99	$(11/2^+)$ $(\leq 7/2)$	745.77 <i>10</i> 665.5 <i>4</i>	100 3.2 20	475.48 614.48	9/2+ 3/2 ⁻	D(+Q)						
1319.76	7/2-	1279.99 11 430.60 21 444.59 18 534.99 15	100 6 3.44 18 6.87 15 12.7 20	0.0 889.02 875.22 784.70	3/2 ⁻ 3/2 ⁻ ,5/2,7/2 ⁻ 3/2 ⁻ ,5/2 ⁺ 7/2 ⁻							
		685.31 ^{&} 11 705.25 11	22.4 ^{&} 24 36.5 18	634.47 614.48	5/2 ⁺ ,7/2 ⁻ 3/2 ⁻							
		1055.8 [@] 4 1104.26 <i>13</i> 1319.71 <i>11</i>	3.6 [@] 13 13.0 16 100 3	264.426 215.54 0.0	5/2 ⁻ 3/2 ⁻ 3/2 ⁻							
1345.19	(3/2 ⁻ ,5/2,7/2 ⁻)	470.5 <i>10</i> 730.53 <i>18</i> 1080.84 <i>11</i> 1130 1 <i>4</i>	6 3 8.0 12 100 10 3 4 12	875.22 614.48 264.426 215.54	3/2 ⁻ ,5/2 ⁺ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻							
1350.29	(3/2 ⁻ ,5/2,7/2 ⁻)	1134.76 <i>14</i> 1155.52 <i>26</i>	100 <i>15</i> 51 <i>10</i>	215.54 194.71	3/2 ⁻ 3/2 ⁻							
1397.65?	(5/2 ⁻ ,7/2 ⁻)	339.6^{a} 4 1397.3 ^a 3	100 77 10.8 8	1058.66	$(9/2^{-})$ $3/2^{-}$							
1398.70	$(7/2^+)$	177.28 <i>13</i> 208.83 <i>15</i>	11 <i>4</i> 100 <i>14</i>	1221.30 1189.83	(11/2 ⁺) 7/2 ⁻							
1457.75	(5)0 7/0->	614.36 ^{&} 10 766.75 10 923.14 11	8.3 ^{&} 12 74 4 66 5	784.70 631.88 475.48	7/2 ⁻ 5/2 ⁺ 9/2 ⁺	(D+Q)	E _γ : level-energy difference=613.99. δ : δ =+0.2 +2 -1 for J(1399)=5/2.					
1457.75	(5/2,7/2 ⁻)	268.10 22 673.12 ^{&} 10 823.25 12 825.80 12 843.22 11 1193 30 10	11 11 19.7 ^{&} 20 23.7 14 2.39 16 8.1 4	1189.83 784.70 634.47 631.88 614.48 264.426	$7/2^{-}$ $7/2^{-}$ $5/2^{+}, 7/2^{-}$ $5/2^{+}$ $3/2^{-}$ $5/2^{-}$							
1528.33	5/2+	1242.23 <i>11</i> 338.60 <i>12</i> 639.12 <i>15</i> 743.63 <i>11</i> 896.54 <i>11</i>	15.7 <i>10</i> 80 7 3.8 7 21.3 <i>17</i> 14.1 6	215.54 1189.83 889.02 784.70 631.88	3/2 ⁻ 7/2 ⁻ 3/2 ⁻ ,5/2,7/2 ⁻ 7/2 ⁻ 5/2 ⁺							

6

L

				Adop	ted Levels,	Gammas (co	ntinued)	
					$\gamma(^{77}\text{As})$	(continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
1528.33	5/2+	913.85 <i>11</i> 1052.56 <i>13</i> 1263.91 <i>10</i> 1312.84 <i>11</i>	43 3 4.2 8 100 7 41.7 18	614.48 475.48 264.426 215.54	3/2 ⁻ 9/2 ⁺ 5/2 ⁻ 3/2 ⁻	(E1) (D+Q)		
1538.86	(1/2+,3/2,5/2+)	1528.33 13 219.1 3 337.53 15 907.01 10 924 1 1323.25 23 1538.83 11	5.5 4 14 14 21 3 100 5 1.7 3 15.0 9	$\begin{array}{c} 0.0\\ 1319.76\\ 1201.41\\ 631.88\\ 614.48\\ 215.54\\ 0.0 \end{array}$	3/2 ⁻ 7/2 ⁻ 1/2 ⁺ 5/2 ⁺ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻			
1560.46	5/2+	685.31 ^{&} 11 775.84 19 925.48 ^{&} 11 928.89 10	0.39 ^{&} 4 0.26 6 0.99 ^{&} 10 17.1 9	875.22 784.70 634.47 631.88	3/2 ⁻ ,5/2 ⁺ 7/2 ⁻ 5/2 ⁺ ,7/2 ⁻ 5/2 ⁺	(M1+E2)	-0.6 4	E_{γ} : poor fit, level-energy difference=925.98. B(M1)(W.u.)>1.9×10 ⁻⁵ ; B(E2)(W.u.)>0.00031
1573.77	(3/2 ⁻ .5/2.7/2 ⁻)	945.65 [@] 18 1085.23 10 1295.61 ^{&} 11 698.57 11	$\begin{array}{c} 0.57^{\textcircled{@}} & 12 \\ 100 & 6 \\ 1.38^{\textcircled{\&}} & 14 \\ 33.1 & 13 \end{array}$	614.48 475.48 264.426 875.22	3/2 ⁻ 9/2 ⁺ 5/2 ⁻ 3/2 ⁻ .5/2 ⁺			E_{γ} : poor fit, level-energy difference=928.58. E_{γ} : poor fit, level-energy difference=1296.03.
		788.96 11 939.39 11 959.26 11 1309.32 11 1358.4 3 1573 74 11	14.4 8 44 3 11.2 <i>12</i> 73 5 3.3 8 100 7	784.70 634.47 614.48 264.426 215.54 0.0	7/2 ⁻ 5/2 ⁺ ,7/2 ⁻ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻			
1604.67	1/2 ⁻ ,3/2 ⁻	990.3 3 1100.8 5 1340.0 5 1389.1 5 1409.94 16 1604.65 10	10.9 <i>I2</i> 3.3 8 7.1 9 3.3 7 49.4 25 100 5	614.48 503.88 264.426 215.54 194.71 0.0	3/2- 1/2- 5/2- 3/2- 3/2- 3/2- 3/2-			
1676.46	1/2 ⁻ ,3/2 ⁻	1061.6 5 1172.4 5 1411.8 ^a 5 1461.2 5 1481.73 24 1676.46 14	3.2 9 2.5 10 4.2 11 3.9 9 28.5 18 100 5	614.48 503.88 264.426 215.54 194.71 0.0	3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻			
1732.80 1736.81	$(3/2^{-}, 5/2^{+})$ $(13/2^{+})$	531.26 <i>14</i> 857.62 <i>9</i> 515.5 <i>2</i>	100 <i>14</i> 70 6 100	1201.41 875.22 1221.30	$1/2^+$ $3/2^-, 5/2^+$ $(11/2^+)$	$D(+\Omega)$		
1837.73	$(\le 7/2)$	557 ^a 1	≈285	1279.99	$(\le 7/2)$			

7

 $^{77}_{33}\mathrm{As}_{44}$ -7

					γ (⁷⁷ As	s) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]
1837.73	(<7/2)	1643.1 4	100 40	194.71	3/2-	
1888.43	$(15/2^+)$	667.0 4	≈7	1221.30	$(11/2^+)$	
	(-1)	840.1 2	100 11	1048.36	$(13/2^+)$	D(+O)
1929.9		709 1	≈40	1221.30	$(11/2^+)$	
		881.5 <i>3</i>	100 40	1048.36	$(13/2^+)$	
1971.17	$7/2^+, 9/2^+$	749.89 10	88 <i>5</i>	1221.30	$(11/2^+)$	
		781.29 10	100 6	1189.83	7/2-	
		1186.52 13	4.1 6	784.70	7/2-	
		1339.28 11	7.1 7	631.88	5/2+	
		1495.64 11	50 <i>3</i>	475.48	9/2+	
2000.19	$5/2^{+}$	439.46 11	6.5 3	1560.46	5/2+	
		461.37 10	41.6 23	1538.86	$(1/2^+, 3/2, 5/2^+)$	
		655.20 22	0.43 13	1345.19	$(3/2^{-}, 5/2, 7/2^{-})$	
		798.82 12	1.67 18	1201.41	$1/2^{+}$	
		810.38 10	75 4	1189.83	7/2-	(D+Q)
		1125.02 11	4.0 3	875.22	$3/2^{-}, 5/2^{+}$	
		1215.43 11	4.2 3	784.70	7/2-	
		1368.45 10	100 <i>3</i>	631.88	5/2+	(D+Q)
		1385.81 23	0.30 7	614.48	$3/2^{-}$	
		1735.80 14	1.07 12	264.426	5/2-	
		1784.40 13	0.23 2	215.54	3/2-	
		2000.19 11	18.4 10	0.0	3/2-	
2000.4	$(17/2^+)$	952.0 2	100	1048.36	$(13/2^+)$	Q
2110.94	5/2+	582.56 10	94 4	1528.33	5/2+	
		712.34 11	100 5	1398.70	$(7/2^+)$	
		921.01 13	9.2 9	1189.83	7/2-	
		945.65 ^{@a} 18	4.3 [@] 9	1165.00	$5/2^{-}$	
		1326.07 13	5.0 6	784.70	$7/2^{-}$	
		1476.56 11	29.5 16	634.47	$5/2^+, 7/2^-$	
		1479.03 ^{&} 11	9.8 <mark>&</mark> 10	631.88	$5/2^{+}$	
		1846.50 11	20.7 10	264.426	$5/2^{-}$	
2123.7		1065 1	100	1058.66	$(9/2^{-})$	
2195.8	$1/2^{-}$	1030^{a} 1	100	1165.00	5/2-	
	-/ -	1411.2^{a} 3	100.37	784.70	$7/2^{-}$	[M3]
		1581 ^{<i>a</i>} 1	100 01	614.48	$3/2^{-}$	[1,10]
2341.75	$(5/2)^+$	504.02.12	13.3 10	1837.73	(<7/2)	
	(-1-)	802.92 13	7.0 14	1538.86	$(1/2^+, 3/2, 5/2^+)$	
		813.40 11	27.8 12	1528.33	5/2+	
		884.12 23	3.2 7	1457.75	$(5/2,7/2^{-})$	
		996.56 11	21.8 12	1345.19	$(3/2^{-}, 5/2, 7/2^{-})$	
		1021.9 3	1.9 6	1319.76	7/2-	
		1061.77 12	32.2 25	1279.99	(≤7/2)	
		1151.90 11	40.1 16	1189.83	7/2-	

 ∞

$\gamma(^{77}As)$ (continued)

E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
2341.75	$(5/2)^+$	1452.67 11	25.3 14	889.02	3/2-,5/2,7/2-	
		1465.4 <mark>&</mark> 3	11.8 ^{&} 12	875.22	$3/2^{-}.5/2^{+}$	E_{v} : poor fit, level-energy difference=1466.5.
		1557.03 22	2.6 4	784.70	7/2-	
		1709.86 11	65 4	631.88	5/2+	
		1727.24 11	30.4 13	614.48	3/2-	
		2077.30 11	49 3	264.426	5/2-	
		2126.24 11	41.8 16	215.54	3/2-	
		2341.74 11	100 0	0.0	3/2	
2354.21	$(7/2^{-})$	1295.61 ^{cc} 11	14.4 [°] 14	1058.66	$(9/2^{-})$	
		1465.4 [°] 3	14.3 ^{a} 14	889.02	3/2-,5/2,7/2-	
		1479.03 ^{&} 11	31 ^{&} 3	875.22	3/2-,5/2+	
		1569.37 12	13.8 9	784.70	7/2-	
		1719.72 11	100 4	634.47	$5/2^+, 7/2^-$	
		1/22.28 14	14.3 20	631.88	$5/2^{+}$	
		2089 72 11	9.79	475.48	9/2 5/2-	
		2353 4 7	1 17 13	0.0	3/2-	
2424.53	$(7/2^{-})$	313.4 10	56 14	2110.94	5/2+	
	., ,	966.74 22	86 18	1457.75	$(5/2,7/2^{-})$	
		1234.60 15	74 8	1189.83	7/2-	
		1365 <i>1</i>		1058.66	$(9/2^{-})$	
		1639.6 3	19 6	784.70	7/2-	
		1/92.48 24	83 42	631.88	$5/2^{-1}$	
		1810.29 14 1948 87 24	25 4	014.40 475.48	$\frac{3}{2}$ 9/2+	
2463.3	$(5/2.7/2.9/2^+)$	1828.7.5	40 11	634.47	$5/2^+$ $7/2^-$	
210010	(0/=,//=,//=)	1831.5 3	100 46	631.88	5/2 ⁺	
2512.8		624.4 2	100	1888.43	$(15/2^+)$	
2513.47	$(7/2)^+$	1055.8 ^{@a} 4	10 [@] 3	1457.75	$(5/2,7/2^{-})$	
		1114.85 11	100 8	1398.70	$(7/2^+)$	
		1454.93 20	32 3	1058.66	(9/2 ⁻)	
		1624.4 3	10 5	889.02	$3/2^{-}, 5/2, 7/2^{-}$	
		1881.37 24	14 3 50 4	031.88	$\frac{5}{2^+}$	
		2037.87 12	14 9 14	264 426	5/2- 5/2-	
2543.96	$(5/2,7/2^{-})$	1354.29 17	70 16	1189.83	$7/2^{-}$	
	$\langle \cdot i \rangle \rightarrow i = j$	1759.7 4	40 28	784.70	7/2-	
		1911.93 <i>14</i>	96 10	631.88	5/2+	
		1929.43 <i>14</i>	100 10	614.48	3/2-	
		2280.0 3	22 6	264.426	5/2-	
7505 0	$(12/2^{-1})$	2328.22 16	76 8	215.54	$3/2^{-}$	
2585.0	(13/2)	1303.8 3	100	1221.30	$(11/2^{\circ})$	

9

$^{77}_{33}\mathrm{As}_{44}$ -9

$\gamma(^{77}\text{As})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.‡
2745.3	$(15/2^{-})$	160.3 2	83 17	2585.0	$(13/2^{-})$	D	3151.0	$(21/2^+)$	1150.6 3	100	2000.4	$(17/2^+)$	Q
		1008.4 5	83 50	1736.81	$(13/2^+)$		3363.7	$(19/2^{-})$	360.9 2	100	3002.8	$(17/2^{-})$	D
		1696.9 6	100 50	1048.36	$(13/2^+)$	D	3855.7	$(21/2^{-})$	492.0 2	100	3363.7	$(19/2^{-})$	D
3002.8	$(17/2^{-})$	257.5 2	100	2745.3	$(15/2^{-})$	D	4456.3	$(25/2^+)$	1305.3 5	100	3151.0	$(21/2^+)$	Q

[†] From ⁷⁷Ge β^- decay (11.211 h) when a level is also seen in ⁷⁷Ge β^- decay (53.7 s) and/or in ⁷⁶Ge(α ,p2n γ). In other cases, values are from ⁷⁷Ge β^- decay (53.7 s) for low-spin levels and from ⁷⁶Ge(α ,p2n γ) for high-spin (J>9/2) deexcitations.

[‡] From $\gamma\gamma(\theta)$ in ⁷⁷Ge β^- decay (11.211 h) for transitions from low-spin levels, from DCO ratios in $(\alpha, p2n\gamma)$ for high-spin levels. RUL used when level half-lives are known.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{77}_{33}As_{44}$

⁷⁷₃₃As₄₄

 $^{77}_{33}As_{44}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

⁷⁷₃₃As₄₄

⁷⁷₃₃As₄₄