⁷⁶Cu $β^-$ decay (637 ms) 2022Si25,2005Va19,1990Wi12

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balrai Singh, Jun Chen and Ameenah R. Farhan	NDS 194.3 (2024)	8-Jan-2024

Parent: ⁷⁶Cu: E=0; $J^{\pi}=3^{(-)}$; $T_{1/2}=637$ ms 7; $Q(\beta^{-})=11321.4$ 17; $\%\beta^{-}$ decay=100

⁷⁶Cu-J^{π},T_{1/2}: From Adopted Levels of ⁷⁶Cu.

⁷⁶Cu-Q(β^{-}): From 2021Wa16.

2022Si25: ⁷⁶Cu activity from 54-MeV proton beam on a UC_x target at HRIBF at ORNL. Fragments passed through a low-resolution mass separator to select A=76 nuclei and then a high-resolution mass separator. ⁷⁶Zn passed into LeRIBSS and implanted into a moving tape. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\beta\gamma$ using four HPGe detectors and two plastic scintillators.

2005Va19 (also 2002VaZX thesis): ⁷⁶Cu produced by ²³⁸U(n,F) and ²³⁸U(p,F) at ISOLDE facility, measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, timing of $\beta\gamma$ and $\gamma\gamma$ coin spectra.

1990Wi12: measured γ , $\gamma\gamma$, (integral β)(γ) coin for T_{1/2} of ⁷⁶Cu decay.

2021Ch56: ⁷⁶Cu ion beam was produced in ⁹Be(⁸⁶Kr,X) at E(⁸⁶Kr)=140 MeV/nucleon incident energy, followed by separation of fragments of interest using A1900 fragment separator at NSCL-MSU facility. Ions were implanted into a CeBr₃ scintillator, coupled to a position-sensitive photomultiplier tube (PSPMT) consisting of a single dynode and 256 anodes arranged, and identified event-by-event using the Δ E-TOF method. Measured (ions) β -correlations, E γ , I γ , $\beta\gamma$ - and $\gamma\gamma$ -coin, level half-life by $\gamma\gamma(t)$ using and array of 15 LaBr₃ detectors and array of 16 HPGe clover detectors. Main experimental finding of this work is in the identification of a 25-ns isomer in ⁷⁶Zn at 2634 keV. Detailed comparison with shell-model calculations using jj44b, jj44c and JUN45 interactions.

Others (mainly $T_{1/2}$ and production of ⁷⁶Cu):

1987LuZX: $T_{1/2}$, γ (598,697,947 γ rays reported).

1987Ar21: production of ⁷⁶Cu.

1993Ru01: quote $T_{1/2}$ and $\beta \beta^-$ n measurement by Reeder et al. in Proceedings of the Specialists Meeting on Delayed Neutron Properties, p37 (1986).

⁷⁶Cu production in 1991Kr15, 1987Ar21 and 1987LuZX: mass separation of fission products from ²³⁵U(n,F).

In accordance with conclusions of study by 2005Va19, a 1.27-s isomer proposed in 1990Wi12 has not been included here; no evidence was found for an isomer in ⁷⁶Cu in 2022Si25.

The decay scheme given here is from 2022Si25, significantly extended from that in 2005Va19. It should considered incomplete due to a large gap of about 5 MeV between the highest observed level at E=5973 keV and Q-value=11321.4 keV *17* (2021Wa16).

Additional information 1.

⁷⁶Zn Levels

Based on reassignment of some of the γ rays by 2005Va19, the 1031, (0⁺) and 1716 levels in 1990Wi12 are omitted, and 1761 level is interchanged by 2350 level.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.00	0^{+}		
598.695 <i>13</i>	2+		
1296.498 19	(4^{+})		
2266.484 23	(2^{+})		
2349.663 28	(6+)		J^{π} : 2022Si25 propose this level as possibly the 6 ⁺ yrast state seen in a high-spin experiment (Ref[38] in 2022Si25).
2633.635 23	(4-)	25.4 ns 4	J ^{π} : 2021Ch56 state that this state may be high-spin negative-parity state formed by the occupation of the ν 0g _{9/2} orbital; 2022Si25 proposed (4 ⁻) based on comparion of calculated β feeding with their observed β feeding.
			$T_{1/2}$: from distribution of time difference between the first and the second γ ray ($\gamma\gamma$ (t)) fitted with an exponential decay plus a constant background (2021Ch56).
2739.23 6	(3 ⁺)		J^{π} : (3 ⁺) proposed in 2022Si25 based on measured γ intensity splitting with theoretical predictions.
2813.790 26	(4+,5)		

⁷⁶Cu $β^-$ decay (637 ms) 2022Si25,2005Va19,1990Wi12 (continued)

⁷⁶Zn Levels (continued)

E(level) [†]	J ^{π‡}	Comments
2949.80 11		
2974.563 26 3017.08 5	(3 ⁻) (1)	J^{π} : 2022Si25 proposed (3 ⁻) based on comparion of calculated β feeding with their observed β feeding. J^{π} : 2 ⁺ is disfavored by a predicted weak transition to g.s. relative to that of 2418 γ if 2 ⁺ , as compared to the observed relatively strong transition to g.s. (2022Si25).
3033.77 8 3079.65 <i>14</i>		
3154.64 <i>6</i> 3212.13 <i>17</i>	(2+,3)	
3233.259 29 3272.718 <i>34</i>	$(3^{-},4^{-})$ (3.4^{+})	
3512.2 5		
3572.7 5		
3604.97 <i>18</i> 3638 11 <i>17</i>		
3710.57 9		
3756.25 <i>13</i> 3760.30 <i>13</i>		
3914.65 9 3967 15 <i>3</i> 0		
3980.39 <i>15</i>		
4013.26 <i>30</i> 4102.55 <i>30</i>		
4123.84 7		
4317.38 15		
4368.80 <i>30</i> 4423.09 <i>19</i>		
4539.87 17		
4008.32 7 4715.70 11		
4858.67 8 4866.2 <i>4</i>		
4959.35 7		
5002.59 21 5106.88 14		
5128.4 <i>4</i> 5146.07 <i>13</i>		
5184.5 4		
5238.2 4 5317.43 27		
5345.66 <i>19</i> 5351.05 <i>19</i>		
5373.25 17		
5460.0 <i>4</i> 5494.50 <i>16</i>		
5523.6 5 5560 55 14		
5717.31 15		
5725.0 6 5886.70 17		
5921.5 5 5973 1 4		
S(n)+x		E(level): S(n)(⁷⁶ Zn)=7815.4 24 (2021Wa16), x<3512 keV from Q(β^{-})(⁷⁶ Cu)-S(n)(⁷⁶ Zn).

⁷⁶Cu $β^-$ decay (637 ms) 2022Si25,2005Va19,1990Wi12 (continued)

⁷⁶Zn Levels (continued)

 † From a least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels. As indicated in comments, some Adopted J^{π} assignments are taken from this dataset which are based on shell-model preditions, systematics of neighboring even-even Zn isotopes as given under comments.

β^- radiations

E(decay)	E(level)	Iβ ^{−‡#@}	$\log ft^{\dagger \#}$	Comments
$(1.8 \times 10^3 \& 18)$	S(n)+x	7.2 5		$I\beta^{-}$: from $\%\beta^{-}n=7.25$ for ⁷⁶ Cu decay (2009Wi03).
(5348.3 20)	5973.1	≈0.92	≈6.0	av $E\beta = 2409.9$ 8
$(5399.9\ 21)$	5921.5	≈0.28	≈6.5	av $E\beta = 2434.9$ 9
(5434.7 20)	5886.70	≈1.24	≈5.9	av $E\beta = 2451.8$ 8
$(5596.4\ 21)$	5725.0	≈0.20	≈6.8	av $E\beta = 2530.19$
(5604.1 20)	5717.31	≈0.69	≈6.2	av $E\beta = 2533.9 8$
(5760.9 20)	5560.55	≈2.28	≈5.8	av $E\beta = 2609.8 8$
(5797.8 21)	5523.6	≈0.41	≈6.5	av $E\beta = 2627.8 9$
(5826.9 20)	5494.50	≈0.65	≈6.3	av $E\beta = 2641.9 8$
(5861.4 20)	5460.0	≈0.21	≈6.8	av E β =2658.6 8
(5948.2 20)	5373.25	≈1.21	≈6.1	av E β =2700.7 8
(5970.4 20)	5351.05	≈1.15	≈6.1	av $E\beta = 2711.5 8$
(5975.7 20)	5345.66	≈0.61	≈6.4	av E β =2714.1 8
(6004.0 20)	5317.43	≈0.38	≈6.6	av $E\beta = 2727.8 \ 8$
(6083.2 20)	5238.2	≈0.28	≈6.8	av $E\beta = 2766.2 \ 8$
(6136.9 20)	5184.5	≈0.61	≈6.5	av E β =2792.3 8
(6175.3 20)	5146.07	≈1.04	≈6.2	av $E\beta = 2810.9 \ 8$
(6193.0 20)	5128.4	≈0.21	≈6.9	av E β =2819.5 8
(6214.5 20)	5106.88	≈0.94	≈6.3	av E β =2829.9 8
(6318.8 20)	5002.59	≈1.13	≈6.2	av Eβ=2880.6 8
(6362.1 20)	4959.35	≈2.15	≈6.0	av Eβ=2901.5 8
(6455.2 20)	4866.2	≈0.24	≈7.0	av $E\beta = 2946.8 \ 8$
(6462.7 20)	4858.67	≈3.65	≈5.8	av E β =2950.4 8
(6605.7 20)	4715.70	≈1.56	≈6.2	av Eβ=3019.8 8
(6653.1 20)	4668.32	≈0.85	≈6.5	av E β =3042.9 8
(6781.5 20)	4539.87	≈0.89	≈6.5	av E β =3105.2 8
(6898.3 20)	4423.09	≈0.77	≈6.6	av E β =3161.9 8
(6952.6 20)	4368.80	≈0.28	≈7.0	av E β =3188.3 8
(7004.0 20)	4317.38	≈1.10	≈6.5	av E β =3213.2 8
(7089.8 20)	4231.62	≈0.87	≈6.6	av E β =3254.9 8
(7197.6 20)	4123.84	≈2.19	≈6.2	av E β =3307.3 8
(7218.9 20)	4102.55	≈0.60	≈6.8	av E β =3317.6 8
(7308.1 20)	4013.26	≈0.24	≈7.2	av $E\beta = 3360.9 8$
(7341.0 20)	3980.39	≈0.56	≈6.9	av E β =3376.9 8
(7354.3 20)	3967.15	≈0.21	≈7.3	av $E\beta = 3383.4 8$
(7406.8 20)	3914.65	≈0.94	≈6.6	av $E\beta = 3408.9 \ 8$
(7561.1 20)	3760.30	≈0.51	≈7.0	av $E\beta = 3483.8 \ 8$
(7565.2.20)	3756.25	≈0.63	≈6.9	av $E\beta = 3485.8 8$
(7610.8 20)	3/10.57	≈1.18	≈6.6	av $E\beta = 3508.0 8$
(7683.3 20)	3638.11	≈0.84	≈6.8	av $E\beta = 3543.2$ 8
(7716.4.20)	3604.97	≈0.29	≈7.2	av = BB = 3559.3 8
(7748.7 21)	3572.7	≈0.13	≈7.6	av $E\beta = 3575.09$
(7807.0.20)	3514.38	≈1.21	≈6.6	av $E\beta = 3603.5 \delta$
(7809.2.21)	3512.2	≈0.62	≈0.9 ≈6.4	av $Ep=5004.4$ 9 av $Ep=2720.7$ 8
(8048.720)	5272.718	≈2.31 ≈6.0	≈0.4	av $Ep=5/20.7$ o
(8088.120)	3233.239	≈0.9 ~0.81	≈0.0 ≈6.0	av $EP=5/57.9$ d av $EP=2750.2$ g
(0109.3 20)	3212.13 2154.64	~ 0.01	~0.9	av $EP = 5750.2$ 0 av $EP = 2779.1$ 9
$(0100.0\ 20)$	2070 45	≈ 1.13	≈ 0.8	av $Ep=31/0.1$ o ov $Ep=31/0.1$ o
$(0241.0\ 20)$ (8287.6.20)	3079.03	~0.44	~1.2	av $Ep = 5014.5$ 0 av $Ep = 3836.8$ 8
(0207.020)	5055.11	~0.92	~0.7	$a_{1} \equiv p = -5050.00$

76 Cu β^- decay (637 ms)	2022Si25,2005Va19,1990Wi12	(continued)
-------------------------------------	----------------------------	-------------

E(decay)	E(level)	Iβ ^{-‡#@}	$\log ft^{\dagger \#}$	Comments
(8304.3 20)	3017.08	≈0.59	$\approx 9.3^{1u}$	av E β =3840.6 8
(8346.8 20)	2974.563	≈10.4	≈5.8	av $E\beta = 3865.5 8$
(8371.6 20)	2949.80	≈0.90	≈6.9	av $E\beta = 3877.6 \ 8$
(8507.6 20)	2813.790	≈1.5	≈6.7	av $E\beta = 3943.6 \ 8$
(8582.2 20)	2739.23	≈1.58	≈6.7	av $E\beta = 3979.9 8$
(8687.8 20)	2633.635	≈5.2	≈6.2	av $E\beta = 4031.2 \ 8$
(8971.7 20)	2349.663	≈0.4	≈12.1	av $E\beta = 4166.8 \ 8$
(9054.9 20)	2266.484	≈1.47	≈6.9	av $E\beta = 4209.5 8$
(10024.9 20)	1296.498	≈7.7	≈6.3	av $E\beta = 4680.5 8$
(10722.7.20)	598.695	≈13.4	≈6.2	av $F\beta = 5019.2.8$

β^- radiations (continued)

[†] Additional information 2.

[‡] From γ +ce intensity balance at each level.

[#] The β feedings and associated log ft values should be treated as approximate due to seemingly incomplete decay scheme.

[@] Absolute intensity per 100 decays.

[&] Estimated for a range of levels.

 $\gamma(^{76}\text{Zn})$

I γ normalization: 0.893 20 deduced from $\Sigma(I\gamma \text{ of gammas to g.s.})=100-\%\beta^-n$, with $\%\beta^-n=7.2.5$ (2009Wi03) and assuming no β feeding to g.s. Since the level scheme may be missing high-energy levels, the normalization factor is treated as approximate. 2022Si25 deduce a normalization factor of 0.893 19 taking sum of all transitions to the ground state assuming no direct g.s. beta feeding; if all unplaced transitions directly feed the ground the normalization becomes 0.774 15.

A 947 γ reported by 1987LuZX is assigned as a sum line (199+748) (γ rays from ⁷⁶Zn β^{-}) by 1990Wi12.

Following γ rays with E $\gamma(I\gamma)$ in Table I of 1990Wi12 are omitted here based on results in 2005Va19 and 2022Si25: 431.83 8 (9.5 9), 1097.6 5 (3.0 13), 1783.46 21 (7.0 11).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Comments
117.88 <i>13</i>	0.30 4	3272.718	$(3,4^{+})$	3154.64	$(2^+,3)$	%Iy≈0.27
137.47 5	1.12 5	3154.64	$(2^+,3)$	3017.08	(1)	%Iy≈1.0
180.12 <i>3</i>	3.21 11	2813.790	$(4^+, 5)$	2633.635	(4 ⁻)	%Iy≈2.9
						E _γ : others: 179.6 <i>3</i> (2005Va19, 179.8 in Fig. 5 of 2005Va19), 180 (2021Ch56), 180.2 <i>3</i> (1990Wi12).
						I _γ : others: 3.8 <i>4</i> (2005Va19), 3.2 <i>11</i> (1990Wi12), 12 2 (2021Ch56).
^x 235.81 <i>11</i>	0.48 4					%Iy≈0.43
258.63 <i>3</i>	3.4 <i>3</i>	3233.259	(3 ⁻ ,4 ⁻)	2974.563	(3 ⁻)	%Iy≈3.0
						E_{γ} : others: 258.5 <i>1</i> (2005Va19), 258 (2021Ch56).
						I_{γ} : others: 2.0 4 (2005Va19); 10 3 (2021Ch56) is largely discrepant.
298.10 10	0.81 11	3272.718	$(3,4^{+})$	2974.563	(3-)	%Iy≈0.72
340.921 20	19.5 4	2974.563	(3 ⁻)	2633.635	(4^{-})	%Iy≈17
						E _γ : others: 340.87 9 (2005Va19), 340.89 7 (1990Wi12), 341 (2021Ch56).
						I_{γ} : others: 16 <i>I</i> (2005Va19), 16.4 <i>I2</i> (1990Wi12); 68 <i>5</i> (2021Ch56) is largely discrepant.
365.47 24	1.39 18	3638.11		3272.718	$(3,4^{+})$	%Iy≈1.2
						E_{γ} : unresolved doublet with ⁷⁶ Zn γ ray.
419.50 2	6.2 3	3233.259	(3 ⁻ ,4 ⁻)	2813.790	$(4^+, 5)$	%Iγ≈5.5
						E_{γ} : others: 419.3 4 (2005Va19), 419.50 7 (1990Wi12), 419 (2021Ch56); γ placed from a 1715 level in 1990Wi12.

 $^{76}_{30}$ Zn₄₆-5

		⁷⁶ Cu β	- decay (637 ms)	2022Si25	,2005Va19	,1990Wi12 (c	ontinued)
				<u> </u>	(⁷⁶ Zn) (co	ntinued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α &	Comments
464 160 [#] 22	42.4	2812 700	(4+ 5)	2240 662	(2+)			I _γ : others: 3.4 4 (2005Va19), 9.7 7 (1990Wi12), 8.8 19 (2021Ch56); note a large difference between value from 2005Va19 and others.
404.100 22	4.5 4	2813.790	(4,3)	2349.003	(0)			$F_{\gamma}^{(1)\approx 3.8}$ E _{γ} : others: 464.3 <i>3</i> (2005Va19), 464.42 <i>21</i> (1990Wi12). I _{γ} : others: 3.0 <i>4</i> (2005Va19), 2.9 <i>7</i> (1000Wi12)
527.04 13	0.57 15	3760.30		3233.259	(3 ⁻ ,4 ⁻)			%I $\gamma \approx 0.51$ E _{γ} : unresolved doublet with background γ ray.
598.706 14	100.0 22	598.695	2+	0.00	0+	[E2]	1.15×10 ⁻³	% $I\gamma \approx 89$ E _{γ} : others: 598.70 6 (2005Va19), 598.68 5 (1990Wi12), 599 (2021Ch56). L _{γ} : others: 100 5 (2005Va19), 100 3
639.08 14	0.36 5	3272.718	(3,4+)	2633.635	(4-)			(1990Wi12), 103 6 (2021Ch56). %Iy≈0.32
697.815 <i>14</i>	66.6 11	1296.498	(4 ⁺)	598.695	2+	[E2]	7.42×10 ⁻⁴	%Iγ≈59 E_{γ} : others: 697.69 7 (2005Va19), 697.78 5 (1990Wi12), 698 (2021Ch56). I_{γ} : others: 59 3 (2005Va19), 52.9 20 (1990Wi12) 99 6 (2021Ch56)
707.92 6 781.71 <i>13</i> 888.59 <i>11</i> 939.1 5 1006.23 <i>3</i>	$\begin{array}{c} 0.95 \ 5 \\ 0.50 \ 7 \\ 0.57 \ 5 \\ 0.14 \ 6 \\ 2.95 \ 7 \end{array}$	2974.563 3756.25 3154.64 3572.7 3272.718	(3 ⁻) (2 ⁺ ,3) (3,4 ⁺)	2266.484 2974.563 2266.484 2633.635 2266.484	$(2^+) (3^-) (2^+) (4^-) (2^+)$			%Iy \approx 0.85 %Iy \approx 0.45 %Iy \approx 0.51 %Iy \approx 0.13 %Iy \approx 2.6 E _y ,I _y : other: 1006.5 2 with Iy=1.7
1053.22 [#] 3	5.06 17	2349.663	(6 ⁺)	1296.498	(4+)			<i>10</i> (2005Va19). %Iγ≈4.5 E _γ : others: 1053 <i>I</i> (2005Va19), 1053.4 <i>5</i> (1990Wi12). I _γ : others: 3.1 <i>9</i> (2005Va19), 2.4 <i>10</i>
1077.63 <i>19</i> 1149.43 8 1218.47 22 ^x 1258.0 3	0.45 9 1.50 <i>16</i> 0.50 22 0.24 5	4715.70 4123.84 5886.70		3638.11 2974.563 4668.32	(3 ⁻)			(1990W112). % $I\gamma \approx 0.4$ % $I\gamma \approx 1.3$ % $I\gamma \approx 0.45$ % $I\gamma \approx 0.21$
1280.98 <i>9</i> 1337.109 <i>16</i>	1.44 9 38.3 7	3914.65 2633.635	(4 ⁻)	2633.635 1296.498	(4 ⁻) (4 ⁺)	[E1]		%Iy≈0.21 %Iy≈1.3 %Iy≈34 E_{γ} : others 1337 <i>I</i> (2005Va19), 1337.08 8 (1990Wi12), 1337 (2021Ch56). I _γ : others: 30 2 (2005Va19), 30.2 20 (1990Wi12), 100 7 (2021Ch56). Mult.: possible E1 (2021Ch56) from analysis of expected transition probabilities for E1, M1, E2 and M2 transitions.
1442.76 8 1468.9 <i>3</i>	0.77 <i>5</i> 0.67 <i>14</i>	2739.23 4102.55	(3 ⁺)	1296.498 2633.635	(4^+) (4^-)			%Iγ≈0.69 %Iγ≈0.6

		7	76 Cu β^- deca	y (637 ms)	2022S	i25,2005Va19,1990Wi12 (continued)
					γ ⁽⁷⁶ Zn)	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}@$	E _i (level)) J_i^{π}	E_{f}	${ m J}_f^\pi$	Comments
						E_{γ} : unresolved doublet with ⁷⁶ Zn γ ray.
1489.85 18	0.33 5	4123.84	(4 + 5)	2633.635	(4^{-})	%Iγ≈0.29
1317.38 4	1.737	2015.790) (4,5)	1290.498	(4)	$\gamma_{01} \gamma_{\approx 1.0}$ E _v L _v : other: 1517.2 with Iy=0.6.2 (2005Va19).
1561.2 5	0.39 5	4715.70		3154.64	$(2^+,3)$	$\%$ I γ \approx 0.35
^x 1568.3 3	0.22 5					%Iy≈0.2
1598.15 <i>19</i>	0.66 8	4231.62		2633.635	(4 ⁻)	%Iγ≈0.59
*1608.14 <i>18</i> 1667.80.3	0.49 0 4 65 9	2266 484	(2^+)	598 695	2+	$\%1\gamma \approx 0.44$ $\%1\gamma \approx 4.1$
1007.00 5	7.05 /	2200.40-	T (2)	570.075	2	$E_{\gamma}I_{\gamma}$: other: 1668 2 with $I_{\gamma}=3.4$ 6 (2005Va19).
1678.3 ^a 4		2974.563	3 (3 ⁻)	1296.498	(4^{+})	E_{γ} : likely a sum peak.
1682.9 5	0.32 12	4317.38		2633.635	(4 ⁻)	%Iγ≈0.29
1693.75 7	1.45 15	4668.32		2974.563	(3^{-})	$\%$ I γ \approx 1.3
1698.35 15	0.41.5	4/15./0		3017.08	(1) $(2^+ 2)$	$\%1\gamma\approx0.37$
1704.05 25	1.03.6	4030.07		1296 498	(2, 5) (4^+)	$\sqrt[n]{\gamma \approx 0.27}$
1857.8 4	0.20 6	3154.64	$(2^+,3)$	1296.498	(4^+)	$\%$ I γ ≈0.18
1873.60 14	1.06 17	5106.88		3233.259	(3-,4-)	%Iy≈0.94
^x 1907.0 3	0.33 6					%I <i>γ</i> ≈0.29
^x 1928.1 4	0.16 5	5146.07		2010 12		$\%$ l γ ≈0.14
1935.5 0	0.15 5	3140.07	$(3^{-}4^{-})$	5212.15 1296.498	(4^{+})	$\%1\gamma\approx0.13$ $\%1\gamma\approx0.41$
1930.49 10	0.40 0	5255.25	(3,+)	1290.490	(+)	$E_{\alpha}I_{\alpha}$; other: 1937 3 with $I_{\gamma}=1.0$ 11 (2005Va19).
1964.89 <i>21</i>	0.32 5	4231.62		2266.484	(2^{+})	$\%$ I γ ≈0.29
1971.8 <i>3</i>	0.38 9	5886.70		3914.65		%Iγ≈0.34
1976.35 <i>16</i>	0.50 6	3272.718	8 (3,4 ⁺)	1296.498	(4^{+})	$\%$ I γ ≈0.45
x1984.2 6	0.12.6					%1y≈0.11 %Ja~0.24
x2007 2 7	0.27 0					$\sqrt{1} = 0.24$ % $1 \approx 0.17$
2034.74 14	0.025 5	2633.635	5 (4-)	598.695	2+	$\%$ Iy \approx 0.022
						E_{γ} : likely a sum peak.
^x 2051.8 4	0.21 6				(a. (+))	%Iy≈0.19
2077.76	0.176	5351.05		32/2./18	$(3,4^{-})$	%1y≈0.15 ∭Ise 0.45
2082.34 18	0.507	5373 25		2055.055	(4) (34^+)	$\%1\gamma \approx 0.45$ $\%1\gamma \approx 0.48$
2112.37 19	0.68 13	5345.66		3233.259	$(3^{-},4^{-})$	$\%$ Iy \approx 0.61
2140.46 7	1.01 5	2739.23	(3+)	598.695	2+	%Iy≈0.9
2145.64 8	1.41 9	4959.35		2813.790	$(4^+,5)$	%Iy≈1.3
2156.57 <i>19</i>	0.86 13	4423.09		2266.484	(2^{+})	$\%1\gamma\approx0.77$
2138.4 0	0.28 14	3514 38		1296 498	(4^{+})	$\%1\gamma\approx0.25$ $\%1\gamma\approx1.2$
2224.91 9	3.19 24	4858.67		2633.635	(4^{-})	$\%$ I γ \approx 2.8
						E_{γ} : other: 2225.4 3 (2021Ch56), unplaced and in coincidence
2266.22	2 (5 (2266.40	((2+)	0.00	0±	with 1337γ .
2266.38 4	2.65 6	2266.484	4 (2')	0.00	0'	$\%1\gamma \approx 2.4$ E. L. other 2266 2 with $I_{2} = 2.4.6$ (2005)(c10)
^x 2281 6 7	0 17 7					$E_{\gamma,1\gamma}$: other: 2200 5 with 1γ =5.4 0 (2005 var9). %Iv ≈ 0.15
2287.5 4	0.22 7	5560.55		3272.718	$(3,4^{+})$	$\%$ Iy \approx 0.2
2300.2 3	0.31 5	5317.43		3017.08	(1)	%I _γ ≈0.28
2308.38 18	0.50 6	3604.97		1296.498	(4 ⁺)	%Iy≈0.45
2315.9 6	0.178	5921.5		3604.97	(A^{-})	$\frac{9}{10} \frac{1}{200} \frac{1}{100} \frac{1}{$
2323.37 19	1.01.7	2949 80		2033.033	(+) 2^+	$\sqrt{2}$
2368.91 21	1.27 16	5002.59		2633.635	- (4 ⁻)	$\%$ I γ ≈ 1.1
2375.80 8	1.01 6	2974.563	3 (3 ⁻)	598.695	2+	%Iγ≈0.9

	⁷⁶ Cu $β^-$ decay (637 ms) 2022Si25,2005Va19,1990Wi12 (continued)									
					$\gamma(^{70}$	⁶ Zn) (continued)				
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}@$	E _i (level)	$J^{\pi}_{:}$	Ef	J^{π}_{L}	Comments				
2412.00.11	0.00 (2710.57	- i	1006 400	<u>J</u>	α I α 71				
2413.99 11	0.80 0	3/10.5/	(1)	1296.498	(4^{+})	$\gamma = 0.71$				
2410.19 0 X2456 5 2	1.30 /	3017.08	(1)	398.093	2	$701\gamma \approx 1.4$				
2430.3 3	0.29 0	3079 65		508 605	2+	$\%1\gamma \approx 0.20$				
x_{250456}	0.777	5077.05		570.075	2	$\sqrt[n]{2}$				
2504.5 0	0.2312 0.2311	5523.6		3017.08	(1)	$\%$ Iv ≈ 0.21				
2512.43 19	0.44 6	5146.07		2633.635	(4^{-})	$\%$ I γ \approx 0.39				
2516.5 4	0.27 6	4866.2		2349.663	(6^+)	$\%$ I γ ≈0.24				
2519.89 16	0.73 9	5494.50		2974.563	(3^{-})	%Iy≈0.65				
2555.62 19	0.37 9	3154.64	$(2^+,3)$	598.695	2+	%Iy≈0.33				
2585.56 18	0.62 9	5560.55		2974.563	(3-)	%Iy≈0.55				
2613.35 17	1.06 13	3212.13		598.695	2^{+}	%Iγ≈0.94				
^x 2626.75 19	0.58 7					E_{γ} : unresolved doublet with background γ ray. %I $\gamma \approx 0.52$				
2670.6 3	0.23 5	3967.15		1296.498	(4^{+})	%Iy≈0.21				
2716.71 30	0.27 4	4013.26		1296.498	(4^{+})	%Iy≈0.24				
2742.69 15	0.78 10	5717.31		2974.563	(3 ⁻)	%Iy≈0.69				
^x 2748.3 7	0.12 5					%Iγ≈0.11				
2826.95 15	0.63 5	4123.84		1296.498	(4^{+})	%I <i>γ</i> ≈0.56				
2913.4 5	0.7 3	3512.2		598.695	2+	%ly≈0.62				
3016.81 9	1.17 5	3017.08	(1)	0.00	0^+	$\sqrt[n]{\gamma \approx 1.0}$				
x2002.2.5	0.21 0					$\%1\gamma\approx0.19$				
$x_{2101} = 5$	0.10 3					$\%1\gamma \approx 0.14$				
3111.80.16	0.24 9	3710 57		508 605	2^{+}	$\%1\gamma\approx0.21$				
x3154 1 3	0.52 5	5710.57		590.095	2	$\sqrt{2}$				
3156.8.6	0.21 7	3756.25		598,695	2^{+}	$\%$ Iv ≈ 0.19				
x3272.7 5	0.15 6	0,00.20		0701070	-	$\%$ Iy \approx 0.13				
x3318.3 4	0.17 5					%Iy≈0.15				
^x 3348.16 19	0.40 5					%Iy≈0.36				
^x 3371.0 6	0.17 6					%Iy≈0.15				
3381.61 15	0.63 5	3980.39		598.695	2^{+}	%Iy≈0.56				
^x 3451.6 7	0.17 6					%I <i>γ</i> ≈0.15				
x3510.9 5	0.12 4					%Iy≈0.11				
3562.72.24	0.61 6	4858.67		1296.498	(4+)	$\%1\gamma\approx0.54$				
x 35 /9.8 3	0.35 5					$\%1\gamma\approx0.31$				
x3634.8.8	0.10 /					$\%1\gamma \approx 0.14$				
x3640.6.3	0.10.8					$\sqrt{1}$				
3662.10.21	0.48 7	4959.35		1296.498	(4^{+})	$\%1\gamma \approx 0.43$				
x3711.7 3	0.34 5	1707.00		1290.190	(•)	$\%$ I γ ≈ 0.3				
3718.66 15	0.91 5	4317.38		598.695	2^{+}	$\%$ I γ ≈0.81				
3770.0 <i>3</i>	0.31 4	4368.80		598.695	2^{+}	%Iy≈0.28				
^x 3782.7 8	0.11 4					%Iy≈0.098				
^x 3805.3 4	0.18 5					%Iy≈0.16				
x3822.0 4	0.22 4					%I <i>γ</i> ≈0.2				
3831.8 4	0.23 4	5128.4		1296.498	(4^{+})	$\%$ l γ ≈0.21				
3849.46 <i>19</i>	0.58 5	5146.07		1296.498	(4+)	$\%1\gamma\approx0.52$				
	0.12 3	1530 97		500 605	2+	$\gamma_0 \gamma_{\gamma = 0, 11}$				
x4022 3 8	0.20.8	4339.87		398.093	2	$\frac{1}{\sqrt{1}}$				
4054 50 20	1 12 6	5351.05		1296 498	(4^{+})	$\%$ Iv ≈ 1.0				
4078.0 4	0.33 5	5373.25		1296.498	(4^+)	%Iv≈0.29				
4163.4 4	0.24 5	5460.0		1296.498	(4+)	%Iy≈0.21				
^x 4166.8 5	0.19 5				. /	$\%$ I γ \approx 0.17				

		76	Cu β^- decay (637)	7 ms) 2022Si25,2005Va19,1990Wi12 (continued)	
				$\gamma(^{76}$ Zn) (continued)	
E_{γ}^{\dagger}	Ι _γ †@	E _i (level)	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments	
^x 4260.8 3	1.00 8			%Iv≈0.89	
4264.59 25	1.35 8	5560.55	1296.498 (4+)	$\%$ Iv \approx 1.2	
^x 4333.2 3	0.20 4			%Iv≈0.18	
4361.1 7	0.06 3	4959.35	598.695 2+	%Iy≈0.053	
^x 4433.8 7	0.20 6			%Iv≈0.18	
^x 4465.6 9	0.14 5			%Iy≈0.13	
^x 4481.8 5	0.24 5			%Iy≈0.21	
^x 4507.0 7	0.13 4			$\%$ I $\gamma \approx 0.12$	
^x 4516.6 5	0.23 5			%Iy≈0.21	
^x 4531.3 3	0.53 5			$\%$ I $\gamma \approx 0.47$	
^x 4540.4 7	0.13 4			$\%$ Iy \approx 0.12	
4585.7 4	0.68 5	5184.5	598.695 2+	%Iy≈0.61	
4590.1 4	0.51 6	5886.70	1296.498 (4+)	%Iy≈0.45	
^x 4620.0 8	0.16 5			%Iy≈0.14	
4625.7 7	0.14 4	5921.5	1296.498 (4 ⁺)	%Iy≈0.13	
4639.3 4	0.31 4	5238.2	598.695 2+	%Iy≈0.28	
4675.8 5	0.51 6	5973.1	1296.498 (4+)	%Iy≈0.45	
4719.0 6	0.12 3	5317.43	598.695 2+	%Iγ≈0.11	
^x 4755.7 5	0.19 4			%Iy≈0.17	
4773.6 5	0.49 6	5373.25	598.695 2+	$\%$ I $\gamma \approx 0.44$	
4925.0 11	0.23 8	5523.6	598.695 2+	%Iy≈0.21	
^x 4946.7 10	0.23 10			%Iy≈0.21	
4963.0 7	0.37 8	5560.55	598.695 2+	%Iy≈0.33	
^x 4995.7 6	0.61 11			%Iy≈0.54	
5126.1 6	0.22 7	5725.0	598.695 2+	%Iy≈0.2	
^x 5327.7 9	0.36 9			%Iy≈0.32	
5375.4 7	0.52 8	5973.1	598.695 2+	%Iy≈0.46	
^x 5795.1 10	1.23 24			%Iy≈1.1	
x5921.0 11	1.26 25			$\%$ I $\gamma \approx 1.1$	

[†] From 2022Si25. Values are also available from 2005Va19 and and 1990Wi12, but much less complete and less precise.

[‡] From Adopted Gammas.

[#] 2022Si25 have chosen to indicate firm placement of the 2350 level as well as the 464-1053 cascade based on unpublished results of an high-spin experiment (Ref[38] in 2022Si25). The same ordering of the 464-1053 cascade is proposed by 2005Va19 based on marginally higher intensity of 1053γ , while 1990Wi12 showed a reverse ordering in their level scheme making a level at E=1716.

^(a) For absolute intensity per 100 decays, multiply by ≈ 0.89 .

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

⁷⁶Cu β^- decay (637 ms) 2022Si25,2005Va19,1990Wi12

 $^{76}_{30} Zn_{46}$

9

⁷⁶Cu $β^-$ decay (637 ms) 2022Si25,2005Va19,1990Wi12

76 Cu β^- decay (637 ms) 2022Si25,2005Va19,1990Wi12

