⁷⁷Cu β^- n decay (469.8 ms) 2009II01,2009Pa35,2012Ko29

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

Parent: ⁷⁷Cu: E=0; $J^{\pi}=5/2^{-}$; $T_{1/2}=469.8$ ms 20; $Q(\beta^{-}n)=5368.9$ 19; % $\beta^{-}n$ decay=30.1 20

 77 Cu-J^{π},T_{1/2}: From 77 Cu Adopted Levels in the ENSDF database (Sept 2020 update).

⁷⁷Cu-Q(β⁻n): From 2021Wa16.

⁷⁷Cu- $\%\beta^-$ n decay: $\%\beta^-$ n=30.1 20 from ⁷⁷Cu Adopted Levels, where the value is based on measurements by 2018Ra27, 2010Ho12 and 2009II01.

2009II01: two experiments were performed using the Holifield Radioactive Ion Beam Facility (HRIBF) at ORNL. In the first experiment, the Cu ions were accelerated to 225 MeV and measured β -delayed neutron emission probabilities. In the second experiment, the low-energy ions (200 keV) were sent to Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS). For both measurements using four clover Ge detectors and two plastic β detectors around beam pipe. Measured $E\gamma$, $I\gamma$, $\beta\gamma$ -, $\gamma\gamma$ -coin, absolute branching ratios in ⁷⁷Cu β decay and 772.4-keV (1/2⁻) isomer in ⁷⁷Zn, half-life of ⁷⁷Cu g.s.

- 2009Pa35: ⁷⁷Cu produced in the fission of uranium (target=uranium carbide) by spallation neutrons which were produced by 1 GeV protons hitting a tantalum target. The ⁷⁷Cu nuclei were selected by Resonant Ionization Laser Ion Source (RILIS) and General Purpose mass separator (GPS) at the CERN-ISOLDE facility. The separated ⁷⁷Cu nuclei at a typical energy of 60 keV were implanted on a tape surrounded by three E- Δ E plastic detectors for β -particle detection and two HPGe detectors. Measured γ , β , $\beta\gamma$ coin, $\beta\beta$ coin, $\gamma\gamma$ coin and delayed-neutron events. The neutrons were detected with the Mainz neutron long counter. Major contribution to γ -ray and β spectra are from ⁷⁷Ga decay as indicated by a comparison of 'laser-on' and 'laser-off' spectra. In both the spectra, lines from ⁷⁷Ga are quite prominent. The decay scheme of ⁷⁷Ga is poorly known, By subtraction procedures, 2009Pa35 obtained a spectrum which mainly contained lines from ⁷⁷Cu activity.
- 2012Ko29:⁷⁷Cu produced in ²³⁸U(p,F),E=54 MeV at HRIBF-ORNL facility, followed by online separatation of fragments using two stages of mass separation. The Cu isotopes were accelerated to about 3 MeV/nucleon in the tandem accelerator and transmitted to the measuring decay station. Measured β and γ radiations using two plastic detectors for β radiation and four Ge clover detectors for γ radiation. Deduced partial β⁻n branches to the g.s., first 2⁺ and (4⁺) states from β and γ data.
 1991Kr15: measured T_{1/2}(⁷⁷Cu g.s.) by n(t) T_{1/2}(⁷⁷Cu)=0.469 s 8 (1991Kr15). %β⁻n is unknown.

⁷⁶Zn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	0^{+}	5.7 s <i>3</i>
598.56 5	2+	25.4 ps +37-29
1296.28 9	(4^{+})	10.4 ps +25-22

[†] From $E\gamma$ data.

[‡] From the Adopted Levels.

$\gamma(^{76}\text{Zn})$

Iy normalization: Deduced from I(y to g.s.)+I(β^{-} n to g.s.)=100 through this decay branch.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
598.56 5	100.2 9	598.56	2+	0.0 0+	%Iy=19.3 20
697.72 8	2.89 11	1296.28	(4^{+})	598.56 2+	%Iy=0.56 6

[†] From 2009II01.

[‡] For absolute intensity per 100 decays, multiply by 0.193 20.

⁷⁷Cu β⁻n decay (469.8 ms) 2009II01,2009Pa35,2012Ko29 (continued)

Delayed Neutrons (⁷⁶Zn)

E(⁷⁶ Zn)	$I(n)^{\ddagger\ddagger}$
0.0	11 <i>I</i>
598.56	19 <i>1</i>
1296.28	0.55 4

[†] Measured by 2012Ko29.
[‡] Absolute intensity per 100 decays.

⁷⁷Cu β ⁻n decay (469.8 ms) 2009II01,2009Pa35,2012Ko29

