$$
{ }^{9} \mathbf{B e}\left({ }^{76} \mathbf{R b},{ }^{76} \mathbf{S r} \gamma\right),\left({ }^{80} \mathbf{Y},{ }^{76} \mathbf{S r} \gamma\right) \quad \text { 2012Le05,2020L101 }
$$

$\frac{\text { Type }}{}$| Author |
| :---: |
| Full Evaluation |

Nucleon exchange, and nucleon removal reactions.
2012Le05: ${ }^{9} \mathrm{Be}\left({ }^{76} \mathrm{Rb},{ }^{76} \mathrm{Sr} \gamma\right)$, $\mathrm{E}=104.5 \mathrm{MeV} /$ nucleon beam of ${ }^{76} \mathrm{Rb}$ produced in ${ }^{9} \mathrm{Be}\left({ }^{78} \mathrm{Kr}, \mathrm{X}\right), \mathrm{E}=140 \mathrm{MeV} /$ nucleon. A1900 fragment separator used to separate ${ }^{76} \mathrm{Rb}$ and ${ }^{78} \mathrm{Rb}$ beams. Secondary target $=376 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9} \mathrm{Be}$. Outgoing particles identified by time-of-flight and energy loss measurements using S800 spectrometer. The γ rays were detected with SeGA array of 15 Ge detectors at NSCL, MSU facility. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma,\left({ }^{76} \mathrm{Sr}\right) \gamma$-coin, lifetime of the first 2^{+}state by DSAM for γ transition from the first 2^{+}state.
2020L101: ${ }^{9} \mathrm{Be}\left({ }^{80} \mathrm{Y},{ }^{76} \mathrm{Sr} \gamma\right.$), $\mathrm{E}=77 \mathrm{MeV} /$ nucleon beam of ${ }^{80} \mathrm{Y}$ produced in ${ }^{9} \mathrm{Be}\left({ }^{92} \mathrm{Mo}, \mathrm{X}\right), \mathrm{E}=140 \mathrm{MeV} /$ nucleon at NSCL-MSU facility. A1900 fragment separator was used to separate the secondary beam of ${ }^{80} \mathrm{Y}$. Secondary target $=188 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9} \mathrm{Be}$. Outgoing particles were identified by time-of-flight and energy loss measurements using S800 spectrometer. The γ rays were detected with the GRETINA array of two rings with four detector modules centered at 58° and six modules at 90°, each module containing four 36 -fold segmented HPGe crystals. Measured E $\gamma, \mathrm{I} \gamma,\left({ }^{76} \mathrm{Sr}\right) \gamma$-coin, Doppler line shape for γ transition from the first 2^{+}state. Deduced B(E2).
${ }^{76} \mathrm{Sr}$ Levels

$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	$\mathrm{J}^{\text {J }}$	$\mathrm{T}_{1 / 2}$	Comments
0.0	0^{+}		
262.3	2^{+}	193 ps 25	$\mathrm{T}_{1 / 2}$: weighted averaged mean lifetime $\tau=278 \mathrm{ps} 36$ from $\tau=250 \mathrm{ps} 44$ (2020L101) and $\tau=296 \mathrm{ps}$ 36 (2012Le05, $\mathrm{T}_{1 / 2}$ of 205 ps 25 from $\mathrm{T}_{1 / 2}=207 \mathrm{ps}+16-14$ at forward angles and $\mathrm{T}_{1 / 2}=203 \mathrm{ps}$ $+18-16$ at backward angles); from DSAM in both the studies.
			Deduced $\beta_{2}=0.453$ from $\mathrm{T}_{1 / 2}$ (2012Le05).
			Inclusive population $=51 \% 12$ (2012Le05).
746.7	4^{+}		Inclusive population=36\% 8 (2012Le05).
1446.3	6^{+}		
2340.5	8^{+}		

${ }^{\dagger}$ Rounded values from Adopted Levels.
${ }^{\ddagger}$ As proposed in 2012Le05.

$\mathrm{E}_{\gamma}{ }^{\dagger}$	E_{i} (level)	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult.	Comments
$\overline{261.65}$	262.3	2^{+}	0.0	0^{+}	E2	$\begin{aligned} & \mathrm{E}_{\gamma} \text { : from 2020L101. } \\ & \mathrm{B}(\mathrm{E} 2)=0.22227 \text { (2012Le05), } 0.23924 \text { (2020L101). } \end{aligned}$
484.4	746.7	4^{+}	262.3	2^{+}		
699.6	1446.3	6^{+}	746.7	4^{+}		
894.2	2340.5	8^{+}	1446.3			

${ }^{\dagger}$ From Adopted Gammas, unless otherwise stated.
${ }^{9} \mathbf{B e}\left({ }^{76} \mathbf{R b},{ }^{76} \mathbf{S r} \gamma\right),\left({ }^{80} \mathbf{Y},{ }^{76} \mathbf{S r} \gamma\right) \quad$ 2012Le05,2020L101

Level Scheme

${ }_{38}^{76} \mathrm{Sr}_{38}$

