Adopted Levels, Gammas

	Туре	Author	Citation	Literature Cutoff Date					
	Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024					
$Q(\beta^{-}) = -4963$ S(2n)=19181.	9; S(n)=11153.79 38 2, S(2p)=16407	7; $S(p)=9506.7$ 9; $Q(\alpha)=-5090.96$ 8 2021Wa16 .45 2 (2021Wa16).	j.						
Other reaction ⁷² Ge(⁶ Li,d),E	ns: =34 MeV: 1984Co	08, analyzed spectroscopic factors.							
76 Se(e,e),E=2	76 Se(e,e),E=225 MeV: 1988Kh02 (also 1987Ku21,1987Kh07). Measured σ and comparison with theory.								
76 Se(d, ³ He),E	=25 MeV: 1983Ro	08, deduced g.s. proton occupation numbers.							
Giant dipole r	resonances studied	by 1976Ca06 using (γ, xn) reactions.							
$(^{12}C,X),(^{16}O,X)$	$X),(^{18}O,X),E=40-5$	2 MeV: 1985GuZZ, GDR decay characteristics.							
(γ, xn) : GDR	study: 1975Go16.								
GDR experim	ental study in (12C	,X) reaction.							
Additional inf	ormation 1.								
For neutron re ⁷⁶ Ge(π^+,π^-):	esonances see 1971 1991Ka20, 1991Ci	Fe01, 1969Ma15, 1964Co31. 10.							
Mass measure	ements: 2010Mo03,	, 2008Ra09, 2006Sc38, 2002Bf02, 2001Fr25, 2001I	Do08, 1993Hy02, 199	1Hy01, 1985El01 (also					

1984El01).

⁷⁶Se Levels

In 74 Ge(3 He,n), a level is seen at 4.1 MeV *I* which may correspond to any of the 12 or so levels between 4.0 and 4.2 MeV.

Cross Reference (XREF) Flags

		A B C D E F G H	⁷⁶ As $β^-$ deca ⁷⁶ Br ε+ $β^+$ de ⁷⁶ Br ε decay ⁷⁶ Ge 2 $β^-$ dec ⁷⁰ Zn(¹² C,α2r ⁷⁴ Ge(³ He,n) ⁷⁴ Ge(α,2nγ) ⁷⁴ Ge(¹⁶ O, ¹⁴ C	y (26.254 h) ccay (16.14 h) (1.31 s):? cay (1.926×10 ²¹ y cy)	I J K) L M N O P	⁷⁵ As ⁷⁵ Se ⁷⁵ As ⁷⁶ Se ⁷⁶ Se ⁷⁶ Se ⁷⁶ Se	$({}^{3}$ He,d) (n, γ) E=thermal (p,n) IAR (γ,γ') (pol γ,γ') (n,n') (n,n' γ) (p,p'),(pol p,p')	Q R S T U V W	⁷⁶ Se(p,p' γ),(α , $\alpha'\gamma$) ⁷⁶ Se(d,d'),(pol d,d') ⁷⁶ Se(α , α') Coulomb excitation ⁷⁶ Br(n,p) E=thermal ⁷⁷ Se(d,t) ⁷⁸ Se(p,t)
E(level) [†]	$J^{\pi #}$	7	${\Gamma_{1/2}}^{\ddagger}$	XREI	7				Comments
0.0 ^b	0+	stable		ABCDEfGHIJ LM	NOPQRST	UVW	RMS charge rad evaluation). J ^π : microwave a (1950Ge05,19) Valence protons measurements From (p,t) reacti neutron pair c From (³ He,n) re pairing vibrati simple BCS st nuclei.	ius (< bsorpt 49St0 in g.s (2009 ons, 2 orrelat action ions fo tructur	$(r^2>)^{1/2}=4.1395 \text{ fm } 16 \text{ (2013An02)}$ ion method 7,1933Ra02) consistent with J=0. from transfer reaction 007Fr10 deduce very similar tions for ⁷⁶ Se and ⁷⁶ Ge. (2013Ro10 deduce no evidence of or ⁷⁶ Se and ⁷⁶ Ge, and conclude a re for the ground states of both
559.103 ^b 5	2+	11.98	ps +16-40	ABC EfGHIJ LMI	NOPQRST	CUVW	$\mu = +0.70 \ 11 \ (20)$ $Q = -0.35 \ 4 \ (201)$ $\beta_2 = 0.28 \ I \ (1993)$ $J^{7}: E2 \ \gamma \ to \ 0^+.$ $T_{1/2}: \ from \ avera$	19Mc(9He07 8Mo05 aged B	05,2020StZV) 7,2021StZZ))) 6(E2)↑=0.432 +15-6 (2016Pr01

⁷⁶Se Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF	Comments
				evaluation), based on the following measurements: mean lifetime τ =15.5 ps + <i>I</i> 3– <i>I</i> 9 (1963Pr04 in (γ , γ')), 13 ps 2 (1960De08 in (γ , γ')), 33 ps 22 (1955Co55, $\gamma\gamma$ (t)). Coulomb excitation measurements: B(E2) \uparrow =0.419 43 (1995Ka29, incident energy above the Coulomb barrier), 0.425 9 (1984Zo01, RDM and DSA), 0.423 6 (1977Le11), 0.42 2 (1974Ba80, superseded by 1977Le11), 0.390 40 (1970AgZV), 0.45 4 (1962Ga13), 0.480 43 (1962St02), 0.42 8 (1960An07), 0.43 6 (1956Te26). μ : transient-field method in Coul. ex. (2019Mc05), with measured g ⁷⁶ Se/g ⁷⁴ Se=0.96 7 for first 2 ⁺ states. Others:
				 +0.806 46 (1998Sp03,transient-field method in Coul. ex.); +0.81 22 (1967Mu10, γγ(θ,H) in ⁷⁶As β⁻), +0.80 22 (1969He11, IMPAC in Coul. Ex.). Q: reorientaton in Coul. ex. (2019He07). Others: -0.34 7 (1977Le11, reorientation in Coul. ex.); -0.30 5
				(1976VoZY). $\beta_2(p,p'): 0.28 I$ (1993Mo05); 0.310 I0, 0.301 I5 (1984De01); 0.27 4, 0.28 4 (1983Ma59); 0.278 7, 0.293 7 (1979Ma28); 0.323 (1970He10). $\beta_2(p,p'): 0.28$ (1976La12) $\beta_2R=1.52.5$ (1984Ku09) 1.72
				$\beta_2(\alpha, \alpha'): 0.265 (1970 La12): \beta_2(R=1.52.5) (1964 Ra85); 1.725 (1981 Br 23).\beta_2(\alpha, \alpha'): 0.265, 0.356 (1988 Ba 35).\beta_2(Coul. ex.): 0.268 (1977 Le11), 0.309 (1974 Ba 80),0.319 (1970 Ag ZV).$
1122.279 8	0+	12.1 ps +39-24	AB IJ L OPQR T VW	$T_{1/2}$: from B(E2) in Coul. ex. Otehr: 11 ps 5 from B(E2) ratios of unresolved 563 γ and 559 γ (1964By02) in Coul. ex. J^{π} : E0 transition to 0 ⁺ . Also $\gamma\gamma(\theta)$ in ⁷⁶ As β^{-} and
1216.154 ^{<i>c</i>} 6	2+	3.3 ps <i>3</i>	AB E G IJ LM OPQRSTUVW	μ=0.61 II (1998Sp03,2020StZV) Q=+0.19 4 (2019He07,2021StZZ) $ β_2=0.28 I (1993Mo05) $ μ: transient-field method in Coul. ex. (1998Sp03), measured value of 0.70 I2 in 1998Sp03 is re-evaluated to 0.61 II in 2020StZV. Q: reorientaton in Coul. ex. (2019He07). $ J^{π}: E2 γ to 0^{+}. $ $ T_{1/2}: from B(E2) in Coul. ex. Other: 3.5 ps I4 (DSAM) $
1330.872 ^b 8	4+	1.52 ps <i>3</i>	ABCEGIJ OPQRTVW	in (α,2nγ)). $\beta_2(p,p')=0.085\ 2\ (1993Mo05).\ \beta_2(\alpha,\alpha')=0.1\ (1988Ba35).$ $\mu=2.2\ 4\ (1998Sp03,2020StZV)$ $Q=-0.29\ 4\ (2019He07,2021StZZ)$ μ : transient-field method in Coul. ex. (1998Sp03), measured value of 2.56 36 in 1998Sp03 is re-evaluated to 2.2 4 in 2020StZV. Q: reorientaton in Coul. ex. (2019He07). J ^π : $\Delta J=2$, E2 γ to 2 ⁺ . Observed anisotropy forbids J=0. $T_{1/2}$: from B(E2) in Coul. ex. Others: 0.7 ps +5-4 (DSAM in (α ,2n γ)), 1.3 ps +5-1 (p,p' γ). $\beta_4(p,p')=0.049\ 10\ or\ 0.012\ 4\ (1983Ma59);\ \beta_4(n,n')=0$

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF			Comments	
1688.971 ^{<i>d</i>} 7 1787.655 7	3 ⁺ 2 ⁺	3.2 ps +12-6 1.29 ps +42-24	AB AB	EGJ IJ	OPQ T OPQRST	V VUV	J ^π : ΔJ=1 E2+M1 γ to 2 ⁺ ; γ to 4 ⁺ . J ^π : M1+E2 γ to 2 ⁺ ; γ rays to 0 ⁺ and 4 ⁺ and L(p,p')=2. T _{1/2} : weighted average of 1.18 ps +42-24 from
1791.437 <i>21</i>	0+		AB		0 Q		DSAM in $(n,n'\gamma)$ (2019Mu04) and 1.5 ps +5-4 from B(E2) for 1229 γ in Coul. ex. $\beta_2(\alpha,\alpha')=0.07$ (1988Ba35). J ^{π} : from isotropic $\gamma(\theta)$ for 575.3 γ and comparison of excitation function data with statistical model calculations using CINDY code in $(n,n'\gamma)$; spin=0
2026.020 ^c 8	4+	1.6 ps 2	AB	EGIJ	OPQR I	VW	also from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay (2018MoZZ). J ^{π} : Δ J=2, E2 γ to 2 ⁺ and M1+E2 γ to 4 ⁺ . T _{1/2} : weighted average of 1.8 ps 4 from DSAM in (α 2na) and 1.6 ps 2 from B(E2) in Coult as
2127.224 7	$(2)^{+}$		AB	IJ	OPQR	V	J^{π} : L=1+3 in (³ He,d) from $3/2^{-}$ and γ rays to 0 ⁺ and 4 ⁺
2170.572 11	(0 ⁺)	1.5 ps +10-5	AB	IJ	OPQR	W	 XREF: P(2177)R(2210). J^π: L(p,t)=(0). But L(³He,d)=(1+3) from 3/2⁻ suggests (1⁺,2⁺,3⁺). E(level): there may be two separate levels near this energy as indicated by contradictory L(p,t) and
2262.42 ^b 16	6+	0.58 ps 5		EG	OPQR I		L(³ He,d). XREF: R(2290). J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ ; member of rotaional band. $T_{1/2}$: weighted average of 0.62 ps 7 from DSAM in (α 2na) and 0.56 ps 5 from B(E2) in Coull as
2362.963 13				J		W	(<i>a</i> ,217) and 0.50 ps 5 from B(E2) in Coul.ex. XREF: W(2347).
2429 131 <mark>6</mark> 8	3-	$89 \text{ ps} \pm 15 \pm 12$	٨R	CHT 1	NOPORST	. W	J^{π} : γ to 2 ⁺ ; possible γ to 4 ⁺ .
2+27.131 0	5	0. <i>9</i> p3 +15 12	лD	GITT	NOI QUUI		B(E3)=0.027 (2002Ki06 evaluation, from Coulomb ex.). π^{*} : L(d ³ He)=4 from 3/2 ⁻ and L(p, p')=3. Also dipole
							γ rays to 2 ⁺ and 3 ⁺ ; 403 γ to 4 ⁺ can only be D,E2 from RUL.
							$\Gamma_{1/2}$: weighted average of 14 ps / from DSAM in (α ,2n γ) and 8.7 ps +15-12 from B(E3) in Coul. ex.
							$\beta_3(p,p')=0.17 \ l \ (1993Mo05), \ 0.15 \ (1984De01), \ 0.164 \ (1979Ma28, \ 1979Ma41); \ \beta_3(\alpha, \alpha')=0.183 \ (1988Ba35); \ \beta_3(Coul. \ ex.)=0.185 \ (1974Ba80);$
							$\beta_3({}^{16}\text{O}, {}^{14}\text{O}) = 0.185 \ (1976\text{Co09}); \ \beta_3 \text{R}(n,n') = 0.77 \ 5 \ (1984\text{Ku09})$
2485.02 5	4+	485 fs +76-62			OpQ		XREF: $p(2487)$. J^{π} : spin=4 from $\gamma(\theta)$ in $(n,n'\gamma)$: γ M1+E2 to 3 ⁺ .
2489.35 ^d 5	5+	0.9 ps +3-2		EG	OpQ		XREF: $p(2487)$. I^{π} . AL-2. E2 as to 3^+ : E2+M1 as to 4^+
2514.681 11	2+	1.18 ps +39–24	AB	IJ	OPQR	W	J^{π} : M1+E2 γ to 2 ⁺ ; 825.8 γ D+Q to 3 ⁺ ; 723.2 γ to 0 ⁺ L (n t)=(2) also supports (2 ⁺)
2558.73 8			В			V	XREF: V(2570).
2604.09 <i>4</i> 2617.89 <i>6</i>	$(4)^+$	1.08 ps +64-30 402 fs +76-55	В	I	0 OP	VW	J^{n} : M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ . J^{π} : L(p,p')=4 and L(³ He,d)=3 from 3/2 ⁻ ; M1+E2 γ to 4 ⁺ and 2 ⁺
2655.383 13	1	0.82 ps +22-15	AB	J	OPQ	W	J^{π} : dipole γ to 0^+ .

J**π**# T_{1/2}‡ E(level)[†] Comments XREF 0.89 ps +27-17 2669.904 14 2^{-} AB IJ O OR J^{π} : L(³He,d)=2+4 from 3/2⁻; dipole γ to 2⁺; W γ to 0⁺. $J^{\pi}: L(p,p')=(3).$ Ρ 2691 2 (3^{-}) (4^{+}) 0P $J^{\pi}: L(p,p')=4.$ 2805.10 15 0.39 ps +10-7 В 2812.130 34 (3^{+}) J 0 Q XREF: B(?)w(2820). w J^{π} : (M1+E2) γ rays to 2⁺ and 3⁺; (3⁺) from $(n,n'\gamma)$ based on γ decay pattern. 2817.24 4 (2^{+}) 98 fs 6 В 1 0 XREF: w(2820). J^{π} : γs to 4^+ and 0^+ . 2824.797^e 10 5^{-} 6.2 ps +21-14 GiJ 0 XREF: i(2830). J^{π} : $\Delta J=2$, E2 γ to 3⁻ and E1 γ to 4⁺. Also $L(^{3}He,d)=4$ from $3/2^{-}$. 2829.61 19 (1,2)В i XREF: i(2830). J^{π} : 2830 γ to 0⁺. (4^{+}) XREF: r(2870). 2853 2 P r v J^{π} : L(p,p')=4. 2859.781^{*f*} 24 4-1.2 ps 5 В G IJ 0 J^{π} : $\Delta J=1$, M1+E2 γ to 3⁻ and $\Delta J=0$ or 2, v D+Q γ to 4⁺. 2869.34 5 $(1^+, 2^+)$ В XREF: r(2870). 82 ps 6 J 0 Qr v J^{π}: (M1+E2) γ to 2⁺; γ to 0⁺. 2910.993 18 $(1 \text{ to } 4)^{a}$ J W 2917.32 8 $(4)^+$ IJ 0P XREF: P(2915). J^{π} : L(p,p')=4 and L(³He,d)=3 from 3/2⁻. But 5⁺ from $(n,n'\gamma)$. 2950.171 32 1^{+} 92 fs 14 В JL 0 Q J^{π} : (M1) intense 2950 γ to 0⁺; M1+E2 γ to 2⁺; dipole γ to 0⁺ from $\gamma(\theta)$ in (γ, γ') . $T_{1/2}$: weighted average of 76 fs 13 from (γ, γ') and 104 fs 11 from $(n, n'\gamma)$. 2969.48 6 IJ OP r 2-,3-,4-XREF: I(2956). J^{π} : L(³He,d)=4+2 from 3/2⁻. 2975.00 5 J^{π} : γs to 2^+ and 4^+ . $(2^+,3,4^+)$ В 0 2975.98^c 29 6^{+} 1.2 ps +7-4 EG r T J^{π}: Δ J=2, E2 γ to 4⁺; γ to 6⁺. $T_{1/2}$: other: 1.1 ps 4 from B(E2) in Coul. ex. 3007.75 8 $(2)^{+}$ 27.0 fs 21 IJ 0P VW XREF: I(3022)P(3001). J^{π} : L(p,p')=2 and L(³He,d)=1+3 from 3/2⁻; M1+E2 γ to 2⁺; γ to 0⁺. 0^{+} 98 fs 8 3031.57 7 0 J^{π}: from isotropic $\gamma(\theta)$ for 1815 and 2472 γ rays and comparison of excitation function data with statistical model calculations using CINDY code in $(n,n'\gamma)$. 3042 4 (6^{+}) J^{π}: L(p,p')=6. Ρ 3045.79 8 0 (5^{-}) 0.39 ps +28-12 G J^π: (M1), Δ J=(0) γ to 5⁻. T_{1/2}: from DSAM in $(n,n'\gamma)$. Other: <0.28 ns from $(\alpha, 2n\gamma)$. Note that the quoted T_{1/2} results in a large reduduced transition strength for any of Mult=E1, M1, or E2. J^{π}: M1+E2 γ to 2⁺; 1380.5 γ dipole to 3⁺; ε 3069.62 4 2^{+} 457 fs +83-62 В 1 0 Q feeding (log ft=5.95) from 1⁻. (1+,2+,3+)& 0P 3084.58 6 32.6 fs 21 Ι 0P 3105.48 5 202 fs 21 В J^{π} : L(p,p')=3. (3^{-}) W 1 (2^{+}) 3160.115 32 0.38 ps +21-10 В J 0 Qr J^{π}: γ s to 4⁺ and 1⁺; ε feeding (log *ft*=6.4 from 1⁻). But 0⁺ proposed in $(n,n'\gamma)$ from isotropic $2601\gamma(\theta)$. 272 fs +63-43 OP r J^{π} : (M1+E2) γ to (3⁻); γ to 4⁺ and 2⁺. 3161.80 5 (3^{-})

⁷⁶Se Levels (continued)

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XRE	F		Comments
3191.67 8	(3) ⁺ &	112 fs 8	В	IJ	0		XREF: I(3198).
3212.08.10	1+ 2+	11 1 fc 11		÷ T	0		J [*] : (M1+E2) γ s to 2 ⁺ and 4 ⁺ .
5212.96 10	1,2	11.1 15 14		1 L	U		J^{π} : γ to 0 ⁺ can only be D.E2 from RUL: M1+E2
							γ to 2 ⁺ .
							T _{1/2} : from DSAM in $(n,n'\gamma)$. Other: 11 fs 4 from
2016 4	(2 - 0, 4 +)				P	1.7	(γ, γ') .
3216 4	$(3 \& 4^{\circ})$				Р	W	XREF: W(3232). I^{π} : L (n n')=3+4: also L (n t)=(3.4) for a possible
							doublet.
3219.428 33	$(2^+, 3^+)$	56.1 fs 42	В	iJ	0		XREF: i(3212).
							J ^{π} : γ s to 2 ⁺ and 4 ⁺ ; L(³ He,d)=1+3 for a group at
	((0+)			_			3212.
3225.7 5	$(6,8^+)$			G			J^{n} : $\Delta J=0$ or 2γ to 6^{+} .
							$1_{1/2}$. If OIII DSAIM III (α , $2Ii\gamma$) 1961KIZW give 1.1 ps 3 but this value is not reported in authors'
							published work (1984Zo01).
3230.27 8	$1,2^{+}$	0.7 ps +21-3			0		J^{π} : γ to 0 ⁺ can only be D,E2 from RUL.
3238.78 8				G	0		J^{π} : γ to 5 ⁻ .
3259.81 8			В		р		XREF: p(3259).
3262.34 25	6-	12 ps 6		G	р		XREF: p(3259).
							J [*] : $\Delta J=2$, (E2) γ to 4 , M1+E2 γ to 5 and D+Q
3262.96 8		201 fs +97-55		IJ	q 0		XREF: p(3259).
					· ·		J^{π} : γ to 2^+ .
3267.57 6	$(2^+, 3, 4^+)$	395 fs +97-69	В	ij	0		XREF: i(3268).
2269 70 4	(1 - 2)		ъ				J^{π} : γ s to 2 ⁺ and 4 ⁺ .
3208.70 4	(1,2)		в	1]			AKEF : $1(3208)$. I^{π} : s feeding (log $ff = 7.2$) from 1^{-1} : γ to (3^{-1})
3269 75 <mark>6</mark> 33	8+	0.35 ps 7		FG	т		I^{π} : $\Lambda I = 2$ F2 γ to 6^+ : member of rotational band
5207.15 55	0	0.55 ps /		LU			$T_{1/2}$: other: 0.34 ps 8 from B(E2) in Coul. Ex.
3282.19 11	1,2+	101 fs 9			0		J^{π} : γ to 0 ⁺ can only be D,E2 from RUL.
3294.8 4	(4^{+})			J	Ρr	W	XREF: P(3289).
2205 02 12	(1 + 0 +)						J^{n} : L(p,p')=4.
3295.02 12	$(1^+, 2^+)$		В	1	o r	W	J ^{$^{\circ}$} : γ to 0 ⁺ ; L([°] He,d)=1+3 for a group at 3295. E(level) T ₁ (a) 60 fs 5 for a 3205 28 level in
							$(n,n'\gamma)$ could correspond to 3295.70+3297.05
							levels in ⁷⁶ Br ε decay based on matching of
							their decaying γ transitions.
3296.2 6	$(1^+, 2^+)$		В	i	o r	W	XREF: i(3295).
							E(level), $T_{1/2}$: see comment at 3295.7 level.
3312 04 30	(6^{-})	0.14 ns $+14-7$		G		147	J^{π} : γ to 0 ⁻⁷ ; $L(^{-}He, d)=1+3$ for a group at 3295. I^{π} : $\Lambda I=1$ D+O ($\delta=0.25$) γ to 5 ⁻
3331.51 8	(0)	229 fs $+42-35$		U	0		J^{π} : γ to 2^+ .
3346.25 11					Op		XREF: p(3342).
2240 40 11	(1+ 0+)	0.0 15.0					J^{π} : γ s to 4 ⁺ .
3348.48 11	$(1^+, 2^+)$	0.3 ps + 15 - 2		1	Op		XREF: $1(3345)p(3342)$.
3351 462 30	$(2)^{+}$	$90 f_s q$	R	÷1	0.0		$J^{(1)}$: γ to 0 ⁽¹⁾ ; $L({}^{(2)}\text{He,d})=1+3$ for a group at 3345. XREE: $j(3345)$
5551.402 50	(2)	JU 15 J	Ъ	T J	J V		J^{π} : M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ : γ s to 0 ⁺ and 3 ⁻ .
3376.37 12	$1^{(+)}, 2^+$	77 fs +49-29		i	0		XREF: i(3378).
							J ^{π} : γ to 0 ⁺ can only be D,E2 from RUL;
							$L(^{3}He,d)=1+3$ from $3/2^{-}$ for a group at 3378
							could correspond to 3376.3+3377.2 levels.

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XRE	F		Comments
3377.0 4	$(1^+, 2^+, 3^+)$		В	i			XREF: i(3378).
							J ^{π} : γ to 2 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3378 could correspond to 3376.3+3377.2 levels.
3403.82 9	(2+,3+,4+)	32.6 fs 35			0		J ^{π} : 592 γ to 3 ⁺ can't be pure E1, E2 or M2 based on RUL; γ to 4 ⁺ . Note that (5 ⁺) is proposed in (n,n' γ), but it would require a B(E2)(W.u.)=5.5×10 ³ +7-6 for 592 γ , which greatly exceeds RUL=300
3405.9 7	(1)	205 fs 33		L			J^{π} : (D) γ to 0 ⁺ .
3407.91 4	(4+)	0.52 ps +56-19			OP		$J^{\pi}: L(p,p')=4.$
3417 10	-			I			J^{π} : L(³ He,d)=4 from 3/2 ⁻ suggests J=2 to 6.
3432.31 ^d 33	7+	0.8 ps +4-2		EG			J^{π} : $\Delta J=2$, E2 γ to 5 ⁺ and $\Delta J=1$, M1 γ to 6 ⁺ .
3436.09 16	$1^{(+)}, 2^+$	63 fs 5		I	0		J^{π} : γ s to 0 ⁺ can only be D,E2; (M1+E2) γ to 2 ⁺ .
3441.27 22	(3 ⁻)				OP	W	XREF: W(3458).
							J^{π} : L(p,p')=3. Also L(p,t)=(3,4).
3441.54° 26	//- (2 ⁺)	3.6 ps 7		G	•		J ⁿ : $\Delta J=2$, E2 γ to 5 ⁻ and γ to 6 ⁺ .
3459.13 5	(2^{+})		В	1	Q		XKEF: $I(340/)$.
							3^{-} ; L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3467
3466.39 11	(1.2.3)		В		0		XREF: O(?).
	(-,_,_)				-		J^{π} : γ s to 2 ⁺ and 2 ⁻ .
3475 4	(4 ⁺)				Р		J^{π} : L(p,p')=4.
3528.69 <i>30</i>	1^{+}	50 fs 5		ΙL	0 r		XREF: O(?).
							J^{π} : L(³ He,d)=1+3 from 3/2 ⁻ ; dipole γ to 0 ⁺
							from $\gamma(\theta)$.
2552 80 7	(1, 2)		р				$T_{1/2}$: from (γ, γ') .
5552.897	(1,2)		Б	1	Г		$\pi^{-1} \cdot 2431_{2}$ to 0^{+1}
3556.210 29	(2^{-})		В	iJ	0r		XREF: i(3558).
	(-)				~		J^{π} : γ s to 1 ⁺ and 4 ⁻ ; ε feeding (log <i>ft</i> =6.4) from
3566.6.10	1(+)	157 fs 24		÷τ	Þ		XREF: i(3558)
5500.0 10	1	157 15 24		1 1	1		I^{π} : dipole γ to 0^+ in $(\gamma \gamma')$: L(³ He d)=(1+3)
							for a group at 3558 .
3604.192 33	1^{+}	55 fs 5	В	IJ L	Q	W	XREF: I(3598)W(3591).
							J ^{π} : ε feeding (log <i>ft</i> =6.4) from 1 ⁻ ; γ to 0 ⁺ can
							only be D,E2 from RUL; $L(^{3}He,d)=1+3$ from
							$3/2^{-}$ for a group at 3598; dipole γ to 0 ⁺ in
2626 88 6	(2^+)		ъ	-	D		(γ, γ') .
3030.88 0	(2°)		В	1	Р		J^{*} : γ s to U^{*} and (S^{*}) ; $L(^{*}He,d)=(1+S)$ for a
3651.88.9	$(1^+, 2^+, 3^+)$		В	i l	n		XREF: i(3659)p(3655).
0001100 9	(1,2,0)		-		Р		J^{π} : L(³ He.d)=1+3 from 3/2 ⁻ for a group at 3659
							and γ s to 1 ⁺ and 3 ⁺ suggests (1 ⁺ ,2 ⁺ ,3 ⁺). But
							$L(p,p')=(4)$ for a 3655 group suggests (4^+) and
							may indicate a different level.
3657.7? 4	(1,2)			i	Op		XREF: i(3659)O(?)p(3655).
2(70.2.1	1(+)	72 6 9					$J^{*}: 3057.8\gamma$ to U^{+} .
3670.2 4	1(1)	/3 ts 8		i L			XKEF: $1(3659)$.
							J [*] : dipole γ to 0 ⁺ ; L(³ He,d)=1+3 from $3/2^{-1}$ for a group at 3659.

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi #}$	$T_{1/2}^{\ddagger}$		XREF			Comments
3696.27 28	(7-)	28 ps 7		G			J^{π} : $\Delta J=1$, (M1+E2) γ to (6 ⁻);and DJ=(0) γ to 7 ⁻ .
3697 4	1 ⁺ ,2 ⁺ ,3 ⁺ &			I	Р	W	
3716.52 6	(2)		В				J^{π} : ε feednig (log <i>ft</i> =7.4 from 1 ⁻); ΔJ =0,2 γ to 2 ⁺ .
3730.8 10	(3 ⁻)			J	Р		$J^{\pi}: L(p,p')=3.$
3752.1 14	$1^{(+)}$	175 fs 50		ΙL			XREF: I(3741).
							J^{π} : L(³ He,d)=1+3 from 3/2 ⁻ ; dipole γ to 0 ⁺ .
3758.79 20	1	6.0 fs 6		L			J^{π} : dipole γ to 0^+ .
3776 4	(4^+)				Р		J^{π} : L(p,p')=4.
3785.7 4	(8')	0.9 ps $+3-3$		G			J [*] : $\Delta J=0,2 \gamma$ to 6'; γ to 8' is likely dipole from RUL.
3790	(≤3 ⁺)			I	_		J^{π} : L(³ He,d)=1(+3) from 3/2 ⁻ .
3806 4	(5 ⁻)				Р		$J^{n}: L(p,p')=5.$
3808 10	1 ⁺ ,2 ⁺ ,3 ⁺ 			I			
3853.75° <i>33</i>	(8)+	0.23 ps +8-5		EG			J^{n} : DJ=(0), M1+E2 γ to 8 ⁺ and γ to 6 ⁺ .
3857.8 11	1+	171 fs 35		IL	-		J ^{π} : L(d, ³ He)=1+3 from 3/2 ⁻ ; dipole γ to 0 ⁺ .
3861.11 32	(4+)			J	Р	W	XREF: $P(3862)W(3843)$.
							J [*] : L(p,p) =4. Level in (p,t) probably corresponds to this level rather than 3857, 1 ⁺ .
3880.46 18	0.		В				
3906.39 30	$1^+, 2^+, 3^+$		_	IJ			
3915.48 5	(2^{-})		В	J			J^{n} : γ s to 1 ⁺ and 4 ⁻ ; possible ε feeding (log $ft=7.0$
2017 4	(A^{\pm})				р		If $m = 1$.
3917 4	(4)	42 fs 4		т	r		J : L(p,p) = 4. I^{π} : dipole x to 0^+
3930.02.6	(1.2^+)	72 13 7	в	1			XREF: J(3926.9).
5750.02 0	(1,2)		2	2			J^{π} : ε feeding (log <i>ft</i> =7.0) from 1 ⁻ ; 1759 γ to 0 ⁺ .
3932.7 4				J			,,
3948 <i>4</i>	(4^{+})				Р		J^{π} : L(p,p')=4.
3970.407 32	(2^{+})		В	I			XREF: I(3955).
							J ^{π} : ε feeding (log <i>ft</i> =6.4) from 1 ⁻ ; γ to (30);
							$L({}^{3}\text{He,d})=1+3 \text{ from } 3/2^{-} \text{ for a group at } 3955.$
4001.81 23	(3 ⁻)			IJ	Р	W	XREF: W(3980).
							J^{n} : L(p,p')=3. But L(³ He,d)=(1+3) from $3/2^{-1}$
4005 1 9				C			suggests (1 ⁺ ,2 ⁺ ,3 ⁺).
4005.1 8				G			I^{π} : γ to (7^{-}) suggests $(7.8.0)$
1008 7 f 6	(9^{-})	22 ps 7		C			J^{π} , AI=2, E2 or to 6^{-1}
4008.75 0	(0) 1 ⁺	2.2 ps 7 31.1 fs 29	R	il I	P		$J : \Delta J = 2, E2, Y = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $
1015.01 10	1	51.1 15 25	5	15 1	•		J^{π} : dipole γ to 0^+ : γ to 3^+ can only be D.E2.
4055.22 30	1+	29.3 ps 26		i LM			XREF: i(4054).
		1					J^{π} : M1 γ to 0^+ .
4083.68 6	(1-,2)		В				J ^{π} : ε feeding (log <i>ft</i> =6.9) from 1 ⁻ ; γ to 3 ⁻ .
4086.58 19	$(1,2,3^+)$		В				J^{π} : γs to 1^+ , 2^+ , 2^- .
4119 4	2-,3-,4-			I	Р		XREF: I(4103).
4125 5 10	1.+	100 6 05					J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ .
4125.5 10	1'	123 fs 25		I LM			XREF: $I(4137)$.
							J ^{**} : MI γ to 0 [*] . T ₁ , γ weighted average of 134 fs 25 from ($\alpha \alpha'$)
							and 98 fs 38 from (nol $\gamma \gamma'$)
4151.36 6	(2)		В				J^{π} : ε feeding (log $ft=7.2$ from 1 ⁻): vs to 3 ⁺ and
	(-)		-				3 ⁻ .
4170 4	(4 ⁺)			i	Р	W	J^{π} : L(p,p')=4.
4174.33 6	(1,2)		В	i		W	J ^{π} : ε feeding (log <i>ft</i> =6.7) from 1 ⁻ ; 2383 γ to 0 ⁺ .

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF	1		Comments
4199.19 5	$(1^{-},2)$		В			J^{π} : ε feeding (log f	$t=6.8$) from 1 ⁻ ; γ to 3 ⁻ .
4205.44 5	$(1^{-},2)$		В	J		J^{π} : ε feeding (log fi	$t=6.9$) from 1 ⁻ ; γ to 3 ⁻ .
4214.0 4	(8-)	1.7 ps +15-8		G		J^{π} : $\Delta J=2$, E2 γ to (6 ⁻).
4218 4	(3 ⁻)	-			Р	J^{π} : L(p,p')=3.	
4218.81 10	1+	2.98 fs 35		I LM		XREF: I(4218).	
						J^{π} : M1 γ to 0^+ .	
4240.54 21	$(1 \text{ to } 4)^{a}$			iJ	Р	XREF: i(4250).	
4249.20 28	(1,2)		В	i		XREF: i(4250).	
						J^{π} : 4249 γ to 0 ⁺ .	
4257.59 13	(1,2)		В	iJ		XREF: i(4250).	
						J^{π} : 2087 γ to 0 ⁺ .	
4282.8 4	$(2^{-}, 3^{-}, 4^{-})$			iJ		XREF: i(4301).	
						J^{π} : L(³ He,d)=2+4 f	from $3/2^{-}$.
4298.87 9	$(1,2,3^+)$		В	i		XREF: i(4301).	
						J^{π} : γs to 1^+ , 2^- , 2^+	•
4299.5 <mark>6</mark> 5	10+	0.49 ps +10-7	E	G		J^{π} : $\Delta J=2$, E2 γ to 8	³⁺ ; member of rotational band.
4324.6 ^e 6	(9)-	1.4 ps 4		G		J^{π} : $\Delta J=2$, E2 γ to 7	^{7–} ; band assignmetn.
4328.36 7	(1,2)		В			J^{π} : 4328 γ to 0 ⁺ .	
4329.2 4	1	6.1 fs 15		L		J^{π} : $\gamma(\theta)$ in (γ, γ') ; d	ipole γ to 0 ⁺ and 2 ⁺ .
4340 4	(3-)			i	Р	J^{π} : L(p,p')=3.	
4347.53 <i>33</i>	(1,2)		В	i		XREF: i(4343).	
						J^{π} : 4347 γ to 0 ⁺ .	
4351.3 7	$(1 \text{ to } 4)^{a}$			iJ		XREF: i(4343).	
4366.55 11			В			J^{π} : γ s to 2 ⁺ and 3 ⁺	
4369.43 22	(4^{+})			IJ		XREF: I(4375).	
						J^{π} : L(p,p')=4.	
4383.97 15	$1^+, 2^+, 3^+$			IJ		XREF: I(4400).	
4399 <i>4</i>	(4 ⁺)				Р	J^{π} : L(p,p')=4.	
4405.9 ^d 4	(9^+)	0.9 ps 2	Е	G		J^{π} : $\Delta J=2$, (E2) γ to	7 ⁺ ; band assignment.
4411.65 4	(2)	1	В			J^{π} : ε feeding (log fi	$t=6.3$) from 1 ⁻ ; γ s to 3 ⁺ and 3 ⁻ .
4425 10	$(3^{-},4^{+})$					J^{π} : L(p,t)=(3,4) frm	n 0 ⁺ .
4437.72 5	$(1^+, 2^+)$		В	I	р	XREF: I(4425)p(44	47).
						J^{π} : ε feeding (log fi	$t=6.6$) from 1 ⁻ ; 2267 γ to 0 ⁺ ;
						$L(^{3}He,d)=1+3$ fo	r a group at 4425.
4451.92 11	$(1^+, 2^+)$		В	I		XREF: I(4459).	
						J^{π} : 4451.8 γ to 0 ⁺ ;	$L(^{3}He,d)=1+3$ from $3/2^{-}$ for a
						group at 4459.	
4473.46 8	(2^{+})		В	iJ	Р	XREF: i(4475).	
						J^{π} : L(p,p')=(2).	
4489.23 6	(1,2)		В	iJ		XREF: i(4475).	
						J^{π} : 2698 γ to 0 ⁺ .	
4523.47 10	(3 ⁻)		В	IJ	Р	J^{π} : L(p,p')=3.	
4532.91 12	$(1^{-},2,3)$		В			J^{π} : γ s to 2 ⁺ , 2 ⁻ , 3 ⁻	
4534.93 8	(0,1,2)	10.1.6.17	В			J^{π} : ε feeding (log fi	t=6.7 from 1 ⁻).
4535.7 5	1+	10.1 fs 17		LM		J^{μ} : MI γ to 0^{+} .	
4576 11 10	(1.0)		-	-		$\Gamma_{1/2}$: from (γ, γ') .	Other: 10.1 is 24 from (pol γ, γ').
45/6.11 19	(1,2)		В	1		XREF: $I(4567)$.	
1591 05 10	(1,2)		D			J^{T} : 5455.87 to U'.	$t = 6.6$) from 1^{-1} , 2152 , $t = 2^{-1}$
4301.03 10	(1,2) $(1,2)^+$		D D	т		$J = \mathcal{E}$ recaining (log fl VDEE: $I(A \leq 0.2)$	$1=0.01$ from 1 ; 2152 γ to 3 .
T003.20 20	(1,2)		Б	1		π_{1} π_{1} π_{1} π_{1} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{2} π_{1} π_{2} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{1} π_{2} π_{1} π_{1	3 Ha d) = 1 + 2 from $2/2^{-1}$
1603 3 6	1-	8.0 fc 24		м		J^{-} . 40057 to U ⁻ ; L($\pi = \pi = \pi = 1 + 3 \mod 3/2$.
4003.3 0	(3^{-})	0.0 18 24		n	D	$J = E [\gamma 0 0]$. $I^{\pi} \cdot I (n n') = 3$	
4647 10	(3)			-	г	(p,p)=3.	
4647 10	1',2',3"			T			

⁷⁶Se Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \#}$	$T_{1/2}^{\ddagger}$		Х	REF		Comments
4658 4	(3 ⁻)			I		Р	XREF: I(4677).
							J^{π} : L(p,p')=3 and L(³ He,d)=2+4 from 3/2 ⁻ .
4663.08 31	1-	5.4 fs 9			LM		J^{π} : E1 γ to 0^+ .
4673.7 14	1+	54 fs 18			M		J^{π} : M1 γ to 0 ⁺ .
4687.21 11	$(1,2,3^+)$	0.40 7	В				J^{n} : γ s to 1 ⁺ , (3).
4687.3 4	$(10)^+$	0.49 ps 7	_	EG			J^{π} : $\Delta J=2$, E2 γ to 8^+ and γ to $(10)^+$.
4/20.6 5	1	6.4 fs 9	В		LM		J [*] : E1 γ to U [*] and 2 [*] . T : from (a) all 2 [*] .
4723.2.4	(3^{+})		R	÷		P	$\Gamma_{1/2}$: from (γ, γ). Other: 0.4 is 10 from (pol γ, γ).
7723.2 7	(3)		D	1			J^{π} : L(³ He,d)=1+3 from 3/2 ⁻ for a 4729 group gives 1 ⁺ ,2 ⁺ ,3 ⁺ and L(p,p')=4 gives 4 ⁺ . However, J^{π} =3 ⁺ would agree with both if unnatural parity state is
							populated in (p,p').
4728.6 6				G			J^{π} : γ to 7 ⁻ suggests (7,8,9).
							$T_{1/2}$: for a 128/ γ , from DSAM 1981KiZW report $T_{1/2}$ =0.6 ps <i>I</i> , but this value is not reported in authors' published work (1984Zo01).
4731.6 4	(*)		В	i			XREF: i(4729).
							J ^{π} : L(³ He,d)=1+3 from 3/2 ⁻ for a 4729 group gives 1 ⁺ ,2 ⁺ ,3 ⁺ .
4751.6 5	1 ⁺ ,2 ⁺ ,3 ⁺			IJ			
4766.96 30	1	17.4 fs 15			L		J^{π} : dipole γ to 0^+ .
4771 4	(3 ⁻)		_			Р	J^{π} : L(p,p')=(3).
4794.97 13	(1,2)		В				$J^{\pi}: 36/2.5\gamma$ to 0^{+} .
4811 4	1 ⁺ ,2 ⁺ ,3 ⁺ 			I		Р	
4836 10	1 ⁺ ,2 ⁺ ,3 ⁺			I			
4859 4	(*)			I		Р	J ^{π} : L(³ He,d)=1+3 from 3/2 ⁻ allows (1 ⁺ ,2 ⁺ ,3 ⁺) but L(p,p')=4 suggests 4 ⁺ . However, J ^{π} =3 ⁺ agrees with both if an unnatural parity state is populated in (p,p').
4880.0 4	1-	19.7 fs 19			LM		J^{π} : E1 γ to 0 ⁺ .
							T _{1/2} : weighted average of 19.9 fs 19 from (γ, γ') and 19 fs 4 from (pol γ, γ').
4887.07 30	1-	27.0 fs 33			LM		J^{π} : E1 γ to 0 ⁺ .
	0						$T_{1/2}$: from (γ, γ') . Other: 27 fs 9 from (pol γ, γ').
4911 10	1 ⁺ ,2 ⁺ ,3 ⁺			I			
4931.6 17	1-	79 fs 21			LM		J^{π} : E1 γ to 0 ⁺ .
4935 4	(3 ⁻)	12 6 6		I		Р	J^{n} : L(p,p')=3.
4938.6 15	l 1+	43 fs 8		-	L		J ^{γ} : dipole γ to 0 ⁺ .
49/1.5 1/	1 ' 1 -	38 Is /		1	L		J^{\prime} : L(³ He,d)=1+3 FROM 3/2 ; dipole γ to 0 ⁺ .
4984.81 31	1	0.0 18 0			Ln		J^{*} : E1 γ 10 0 [*] . True: from (γ α') Other: 6.0 fs 11 from (nol γ α')
4009 4	$1 + 2 + 2 + \frac{8}{2}$			-		D	$1_{1/2}$: from (y, y). Other, 0.0 is 11 from (por y, y).
4998 4	1-,2+,3+	$0.1 f_{0.6}$		1	м	Р	πKEF : I(5015).
5010 76 21	1 1 ⁻	8.4 18 0 3.65 fs 35			TI TM		$J : EI \gamma to 0$. $I^{\pi} : E1 \alpha to 0^+$
5032 11 10	$(2^{-} 3^{-} 4^{-})$	5.05 18 55		тт	LII		T _{1/2} : from (γ, γ') . Other: 3.7 fs 7 from (pol γ, γ').
5052.11 17	(2,5,7)			15			J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ .
5068.1 ^f 8	(10)-	1.0 ps +4-2		G			J^{π} : $\Delta J=2$, E2 γ to (8) ⁻ ; band assignment.
5074.00 10	1-	2.44 fs 15			LM		J^{π} : E1 γ to 0^+ .
							T _{1/2} : from (γ, γ') . Other: 2.43 fs 28 from (pol γ, γ').
5081 4	(3) ⁻			I		Р	J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ and L(p,p')=3.
5122.19 20	1	35 fs 8			L		J^{π} : dipole γ to 0 ⁺ .
5128.59 10	1	25 ts 4			L		J ^{α} : dipole γ to 0^{+} .

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	7	Comments
5139.9.5	$(1 \text{ to } 4)^{a}$		1		
5142.3 7	1	26.1 fs 32	L		J^{π} : dipole γ to 0^+ .
5174 <i>4</i>	(3 ⁻)			Р	J^{π} : L(p,p')=3.
5195.00 15	1-	2.27 fs 17	J LM		J^{π} : E1 γ to 0 ⁺ .
5017 0 11	1-	10.1.6.06			$T_{1/2}$: from (γ, γ') . Other: 2.29 fs 28 from (pol γ, γ').
5217.8 11	1	12.1 fs 26	M		J^{π} : El γ to 0 ⁺ .
5239.6 8	$\left \right $	9.6 fs 15	L		J^{π} : dipole γ to 0^{π} .
5201 4	(4.)	$0 4 f_{-} \epsilon$		Р	$J^{\pi}: L(p,p) = 4.$
5284.40 50	(1^{\pm})	8.4 IS 0	L		J^{π} : apple γ to 0^{π} .
5297.90.50	(1)	15./18.0 $1.09.f_{\odot}.11$	LI T M		J^{-1} (M1) γ to 0.
5298.00 10	1	1.98 18 11	Lfi		$J : EI \gamma = 0 0$. T $\downarrow 2.56$ fs 22 in (not $\alpha(\alpha')$) where only the 5208 α
					$T_{1/2}$. 5.50 is 25 in (pol γ, γ), where only the 5298 γ from this level was listed.
5303 4	(3^{-})			Р	J^{π} : L(p,p')=3.
5324.18 29	1-	3.12 fs 35	LM		J^{π} : E1 γ to 0 ⁺ .
					$T_{1/2}$: other: 8.8 fs 7 in (γ, γ') , where only the 5324 γ
					from this level was listed.
5346.94 <i>23</i>	1-	3.4 fs 4	LM		J^{π} : E1 γ to 0 ⁺ .
					$T_{1/2}$: from (γ, γ') . Other: 3.5 fs 8 from (pol γ, γ').
5367.5 13	1	44 fs 10	L		J^{π} : dipole γ to 0^+ .
5368.3 ^d 5	(11^{+})		Е		J^{π} : γ to $(10)^+$; band assignment.
5375.45 18	1-	1.43 fs 13	LM		J^{π} : E1 γ to 0^+ .
					$T_{1/2}$: from (γ, γ') . Other: 1.46 fs 14 from (pol γ, γ').
5405.2 18	1-	26 fs 8	M	Р	J^{π} : E1 γ to 0 ⁺ .
5411.33 29	1-	1.53 fs 33	LM		J^{π} : E1 γ to 0 ⁺ .
					$T_{1/2}$: from (γ, γ') . Other: 1.5 fs 4 from (pol γ, γ').
5425.21 26	1-	3.6 fs 4	LM		J^{π} : E1 γ to 0 ⁺ .
5431.8 ⁰ 6	12^{+}	0.2 ps 1	EG		J^{π} : $\Delta J=2$, (E2) γ to 10 ⁺ ; member of rotational band.
5510 10			I		
5551.8 <i>15</i>	1-	9.4 fs 24	M		J^{π} : E1 γ to 0 ⁺ .
5629.8 15	1-	24 fs 8	М		J^{π} : E1 γ to 0^+ .
5637.7 15	1-	24 fs 8	M		J^{π} : E1 γ to 0 ⁺ .
5669.2 15	1-	22 fs 8	M		J^{π} : E1 γ to 0 ⁺ .
5685.5 4	1-	8.0 fs 7	LM		J^{π} : E1 γ to 0 ⁺ .
5709.8 4	1-	7.4 fs 7	LM		J^{n} : E1 γ to 0 ⁺ .
5/40.73 30	1-	5.6 fs 5	LM		J^{n} : El γ to 0^{+} .
5762.0 10	1-	15.7 ts 34	M		J^{n} : El γ to 0^{+} .
5//3.3 10	1	17.9 fs 20	LM		$J^{\prime\prime}$: El γ to 0 ⁺ .
					$I_{1/2}$: weighted average of 19.2 is 32 from (γ, γ') and 17.1 for 26 from (η, η')
5781 24 20	1-	$2.04 f_{\odot} 20$	тм		17.1 IS 20 from (pol γ, γ).
5761.24 20	1	3.94 18 29	LII		J. ET γ to 0. The property of 3.00 fs 20 from (α, α') and
					$4.4 \text{ fs } 10 \text{ from (nol } \gamma \gamma')$
5796.7 <mark>°</mark> 5	(12^{+})		E		I^{π} : γ to 10 ⁺ : band assignment.
5804.0 6	1-	2.8 fs 6	LM		J^{π} : E1 γ to 0 ⁺ .
	-				$T_{1/2}$: weighted average of 3.1 fs 8 from (γ, γ') and 2.6
					fs 6 from (pol γ, γ').
5813.9 5	1-	8.0 fs 8	LM		J^{π} : E1 γ to 0^+ .
5842.31 29	1-	3.1 fs 4	LM		J^{π} : E1 γ to 0 ⁺ .
					$T_{1/2}$: weighted average of 3.28 fs 24 from (γ, γ') and
					2.1 fs 6 from (pol γ, γ').
5865.3 7	1-	7.6 fs 11	M		J^{π} : E1 γ to 0^+ .
5879.6 6	1-	14.8 fs 19	LM		J^{π} : E1 γ to 0 ⁺ .
5892.30 <i>31</i>	1-	3.4 fs 5	LM		J^{n} : E1 γ to 0 ⁺ .
5939.0 5	$(1 \text{ to } 4)^{u}$		J		

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi #}$	$T_{1/2}^{\ddagger}$	XREF	Comments
5996.1 9	1-	5.3 fs 12	LM	J^{π} : E1 γ to 0 ⁺ .
6005 10			т	$1_{1/2}$: other: 0.94 is 27 in (γ, γ).
6035 4 5	1-	2.6 fs 4	т. т.м	I^{π} : E1 γ to 0^+
0055.4 5	1	2.0 13 4	LII	J = LT = 0.00. The other of the fin (α, α') for only the 6035 α
6099 3 4	1-	28 fs 5	тм	$I_{1/2}^{\pi}$. Outer: 0.1 is 0 in (y, y) for only the 0055 y. I^{π} : E1 α to 0^+
6131 5 6	1	11.5 fs 18	IM	$J : E1 \gamma to 0^+$
6156.6.14	1	55 fs 10	M	J^{π} : E1 γ to 0 ⁺
6165 1 11	1-	21 fs 6	M	J^{π} : E1 γ to 0 ⁺
6106.2.11	1	10.0 fc 13	M	J^{π} : E1 γ to 0 ⁺
6208 7 15	1	5.0 fs 10	M	$J = E I \gamma t = 0^+$
6242.7.6	1	$2.6 f_0 11$	II IM	$\mathbf{y} = \mathbf{y} = $
0242.7 0	1	2.0 18 11	LI	E(level): evaluators assume that 6242.7 in (pol γ, γ') and 6247.4 in (γ, γ') correspond to the same level. J ^{π} : E1 γ to 0 ⁺ .
				$T_{1/2}$: other: 4.6 fs 6 in (γ, γ') .
6250.7 5	1-	5.6 fs 8	LM	XREF: L(6254.0).
				E(level): evaluators assume that 6250.7 in (pol γ, γ') and
				6254.0 in (γ, γ') correspond to the same level.
				J^{n} : El γ to 0^{+} .
				$T_{1/2}$: weighted average of 5.5 is 8 from (γ, γ') and 5.8 is 15 from (pol γ, γ').
6297.9 14	1-	10.0 fs 15	LM	J^{π} : E1 γ to 0 ⁺ .
6315.9 4	1-	3.1 fs 4	LM	J^{π} : E1 γ to 0 ⁺ .
				$T_{1/2}$: weighted average of 2.97 fs 25 from (γ, γ') and 5.1 fs 12 from (pol γ, γ').
6336.8 20	1-	4.4 fs 23	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: unweighted average of 6.6 fs 13 from (γ, γ') and 2.1 fs 10 from (pol γ, γ').
6342.64 29	1-	0.28 fs 7	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: other: 5.1 fs 8 in (γ, γ') from only the 6342 γ .
6387.5 14	1-	6.7 fs 10	LM	J^{π} : E1 γ to 0 ⁺ .
6438.1 19	1	8.4 fs 19	L	
6449.0 20	1-	6.1 fs 10	LM	J^{π} : E1 γ to 0 ⁺ .
6497.7 6	1-	3.6 fs 14	LM	J^{π} : E1 γ to 0 ⁺ .
				T _{1/2} : unweighted average of 5.0 fs 6 from (γ, γ') and 2.2 fs
				7 from (pol γ, γ').
6500.8 <mark>d</mark> 6	(13^{+})		F	
6532 7 4	1-	3.05 fs 28	L IM	I^{π} : F1 γ to 0^+
6551.00.30	1+	11 0 fs 10	IM	$J^{\pi}: M1 \times to 0^{+}$
6562.0.0	1	7.60 fs 28	IM	$J : MI = 0^+$
0502.9 9	1	7.09 18 20	LII	\mathbf{T}_{i} is from (nol $\alpha \alpha'$). Other: 8.1 fs 15 from ($\alpha \alpha'$)
6570 4 0	1-	4.0 for 6	тм	$\pi_{1/2}$. from (por y, y). Other. 8.1 is 15 from (y, y).
6506.2.7	1	4.9180 55 fo 7		$J = E T \gamma t 0 0$. I^{π} : E1 at to 0^+
6608 5 0	1	5.5 18 7		π E1 γ 10 0 .
6621.9.7	1 1-	0.0180 120 fo 28	LM	$J : EI \gamma I 0 0$. $I = I + I + I = 0^+$
0031.8 /	1	1.39 18 20 5 5 f - 12	Ln	J^{*} : EI γ to 0^{+} .
0041.3 1/	1 1-	$5.5 \ 18 \ 12$	n M	J^{*} : EI γ to U^{*} .
6653.7 14	1	3.3 IS /	M	$J^{\prime\prime}$: EI γ to 0^+ .
6680.0 18	1 1-	6.1 fs /	M	$J^{\prime\prime}$: EI γ to 0° .
6691.5 8	I	9.9 fs 16	LM	J ^A : E1 γ to 0 ⁺ . $T_{1/2}$: weighted average of 9.6 fs 16 from (γ, γ') and 10.2 fs 17 from (not γ, γ')
6700.3 20	1-	8.2 fs 21	м	J^{π} : E1 γ to 0 ⁺ .
6709.0 21	1-	9.1 fs 25	M	J^{π} : E1 γ to 0 ⁺ .
6736.2.15	1-	9.1 fs 25	M	J^{π} : E1 γ to 0 ⁺ .
				· · · · · ·

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
6743.31 28	1-	1.11 fs <i>14</i>	LM	J^{π} : E1 γ to 0 ⁺ .
6749.2 4	1-	1.32 fs 21	LM	J^{π} : E1 γ to 0 ⁺ .
6751 5 <mark>b</mark> 7	(14^{+})		F	
6813.0.20	(14)	16 fs 6	M	I^{π} : E1 γ to 0^+
6830 2 15	1	$83 f_{\rm c} 18$	M	$J : E1 \gamma to 0^+$
688276	1-	1.52 fs 28	II I M	π : E1 γ to 0 ⁺
6008 3 20	1	1.52 15 20 15 fc A	M	$J : E1 \neq 000$. $I^{\pi}: E1 \approx t_0 0^+$
6012 2 17	1 1+	13 18 4 $14 f_0 4$	M	J = M + M + M + M + M + M + M + M + M + M
6022 2 18	1 1-	14 18 4 12 6 fc 33	n M	J : MI Y = 0 0. $I^{\pi}: E1 \approx t_0 0^+$
6070.2.5	1	12.0 18 33	II I M	J^{*} . E1 γ 10 0 . VDEE , L (ζ 072 0)
0970.5 5	1	4.0 18 9	Ln	AKEF: $L(09/5.0)$. E(loval): evaluators assume that 6070.2 in (not $a(a')$) and
				E(level). Evaluators assume that $0970.5 \text{ In (pol } \gamma, \gamma)$ and $6072.0 \text{ in } (\alpha, \alpha')$ correspond to the same level
				$\pi_{\gamma} = \pi_{\gamma} + \pi_{\gamma} + \pi_{\gamma}$ correspond to the same level.
6002.0.5	1-	$2.2 f_{0} 5$	TM	π . E1 γ 10 0 .
0992.9 3	1 1-	5.5 IS J	LII	$J : EI \gamma I 0 0$.
7018.1 18	1 1+	11 18 3 $12 f_{-} 4$	II M	J^{*} : EI γ to U^{*} .
7025.1 20	1+	12 IS 4	n M	J^{*} : EI γ to 0^{+} .
7047.4 15	1-	14 IS 3	M	J^{*} : E1 γ to 0^{+} .
7055.1 19	(1.4+)	12.5 18 57	n F	J^{*} : EI γ to 0 [*] .
7084.5 0	(14.)	11.0.6.20	E	π Γ_1 (0^+
7093.1 20	1	11.2 18 50	n	J^{π} : EI γ to 0^{+} .
7101.1 19	1 1+	11.4 IS 33	M	$J^{\prime\prime}$: EI γ to U^{\prime} .
7110.1 19	1-	10.0 Is 29	n M	$J^{*}: MI \gamma lo 0^{+}.$
7115.5 12	1 1-	2.9 18 10	II M	J^{*} : EI γ to 0^+ .
7128.4 11	1 1-	0.80 IS 21	n M	J^{*} : EI γ to 0^{+} .
/150.0 1/	1 1-	1.0 IS 21	II M	J^{*} : EI γ to U^{*} .
7105.1.10	1 1-	11.8 18 33	n M	J^{*} : EI γ to 0^{+} .
7195.0 14	1 1-	$0.3 \ 18 \ 18$	II M	J^{*} : EI γ to U^{*} .
7225.0 20	1	0.0 IS <i>I</i> 3	n L M	J^{*} : EI γ to 0^{+} .
/241.6 /	1	4.5 IS 8	LM	J^{*} : El γ to U [*] .
				$1_{1/2}$: weighted average of 4.3 is 8 from (γ, γ) and 4.9 is 10
7000 0 15	1 -	106 10	ж	If γ, γ).
7292.8 15	1	4.0 IS <i>10</i>	n	J^{π} : EI γ to 0^{+} .
7324.6 18	1 1-	8.3 IS 24	M	J^{n} : EI γ to U^{n} .
7335.0 20	1 1-	$10.5 \ 18 \ 55$	n M	J^{*} : EI γ to 0^{+} .
7342.2 14	1 1-	$4.0 \ 18 \ 12$ 12 fo 4	II M	J^{*} : EI γ to 0^+ .
7302.2 21	1 1-	12 18 4 $12 f_{-} 4$	n M	J^{*} : EI γ to 0^{+} .
7392.0 8	1 1-	13 18 4	II M	J^{*} : EI γ to 0^+ .
7400.0 11	1 1-	2.4 18 12	n M	J^{*} : EI γ to 0^{+} .
7427.1 14	1 1-	$4.2 \ 18 \ 11$ 2 0 fs 12	II I M	$J : E1 \gamma (0 0)$.
1455.5 15	1	5.9 18 15	LII	AREF. $L(7437.0)$. E(loval): evaluators assume that 7455.5 in (not $a(a')$) and
				E(level). Evaluators assume that $7455.5 \text{ in } (\text{pol} \gamma, \gamma)$ and $7457.6 \text{ in } (\alpha \alpha')$ correspond to the same level
				π F1 α to 0^+
				J. ET γ to 0.
				6 from (pol $\alpha \alpha'$)
7464 0 14	1-	18 fc 6	м	I^{π} : E1 α to 0^+
7508 / 8	1-	1.0 18 0 4.0 fs 5	IM	$J : E I \neq 0 0 0$. $I^{\pi}: E I \approx 0^{+}$
752275	1-	1 18 fc 21	IM	$J^{\pi} \cdot E1 \gamma \text{ to } 0^+$
7546.0.6	1	1.10 15 21 1.63 fs 1/	IM	$J : E1 \gamma to 0^+$
7540.9 0	1	1.05 18 14	LII	J. ET Y 100 . Two: weighted average of 1.50 fs 14 from (α, α') and 1.66 fs
				$1_{1/2}$. weighted average of 1.59 is 17 from (y, y) and 1.00 is 14 from (nol y/y')
7580 5 16	1-	83 fs 23	м	I^{π} . F1 γ to 0^+
7617 2 17	1-	5.5 fs 11	M	$J^{\pi} \cdot E1 \gamma \text{ to } 0^+$
7627 8 15	1-	41 fs 8	ri M	$J^{\pi} \cdot E_{1} \gamma \text{ to } 0^{+}$
7643 3 17	1-	7.1 13 0 7 5 fs 10	M	$I^{\pi} \cdot E_{1} \times t_{0} 0^{+}$
1073.3 1/	1	1.5 15 17	11	J. LI / 10 U.

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi #}$	$T_{1/2}^{\ddagger}$	XREF	Comments
7652.9 17	1-	4.1 fs 8	М	J^{π} : E1 γ to 0 ⁺ .
7658.71 20	1-	6.4 fs 10	LM	J^{π} : E1 γ to 0 ⁺ .
7698.3 8	1-	0.97 fs 28	LM	J^{π} : E1 γ to 0 ⁺ .
				T _{1/2} : other: 2.22 fs 28 in (γ, γ') from only the 7698 γ .
7729.7 16	1-	3.7 fs 8	М	J^{π} : E1 γ to 0 ⁺ .
7781.6 18	1-	6.9 fs 22	М	J^{π} : E1 γ to 0 ⁺ .
7817.5 10	1-	9.7 fs 35	М	J^{π} : E1 γ to 0 ⁺ .
7830.0 9	1-	9.0 fs 35	M	J^{π} : E1 γ to 0 ⁺ .
7816 9d 7	(15^{+})		F	
7866 1 17	1-	83 fs 27	M	I^{π} . E1 \sim to 0^+
7890.9 18	1-	7.8 fs 25	M	J^{π} : E1 γ to 0 ⁺
7020 1 17	1-	5.1 fs 16	M	J^{π} : E1 y to 0.
7920.1 17	1-	5.1 fs 10 5.3 fs 17	M	$\pi \cdot E_1 \times t_0 0^+$
7052 1 21	1-	7.1 fs 24	M	J^{π} : E1 y to 0.
7960 / 18	1-	5.0 fs 10	M	J^{π} : E1 y to 0.
7070 0 8	1	3.0 fs 6	T M	$J : E1 \neq 000$. $I^{\pi} : E1 \approx to 0^+$
1717.00	1	5.0 13 0	LII	The weighted average of 2.8 fs 6 from $(\alpha \alpha')$ and 3.3 fs 8
				from (nol $\gamma \gamma'$)
8017 9 23	1-	66 fs 21	м	I^{π} : F1 γ to 0^+
8062 5 22	1-	5.4 fs 17	M	I^{π} : E1 γ to 0 ⁺
8082 7 18	1-	2.1 fs 8	M	I^{π} : E1 γ to 0 ⁺
8107 3 22	1-	5.7 fs 17	M	J^{π} : E1 γ to 0 ⁺
8132 1 22	1-	5.7 fs 17	M	I^{π} : E1 γ to 0 ⁺
8154 9 21	1-	6.5 fs 19	M	I^{π} : E1 γ to 0 ⁺
8170 1 22	1-	6.0 fs 17	M	I^{π} : E1 γ to 0 ⁺
8198.0.10	1-	0.76 fs 14	TM	I^{π} : E1 γ to 0 ⁺
8210.5 20	1-	4.0 fs 10	M	J^{π} : E1 γ to 0 ⁺ .
8222.5.20	1-	2.5 fs 6	M	J^{π} : E1 γ to 0 ⁺ .
8251.9 23	1-	12 fs 5	M	J^{π} : E1 γ to 0 ⁺ .
8268 5 <mark>b</mark> 8	(16^{+})		F	
8288 5 23	1-	36 fs 9	M	I^{π} : F1 γ to 0 ⁺
8316 7 22	1-	61 fs 21	M	I^{π} : E1 γ to 0 ⁺
8340 7 10	1-	4 4 fs 13	M	I^{π} : E1 γ to 0 ⁺
8394 9 19	1-	2.50 fs 35	ΙM	I^{π} : E1 γ to 0^+
8453.5 21	1-	2.8 fs 7	M	J^{π} : E1 γ to 0 ⁺ .
8486.5 18	1-	0.91 fs 23	M	J^{π} : E1 γ to 0 ⁺ .
8528.1.4	1-	0.48 fs 10	I.M	J^{π} : E1 γ to 0 ⁺ .
8539.8 11	1-	0.94 fs 17	M	J^{π} : E1 γ to 0 ⁺ .
8571.7 19	1-	1.7 fs 5	M	J^{π} : E1 γ to 0 ⁺ .
8573.8 [°] 8	(16^{+})		Е	,
8590.1 20	1-	2.3 fs 8	М	J^{π} : E1 γ to 0 ⁺ .
8654.9 19	1-	2.0 fs 6	М	J^{π} : E1 γ to 0 ⁺ .
8709.9 <i>13</i>	1-	1.66 fs 28	LM	J^{π} : E1 γ to 0 ⁺ .
8719.5 21	1-	3.0 fs 10	М	J^{π} : E1 γ to 0 ⁺ .
8770.9 <i>23</i>	1-	1.9 fs 6	М	J^{π} : E1 γ to 0 ⁺ .
8843.4 14	1-	0.83 fs 42	М	J^{π} : E1 γ to 0 ⁺ .
8864.8 20	1-	2.9 fs 9	M	J^{π} : E1 γ to 0 ⁺ .
8890.8 19	1-	2.1 fs 6	M	J^{π} : E1 γ to 0 ⁺ .
8918.8 <i>19</i>	1-	2.1 fs 6	M	J^{π} : E1 γ to 0 ⁺ .
8935.6 20	1-	2.6 fs 8	M	J^{π} : E1 γ to 0 ⁺ .
9394.7 ^d 8	(17^{+})		E	
9963.8 ^b 10	(18^{+})		E	
11147.1 ^d 10	(19 ⁺)		Е	
(11154.197)	2+,3+		J	J^{π} : s-wave capture in ⁷⁵ Se (g.g. $J^{\pi}=5/2^{+}$).

⁷⁶Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	2	KREF	Comments
				E(level): S(n)=11153.79 7 (2021Wa16).
11774.8 ^b 11	(20 ⁺)	Е		
12528 [@]			К	
12578 [@]			К	
12678 [@]			К	
12718 [@]			К	
12788@			К	
12888 @			К	
12938			К	
13138@			К	
13278			К	
13418			К	
13478			К	
13528			К	
13598			К	
13681.3 ^b 12	(22^{+})	E		
13728			К	
13928			К	
14038			К	
14118			К	
14198 [@]			К	

[†] From a least squares fit to $E\gamma$ data for levels populated in γ -ray studies. In other cases, values are mainly from (³He,d), (p,p') and/or from primary transitions in (n, γ).

[‡] Unless otherwise indictated, values for high-spin states are from recoil-distance Doppler-shift (RDDS) or DSA methods in $(\alpha, 2n\gamma)$ (1984Zo01), DSAM in $(n,n'\gamma)$, (pol γ,γ'), and from cross section data in (γ,γ') for J=1 levels above 2900 keV.

[#] When deduced from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, it is assumed that a γ -transition with large quadrupole component is E2 rather than M2, unless a long lifetime is indicated. Above /2800, values are given in parentheses when available only from L(p,p') due to following reasons: 1. The agreement of $\sigma(\theta)$ fits to DWBA is not good over the whole angular range. 2. The correspondence between levels in different reactions is not unique due to large level density and large uncertainties in E(level) from particle reactions. Above 2900 keV, levels populated in (γ, γ') and $(\text{pol } \gamma, \gamma')$ are primarily J=1 states, determined from $\gamma(\theta)$ and $\gamma(\text{pol)}$ data.

[@] Isobaric analog resonances from 75 As(p,n). Uncertainty ≈ 25 keV. See 75 As(p,n) IAR for assignment to analog states in 76 As.

- $^{\&}$ L(³He,d)=1+3 from 3/2⁻.
- ^{*a*} Primary γ from 2⁺,3⁺ in (n, γ).
- ^b Band(A): Yrast band based on ground state. First band crossing at $\hbar\omega\approx 0.55$ MeV due to pair of $g_{9/2}$ neutrons, second crossing at $\hbar\omega\approx 0.80$ MeV, due to pair of $g_{9/2}$ protons, and interpreted as shape transition from prolate to oblate (2015Xu09). Band parameters are: E₀=196.0, A=51.8, B=-0.12.
- ^{*c*} Band(B): γ band, even spin.
- ^d Band(b): γ band, odd spin.
- ^{*e*} Band(C): $K^{\pi}=3^{-}$ band. Band parameters are: E₀=2178.1, A=20.4, B=0.038.
- ^{*f*} Band(D): $\Delta J=2$ band. Band parameters are: E₀=2514.8, A=15.3, B=0.072.

$\gamma(^{76}\text{Se})$

Additional information 3.

	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	$I_{(\gamma+ce)}$	Comments
	559.103	2+	559.099 5	100	0.0	0+	E2		1.97×10 ⁻³ 3		B(E2)(W.u.)=45.1 +12-6 α (K)=0.001747 24; α (L)=0.0001872 26; α (M)=2.91×10 ⁻⁵ 4 (A)=2.452×10 ⁻⁶ 24
	1122.279	0+	563.171 7	100	559.103	2+	E2		1.92×10 ⁻³ 3		$\begin{array}{l} \alpha(N) = 2.452 \times 10^{-5} 34 \\ B(E2)(W.u.) = 47 \ 11 \\ \alpha(K) = 0.001710 \ 24; \ \alpha(L) = 0.0001832 \ 26; \\ \alpha(M) = 2.85 \times 10^{-5} \ 4 \end{array}$
			1122.3 <i>3</i>		0.0	0+	E0			0.023 5	α (N)=2.400×10 ⁻⁶ 34 $q_{\rm K}^2$ (E0/E2)=0.133 15, X(E0/E2)=0.0246 31, ρ^2 (E0)=0.035 +14-13 (2022Ki03 evaluation).
1	1016 154	2+	(57.041.5	100.0.22	550 102	2+	F2 · M 1(· F0)	.5.2.2	1 22 10-3 2		X(E0/E2)=0.023 4 (1986Gi12); ρ (E0)=0.17 4 (1986Gi12), 0.19 4 (1983Pa10) from ce data in ⁷⁶ Br ε decay.
5	1216.154	21	657.041 5	100.0 22	559.103	21	E2+M1(+E0)	+5.2 2	1.23×10 ³ 2		B(M1)(W.u.)=5.31×10 ⁻⁴ +/1-59; B(E2)(W.u.)=44.7 +45-38 α (K)=0.001090 15; α (L)=0.0001159 16; α (M)=1.802×10 ⁻⁵ 25 α (N)=1.524×10 ⁻⁶ 21
											Mult., δ : from $\gamma(\theta)$ in ⁷⁶ As β^- . Others: +6 1 ($\gamma\gamma(\theta)$ in ⁷⁶ Br ε); +4.7 +11–20 (α ,2n γ). E0 from α (K)exp=0.00167 15 (1970Dz09) in ⁷⁶ Br ε decay.
											$q_{\rm K}^2(E0/E2)=0.14; \ \rho(E0)=0.41 \ (1980G112).$ $q_{\rm K}^2(E0/E2)=0.25 \ 14, \ X(E0/E2)=0.11 \ 6, \ \rho^2(E0)=0.140 \ 80, \ \%E0=19 \ (2022Ki03 \ evaluation).$
			1216.149 25	58.0 22	0.0	0+	E2		0.000281 4		B(E2)(W.u.)=1.24 +13-11 α (K)=0.0002408 34; α (L)=2.508×10 ⁻⁵ 35; α (M)=3.90×10 ⁻⁶ 5 (N)=2.22×10 ⁻⁷ 5 + (UE) + 0.000×10 ⁻⁵ 15
											$\alpha_{(IN)}=5.55\times10^{-5}$; $\alpha_{(IPF)}=1.090\times10^{-5}$ 15 I _y : NRM weighted average; low value of 37.7 26 in (α_{2} ny) is not used in averaging.
	1330.872	4+	771.757 9	100	559.103	2+	E2		0.000800 11		B(E2)($W.u.$)=71.1 <i>14</i> α (K)=0.000712 <i>10</i> ; α (L)=7.52×10 ⁻⁵ <i>11</i> ;

					Adopt	ed Levels, Gamma	as (continued)	
						$\gamma(^{76}\text{Se})$ (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
1688.971	3+	358.099 7	4.1 17	1330.872 4+	(M1+E2)		0.0059 21	$\begin{array}{l} \alpha(\mathrm{M}) = 1.170 \times 10^{-5} \ 16 \\ \alpha(\mathrm{N}) = 9.93 \times 10^{-7} \ 14 \\ \alpha(\mathrm{K}) = 0.0053 \ 19; \ \alpha(\mathrm{L}) = 5.7 \times 10^{-4} \ 22; \\ \alpha(\mathrm{M}) = 8.9 \times 10^{-5} \ 33 \end{array}$
		472.813 7	36 4	1216.154 2+	M1+E2	+3.20 +27-24	0.00316 5	$\begin{aligned} &\alpha(N) = 7.5 \times 10^{-6} \ 27 \\ &B(M1)(W.u.) = 0.0044 \ 21 \ \text{if } M1, \ B(E2)(W.u.) = 46 \ 22 \\ &\text{if } E2. \\ &\delta: +1.8 + 10 - 12 \ \text{or } +0.8 + 20 - 3 \ \text{from } (n,n'\gamma). \\ &B(M1)(W.u.) = 0.00148 \ 44; \ B(E2)(W.u.) = 92 + 23 - 25 \\ &\alpha(K) = 0.00281 \ 4; \ &\alpha(L) = 0.000303 \ 5; \\ &\alpha(M) = 4.71 \times 10^{-5} \ 7 \\ &\alpha(N) = 3.95 \times 10^{-6} \ 6 \end{aligned}$
		1129.873 <i>1</i> 6	100 5	559.103 2+	E2+M1	+1.08 10	0.000309 4	δ: from 76Br ε decay. Others: +2.1 9, +0.75 44 from γ(θ) in (α,2nγ); +0.01 to +0.73, >+2.5 or <-6.7 from γ(θ) in 76As β B(M1)(W.u.)=0.00157 +40-42; B(E2)(W.u.)=1.93 +47-53 α(K)=0.000275 4; α(L)=2.86×10-5 4; α(M)=4.44×10-6 6 α(N)=3.80×10-7 5: α(IPE)=1.573×10-6 33
1787.655	2+	456.77 5	3.06 8	1330.872 4+	[E2]		0.00365 5	δ: from γγ(θ) in 76As β- decay. Others: +1.8 12 from γ(θ) in (α,2nγ), +0.57 to +3.55 from γ(θ) in 76As β-, +1.9 2 from γγ(θ) in 76Br ε decay. B(E2)(W.u.)=21.0 +48-51 α(K)=0.00324 5; α(L)=0.000351 5; α(M)=5.46×10-5 8 α(N)=4.58×10-6 6
		571.495 9	8.7 10	1216.154 2+	(M1(+E2))	+0.13 12	1.29×10 ⁻³ 3	B(M1)(W.u.)=0.0046 +11-13; B(E2)(W.u.)=0.32 +80-29 $\alpha(K)=0.001148 \ 26; \ \alpha(L)=0.0001203 \ 29; \ \alpha(M)=1.87\times10^{-5} \ 5$ $\alpha(N)=1.60\times10^{-6} \ 4$ I _{γ} : NRM weighted average. High value of 31 from (n,n' γ) is not used. δ : from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- decay. Other: -0.13 34 or >+1.37 from $\gamma(\theta)$ in ⁷⁶ As β^- . Parity is from the Adopted L evels
		665.361 9	32.3 16	1122.279 0+	[E2]		1.19×10 ⁻³ 2	B(E2)(W.u.)= $33.7 + 77 - 82$ α (K)= 0.001062 15; α (L)= 0.0001128 16;

						Adop	ted Levels, Ga	<mark>mmas</mark> (continu	ed)
							$\gamma(^{76}\text{Se})$ (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\texttt{\#}}$	α^{\dagger}	Comments
1787.655	2+	1228.600 20	100.0 <i>19</i>	559.103	2+	M1+E2	-0.51 5	0.000264 4	$\alpha(M)=1.755\times10^{-5} 25$ $\alpha(N)=1.484\times10^{-6} 21$ B(M1)(W.u.)=0.0043 +10-11; B(E2)(W.u.)=1.00 28 $\alpha(K)=0.0002259 32; \alpha(L)=2.340\times10^{-5} 33; \alpha(M)=3.64\times10^{-6} 5$ $\alpha(M)=3.64\times10^{-6} 5$
		1787.62 2	24.3 7	0.0	0+	[E2]		0.000333 5	$ α(N)=3.12\times10^{-7} 4; α(IPF)=1.042\times10^{-5} 18 $ Mult.,δ: weighted average from $γ(θ)$ and $γγ(θ)$ in ⁷⁶ As $β^-$. Others: -0.19 5 from $γγ(θ)$ in ⁷⁶ Br ε, -0.52 +9-7 from (n,n' $γ$). B(E2)(W.u.)=0.181 +42-44 $α(K)=0.0001103 \ 15; α(L)=1.139\times10^{-5} \ 16; α(M)=1.772\times10^{-6} \ 25$
1791.437	0+	575.28 3	100.0 20	1216.154	2+	(E2)		1.81×10 ⁻³ 3	$\alpha(N)=1.517\times 10^{-7} \ 21; \ \alpha(IPF)=0.0002089 \ 29$ $\alpha(K)=0.001607 \ 22; \ \alpha(L)=0.0001719 \ 24;$ $\alpha(M)=2.67\times 10^{-5} \ 4$
		1232.40 5	13.6 4	559.103	2+	(E2)		0.000276 4	$\alpha(N)=2.253\times10^{-6} 32 \alpha(K)=0.0002340 33; \alpha(L)=2.436\times10^{-5} 34; \alpha(M)=3.79\times10^{-6} 5 $
2026.020	4+	239.11 10		1787.655	2+	[E2]		0.0333 5	$\alpha(N)=3.24\times10^{-7} 5; \ \alpha(IPF)=1.373\times10^{-3} 19$ $\alpha(K)=0.0293 4; \ \alpha(L)=0.00335 5; \ \alpha(M)=0.000520 7$ $\alpha(N)=4.25\times10^{-5} 6$
		695.137 9	46.5 20	1330.872	4+	E2+M1	+1.7 +6-1	0.000999 27	$\begin{array}{l} \alpha(N)=4.25\times10^{-6} & 0 \\ B(M1)(W.u.)=0.00327 + 57 - 73; B(E2)(W.u.)=26.3 \\ +46 - 31 \\ \alpha(K)=0.000889 \ 24; \ \alpha(L)=9.40\times10^{-5} \ 26; \\ \alpha(M)=1.46\times10^{-5} \ 4 \\ \alpha(N)=1.240\times10^{-6} \ 33 \\ I_{\gamma}: \text{ high value of } 79 \ 5 \text{ in } (\alpha, 2n\gamma) \text{ is not used in averaging} \end{array}$
		809.828 11	100.0 22	1216.154	2+	E2		0.000706 10	B(E2)(W.u.)=35.5 +51-40 α (K)=0.000629 9; α (L)=6.63×10 ⁻⁵ 9; α (M)=1.031×10 ⁻⁵ 14 α (M)=7.031×10 ⁻⁷ 12
		1466.8 <i>3</i>	3.1 7	559.103	2+	[E2]		0.000256 4	$\alpha(N) = 8.70 \times 10^{-7} 12$ B(E2)(W.u.)=0.056 +15-14 $\alpha(K) = 0.0001626 23; \ \alpha(L) = 1.685 \times 10^{-5} 24; \alpha(M) = 2.62 \times 10^{-6} 4$
2127.224	(2)+	335.87 <i>10</i> 339.569 <i>5</i>	6.7 <i>7</i> 19.8 <i>19</i>	1791.437 1787.655	$0^+ 2^+$				$\alpha(N)=2.241 \times 10^{-7} \ 31; \ \alpha(IPF)=7.36 \times 10^{-3} \ 10$ $E_{\gamma}: \text{ from } (n,\gamma) \text{ E=thermal. Others: } 339.62 \ 10 \ \text{from}$ $^{76}\text{Br } \varepsilon + \beta^+ \ \text{decay} \ (16.14 \ \text{h}), \ 339.60 \ 10 \ \text{from} \ (n,n'\gamma),$

 $_{34}^{76}$ Se₄₂-17

Adopted Levels, Gammas (continued) γ ⁽⁷⁶Se) (continued) I_{γ}^{\ddagger} α^{\dagger} E_{γ}^{\ddagger} Mult.# \mathbf{J}_{c}^{π} E_i (level) \mathbf{E}_{f} Comments and 338.0 15 from $(p,p'\gamma)$. I_v: unweighted average of 21 5 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), 16.1 16 from (n,γ) E=thermal, and 22.4 4 from $(n,n'\gamma)$. I_{ν} : unweighted average of 54.0 20 from ⁷⁶As β^- decay. 45 4 from ⁷⁶Br 2127.224 $(2)^{+}$ 438.253 5 44 6 1688.971 3+ $\varepsilon + \beta^+$ decay (16.14 h), 26.8 29 from (n, γ) E=thermal, and 51.3 9 from $(n,n'\gamma)$. 1330.872 4+ E_{ν} : weighted average of 796.44 26 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), 796.08 796.10 6 1.49 33 6 from (n,γ) E=thermal, and 796.2 3 from $(p,p'\gamma)$. I_{γ} : from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14h). Other: 18.7 32 from (n, γ) E=thermal questionable. 910.06 10 4.79 18 1216.154 2+ E_{γ} : weighted average of 911.11 *13* from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h) and 911.03 10 from $(n,n'\gamma)$. Other: 910.7 8 from $(p,p'\gamma)$. I_v: weighted average of 4.73 14 from ⁷⁶Br ε + β ⁺ decay (16.14 h) and 5.3 4 from $(n,n'\gamma)$. E_{γ} : weighted average of 1005.06 22 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h) and 1005.01 16 4.8 14 1122.279 0+ 1004.98 *16* from $(n,n'\gamma)$. I_v: unweighted average of 3.4 4 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h) and 6.1 4 from $(n,n'\gamma)$. E_{γ} : weighted average of 1568.22 7 from ⁷⁶As β^{-} decay, 1568.25 10 from 1568.14 7 100.0 9 559.103 2+ ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), 1568.02 7 from (n, γ) E=thermal, and 1568.07 12 from $(n,n'\gamma)$. Other: 1568.1 5 from $(p,p'\gamma)$. I_{γ} : from (n,n' γ). Others: 100.0 13 from ⁷⁶As β^- decay, 100 6 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), and 100 13 from (n, γ) E=thermal. E_{v} : unweighted average of 2127.0 *I* from ⁷⁶As β^{-} decay, 2127.69 20 from 2127.30 21 18.3 4 0.0 0^{+} ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), and 2127.21 8 from $(n, n'\gamma)$. I_{γ} : weighted average of 18.0 13 from ⁷⁶As β^{-} decay, 16.7 14 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), and 18.4 4 from (n,n' γ). 2170.572 (0⁺) 382.904 9 3.5 9 1787.655 2+ [E2] 0.00647 9 $\alpha(K)=0.00574 8; \alpha(L)=0.000629 9; \alpha(M)=9.77\times10^{-5} 14$ $\alpha(N) = 8.14 \times 10^{-6}$ 11 B(E2)(W.u.)=70 + 41 - 32E_{γ}: from (n, γ) E=thermal. Other: 382.92 44 from ⁷⁶Br ε + β ⁺ decay (16.14) h). I_{γ}: from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h). $\alpha(K)=0.000418$ 6; $\alpha(L)=4.39\times10^{-5}$ 6; $\alpha(M)=6.83\times10^{-6}$ 10 954.49 9 15.7 7 1216.154 2+ [E2] 0.000470 7 $\alpha(N)=5.81\times10^{-7} 8$ B(E2)(W.u.)=3.3 + 17 - 13 E_{γ} : weighted average of 954.7 2 from ⁷⁶As β^{-} decay, 954.35 28 from ⁷⁶Br $\varepsilon + \beta^+$ decay (16.14 h), 954.47 9 from (n,n' γ), and 953.9 10 from (p,p' γ). I_{ν} : weighted average of 13.3 19 from ⁷⁶As β^{-} decay, 16.3 8 from ⁷⁶Br

From ENSDF

 $_{34}^{76}$ Se₄₂-18

							Adopted I	Levels, Gam	mas (continued)	
							<u>1</u>	v ⁽⁷⁶ Se) (cont	inued)	
	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
	2170.572	(0+)	1611.65 8	100.0 7	559.103	2+	[E2]		0.000282 4	$ε+β^+$ decay (16.14 h), and 15.6 7 from (n,n'γ). Other: 330 120 in (n,γ) E=thermal indicates contamination. $α(K)=0.0001347$ 19; $α(L)=1.394\times10^{-5}$ 20; $α(M)=2.168\times10^{-6}$ 30 $α(N)=1.855\times10^{-7}$ 26; $α(IPF)=0.0001310$ 18 B(E2)(W.u.)=1.5 +8-6
	2262.42	6+	931.50 20	100	1330.872	4+	E2		0.000498 7	E _γ : weighted average of 1611.5 <i>3</i> from ⁷⁶ As β ⁻ decay, 1611.71 <i>12</i> from ⁷⁶ Br ε+β ⁺ decay (16.14 h), and 1611.63 <i>8</i> from (n,n'γ). Other: 1611.7 <i>5</i> from (p,p'γ). I _γ : (n,n'γ). Others: 100 <i>4</i> from ⁷⁶ As β ⁻ decay, ⁷⁶ Br ε+β ⁺ decay (16.14 h). B(E2)(W.u.)=72.7 +68-58 α (K)=0.000444 <i>6</i> ; α (L)=4.66×10 ⁻⁵ <i>7</i> ; α (M)=7.24×10 ⁻⁶ <i>10</i> α (N)=6.16×10 ⁻⁷ <i>9</i>
19	2362.963		575.305 11	100 10	1787.655	2+				
			1032 ^b 1	<20	1330.872	4+				
	2429.131	3-	301.96 5	0.67 3	2127.224	(2)+	[E1]		0.00313 4	B(E1)(W.u.)=8.8×10 ⁻⁶ 14 α (K)=0.00279 4; α (L)=0.000292 4; α (M)=4.52×10 ⁻⁵ 6 α (N)=3.83×10 ⁻⁶ 5
			403.094 7	1.83 7	2026.020	4+	[E1]		1.44×10 ⁻³ 2	B(E1)(W.u.)= $1.01 \times 10^{-5} + 16 - 15$ $\alpha(K)=0.001280 \ 18; \ \alpha(L)=0.0001334 \ 19;$ $\alpha(M)=2.072 \times 10^{-5} \ 29$ $\alpha(M)=1.750 \times 10^{-6} \ 25$
			740.147 20	8.49 <i>18</i>	1688.971	3+	(E1+M2)	-0.21 12	0.00040 9	$\begin{array}{l} \alpha(N) = 1.759 \times 10^{-2.5} \\ B(E1)(W.u.) = 7.2 \times 10^{-6} + 11 - 12 \\ \alpha(K) = 0.00036 \ 8; \ \alpha(L) = 3.7 \times 10^{-5} \ 8; \\ \alpha(M) = 5.8 \times 10^{-6} \ 13 \\ \alpha(N) = 5.0 \times 10^{-7} \ 11 \\ \alpha(K) = 0.000 \ 16 \ 6 \end{array}$
			1098.33 5	0.28 5	1330.872	4+	[E1]		0.0001521 <i>21</i>	 <i>α</i>: from γγ(θ) in ⁷⁶As β⁻. Other: +0.08 16 from γ(θ) in ⁷⁶As β⁻. Parity is from the Adopted Levels. B(M2)(W.u.)=2.7 +47-23 exceeds RUL=1. B(E1)(W.u.)=7.6×10⁻⁸ 18 α(K)=0.0001358 19; α(L)=1.400×10⁻⁵ 20; α(M)=2.176×10⁻⁶ 30 α(N)=1.861×10⁻⁷ 26

	Adopted Levels, Gammas (continued)												
						γ (⁷⁶ Se) (contin	ued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
2429.131	3-	1212.980 10	100.0 5	1216.154 2+	(E1+M2)	+0.025 20	0.0001820 26	B(E1)(W.u.)= $2.02 \times 10^{-5} + 32 - 29$; B(M2)(W.u.)= $0.039 + 89 - 35$ $\alpha(K) = 0.0001136 + 17; \alpha(L) = 1.170 \times 10^{-5} + 17;$					
								$\alpha(\text{N})=0.0001130 \text{ I/}, \ \alpha(\text{L})=1.170\times10^{-17}, \ \alpha(\text{M})=1.818\times10^{-6} \text{ 27} \ \alpha(\text{N})=1.556\times10^{-7} \text{ 23}; \ \alpha(\text{IPF})=5.48\times10^{-5} \text{ 8} \ \delta: \text{ from } \gamma\gamma(\theta) \text{ in } {}^{76}\text{As } \beta^{-}. \text{ Others: } -0.27 \text{ 13 from } \gamma(\theta) \ \alpha(\theta) = 1.516\times10^{-7} \text{ Cm}^{-7} $					
								in $(\alpha, 2n\gamma)$, +0.11 10 from $\gamma(\theta)$ in ⁷⁰ As β^- . Parity is the Adopted Levels.					
		1870.02 2	3.87 13	559.103 2+	(E1+M2)	+0.17 3	0.000589 9	B(E1)(W.u.)= $2.07 \times 10^{-7} + 33 - 31$; B(M2)(W.u.)= $0.0079 + 32 - 28$ $\alpha(K) = 5.91 \times 10^{-5}$ /6: $\alpha(L) = 6.06 \times 10^{-6}$ /6:					
								$\alpha(M)=9.42\times10^{-7} 25$ $\alpha(M)=8.08\times10^{-8} 22; \ \alpha(IPF)=0.000523.9$					
								δ : from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- . Other: +0.00 8 from $\gamma(\theta)$ in ⁷⁶ As β^- . Parity is from the Adopted Levels.					
		2429.49 22	2.41 4	0.0 0+	[E3]		0.000437 6	B(E3)(W.u.)=16.3 +26-24 α (K)=9.90×10 ⁻⁵ 14; α (L)=1.025×10 ⁻⁵ 14; α (M)=1.596×10 ⁻⁶ 22					
2485.02	4+	796.08 6	29.5 7	1688.971 3+	M1+E2	+0.20 +19-13	0.000621 14	$\alpha(N)=1.367\times10^{-7} \ I9; \ \alpha(IPF)=0.000326 \ 5$ $\alpha(K)=0.000553 \ I3; \ \alpha(L)=5.76\times10^{-5} \ I4; \ \alpha(M)=8.98\times10^{-6} \ 22 \ \alpha(N)=7 \ 68\times10^{-7} \ I8$					
								B(M1)(W.u.)=0.0153 +21-28; B(E2)(W.u.)=1.3 +32-11 E_{γ},I_{γ} : from (n,n' γ) only. Mult., δ : D+Q from $\gamma(\theta)$ in (n,n' γ); E1+M2 ruled out					
		1154.09 9	100 1	1330.872 4+	M1+E2	-0.35 5	0.000289 4	by RUL. $\alpha(K)=0.000255 \ 4; \ \alpha(L)=2.64\times10^{-5} \ 4; \ \alpha(M)=4.11\times10^{-6}$ 6					
								α (N)=3.52×10 ⁻⁷ 5; α (IPF)=2.53×10 ⁻⁶ 4 B(M1)(W.u.)=0.0159 23; B(E2)(W.u.)=2.0 6					
								E_{γ},I_{γ} : from (n,n' γ) only. Mult., δ : D+Q from $\gamma(\theta)$ in (n,n' γ); E1+M2 ruled out by RUL.					
		1268.81 9	37.2 8	1216.154 2+	[E2]		0.000268 4	α (K)=0.0002198 31; α (L)=2.286×10 ⁻⁵ 32; α (M)=3.56×10 ⁻⁶ 5 α (N)=3.04×10 ⁻⁷ 4; α (IPF)=2.098×10 ⁻⁵ 29					
2480.25	5+	800.41.0	100.0.6	1699 071 2+	E2		0.000728.10	B(E2)(W.u.)=4.1 6 E_{γ},I_{γ} : from (n,n' γ) only. B(E2)(W.u.)=67 + 10 - 17					
2409.33	5	000.41 9	100.0 0	1000.9/1 3	EZ		0.000728 10	D(D2)(w.u.)=07 + 19 - 17					

20

					Adopt	ted Levels, Gamn	nas (continued)	
						$\gamma(^{76}\text{Se})$ (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	\mathbf{E}_{f} .	J_f^{π} Mult. [#]	δ #	α^{\dagger}	Comments
								$\begin{aligned} &\alpha(K) = 0.000648 \ 9; \ \alpha(L) = 6.84 \times 10^{-5} \ 10; \\ &\alpha(M) = 1.063 \times 10^{-5} \ 15 \\ &\alpha(N) = 9.03 \times 10^{-7} \ 13 \\ & E_{\gamma}: \text{ weighted average of } 800.6 \ 5 \ \text{from } (\alpha, 2n\gamma) \text{ and} \\ &800.40 \ 9 \ \text{from } (n, n'\gamma). \\ & I_{\gamma}: \ \text{from } (n, n'\gamma). \text{ Other: } 100 \ 7 \ \text{from } (\alpha, 2n\gamma). \end{aligned}$
2489.35	5+	1158.45 5	49.9 6	1330.872 4	+ E2+M1	+2.9 8	0.000302 5	B(M1)(W.u.)= $5.6 \times 10^{-4} + 46 - 23$; B(E2)(W.u.)= $4.7 \ 13$ α (K)= $0.000266 \ 4$; α (L)= $2.77 \times 10^{-5} \ 4$; α (M)= $4.31 \times 10^{-6} \ 6$ α (N)= $3.68 \times 10^{-7} \ 5$; α (IPF)= $3.57 \times 10^{-6} \ 9$ E _{γ} : from (n,n' γ). Other: 1158.4 5 from (α ,2n γ). I _{γ} : from (n,n' γ). Other: 50.0 33 from (α ,2n γ).
2514.681	2+	387.66 49	0.61 12	2127.224 (2	2) ⁺ [M1,E2]		0.0047 15	α (K)=0.0042 <i>I4</i> ; α (L)=4.5×10 ⁻⁴ <i>15</i> ; α (M)=7.0×10 ⁻⁵ <i>24</i> α (N)=5.9×10 ⁻⁶ <i>19</i> B(M1)(W.u.)=0.00117 + <i>39</i> - <i>37</i> if M1, B(E2)(W.u.)=10.5 + <i>35</i> - <i>33</i> if E2.
		723.24 <i>11</i> 727.014 <i>10</i>	6.5 <i>12</i> 100.0 <i>15</i>	1791.437 0 1787.655 2	+ + M1+E2	+0.22 5	0.000759 11	$\alpha(K)=0.000676 \ 10; \ \alpha(L)=7.06\times10^{-5} \ 11; \ \alpha(M)=1.098\times10^{-5} \ 17 \ \alpha(N)=9.39\times10^{-7} \ 14 \ B(M1)(W.u.)=0.028 \ 7; \ B(E2)(W.u.)=3.4 + 18 - 16 \ \delta: \ weighted \ average \ of +0.188 \ 52 \ from \ ^{76}Br \ \varepsilon \ decay \ and +0.24 \ 5 \ from \ (n,n'\gamma). \ Others: >+3.0 \ or <-0.10 \ from \ \gamma(\theta) \ in \ ^{76}As \ \beta^{-} \ decay.$
		825.78 8	3.0 4	1688.971 3	+ (M1+E2	()	0.00062 5	$\alpha(K) = 0.00055 \ 5; \ \alpha(L) = 5.8 \times 10^{-5} \ 5; \ \alpha(M) = 9.0 \times 10^{-6} \ 8$ $\alpha(N) = 7.7 \times 10^{-7} \ 7$ $\delta: \ -3 \ +18 - 3 \ or \ -1 \ +15 - 1 \ from \ (n,n'\gamma).$ $B(M1)(W.u.) = 6.0 \times 10^{-4} \ 17 \ if \ M1, \ B(E2)(W.u.) = 1.18 \ 33$ if E2.
		1298.60 12	0.98 5	1216.154 2	+ [M1,E2]		0.000254 9	$\alpha(K)=0.000205 \ 5; \ \alpha(L)=2.12\times10^{-5} \ 6; \ \alpha(M)=3.30\times10^{-6} \ 9$ $\alpha(N)=2.83\times10^{-7} \ 8; \ \alpha(IPF)=2.43\times10^{-5} \ 33$ B(M1)(W.u.)=5.0×10^{-5} \ 13 \ if M1, B(E2)(W.u.)=0.040 \ 10 \ if E2.
		1392.36 <i>12</i>	2.1 4	1122.279 0	+ [E2]		0.0002534 <i>35</i>	$\alpha(K)=0.0001808\ 25;\ \alpha(L)=1.877\times10^{-5}\ 26;\alpha(M)=2.92\times10^{-6}\ 4\alpha(N)=2.495\times10^{-7}\ 35;\ \alpha(IPF)=5.07\times10^{-5}\ 7B(E2)(W.u.)=0.060\ 19$
		1955.53 4	53.4 12	559.103 2	+ (M1+E2	2) -0.21 +5-6	0.000348 5	$\alpha(K)=9.19\times10^{-5} \ 13; \ \alpha(L)=9.45\times10^{-6} \ 13; \ \alpha(M)=1.471\times10^{-6} \ 21$

 $_{34}^{76}\mathrm{Se}_{42}$ -21

н

						$\gamma(^{76}\text{Se})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	\mathbf{E}_{f} .	J_f^{π} Mult. [#]	$\delta^{\#}$	$lpha^\dagger$	Comments
					<u> </u>			$ α(N)=1.262\times10^{-7} 18; α(IPF)=0.000245 4 $ B(M1)(W.u.)=7.6×10 ⁻⁴ 19; B(E2)(W.u.)=0.012 +8-6 δ: from γγ(θ) in ⁷⁶ Br ε decay.
2558.73		1342.30 <i>14</i> 1999.74 <i>10</i>	100.0 25 31.3 <i>14</i>	1216.154 559.103	2+ 2+			
2604.09	1+,2+	816.47 17	6.2 10	1787.655	2 ⁺ [M1,E2]	0.00064 5	α (K)=0.00057 5; α (L)=6.0×10 ⁻⁵ 5; α (M)=9.3×10 ⁻⁶ 8 α (N)=7.9×10 ⁻⁷ 7 B(M1)(W.u.)=0.0017 +7-6 if M1, B(E2)(W.u.)=3.4 +15-13
		1387.87 6	30.1 <i>10</i>	1216.154	2 ⁺ [M1,E2]	0.000244 <i>10</i>	If E2. $\alpha(K)=0.000179 \ 4; \ \alpha(L)=1.85\times10^{-5} \ 5; \ \alpha(M)=2.88\times10^{-6} \ 7$ $\alpha(N)=2.47\times10^{-7} \ 6; \ \alpha(IPF)=4.4\times10^{-5} \ 6$ E_{γ} : weighted average of 1388.13 27 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 1387.86 6 from (n,n' γ). I_{γ} : weighted average of 28.6 14 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 30.7 9 from (n,n' γ).
		2044.93 6	100.0 9	559.103	2 ⁺ M1+E2	-3.0 +14-60	0.000423 11	B(M1)(W.u.)=0.0017 +7-6 if M1, B(E2)(W.u.)=1.17 +46-40 if E2. $\alpha(K)=8.58\times10^{-5}$ 12; $\alpha(L)=8.84\times10^{-6}$ 13; $\alpha(M)=1.375\times10^{-6}$ 20 $\alpha(N)=1.178\times10^{-7}$ 17; $\alpha(IPF)=0.000327$ 10 B(M1)(W.u.)=1.7×10^{-4} +35-14; B(E2)(W.u.)=0.50 +18-21 E _{\gamma} : from (n,n' γ). Other: 2045.49 70 from ⁷⁶ Br ε + β ⁺ decay (16.14 h). I _{\gamma} : from (n,n' γ). Other: 100 4 from ⁷⁶ Br ε + β ⁺ decay (16.14 h). Mult δ : D+O from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε + β ⁺ decay (16.14 h):
		2604.10 <i>41</i>	0.91 4	0.0	0 ⁺ [M1,E2]	0.00063 4	E1+M2 ruled out by RUL. $\alpha(K)=5.57\times10^{-5}$ 9; $\alpha(L)=5.72\times10^{-6}$ 9; $\alpha(M)=8.90\times10^{-7}$ 15 $\alpha(N)=7.64\times10^{-8}$ 12; $\alpha(IPF)=0.000567$ 35 B(M1)(W.u.)=7.7\times10^{-6} +31–26 if M1, B(E2)(W.u.)=0.0015
2617.89	(4)+	830.41 11	26.8 7	1787.655	2 ⁺ [E2]		0.000662 9	$\alpha(K)=0.000590 \ 8; \ \alpha(L)=6.21\times10^{-5} \ 9; \ \alpha(M)=9.67\times10^{-6} \ 14$ $\alpha(N)=8.21\times10^{-7} \ 11$ $B(E_2)(W_R)=311.50$
		928.82 14	15.5 5	1688.971	3 ⁺ M1+E2		0.000473 30	$\alpha(K) = 0.000421 \ 26; \ \alpha(L) = 4.40 \times 10^{-5} \ 30; \ \alpha(M) = 6.8 \times 10^{-6} \ 5$ $\alpha(N) = 5.8 \times 10^{-7} \ 4$ $\delta: +8 + 21 - 5 \ or \ +0.15 \ 11 \ from \ (n,n'\gamma).$
		1286.91 10	100 <i>I</i>	1330.872	4 ⁺ M1+E2	-0.22 4	0.0002480 35	B(M1)(w.u.)=0.0066 <i>11</i> if M1, B(E2)(w.u.)=10.3 <i>17</i> if E2. α (K)=0.0002041 <i>29</i> ; α (L)=2.111×10 ⁻⁵ <i>30</i> ;

From ENSDF

 $^{76}_{34}$ Se $_{42}$ -22

						Adopted	Levels, Gammas (c	ontinued)	
							$\gamma(^{76}\text{Se})$ (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
2617.89	(4)+	1401.70 <i>11</i>	18.0 7	1216.154	2+	[E2]		0.0002532 35	$\begin{aligned} \alpha(M) &= 3.29 \times 10^{-6} 5 \\ \alpha(N) &= 2.82 \times 10^{-7} 4; \ \alpha(IPF) &= 1.918 \times 10^{-5} 29 \\ B(M1)(W.u.) &= 0.0152 25; \ B(E2)(W.u.) &= 0.60 + 24 - 21 \\ \alpha(K) &= 0.0001784 25; \ \alpha(L) &= 1.851 \times 10^{-5} 26; \\ \alpha(M) &= 2.88 \times 10^{-6} 4 \\ \alpha(N) &= 2.461 \times 10^{-7} 34; \ \alpha(IPF) &= 5.32 \times 10^{-5} 7 \\ B(F2)(Wu) &= 1 53 + 24 - 26 \end{aligned}$
2655.383	1	484.69 5 528.15 6 863 90 5	1.33 <i>15</i> 0.62 <i>3</i> 1 79 7	2170.572 2127.224 1791 437	(0^+) $(2)^+$ 0^+				
		867.723 26	25 3	1787.655	2 ⁺	D(+Q)	+0.013 20		δ: from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: +0.08 7 from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , +0.4 +6-3 from $\gamma(\theta)$ in ⁷⁶ As β^-
		1439.211 <i>21</i>	48.3 8	1216.154	2+	D+Q	-0.043 19		δ : from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: +0.01 3, +0.13 9 from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , -0.02 10 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		1533.11 5 2096.17 <i>3</i>	4.11 8 100.0 8	1122.279 559.103	0^+ 2^+	D D(+Q)	-0.043 +43-42		$ δ: 0.0 \text{ from } γ(θ) \text{ in } {}^{76}\text{As } β^ $ $ δ: \text{ from } γγ(θ) \text{ in } {}^{76}\text{Br } ε \text{ decay. Others: } +0.02 6 $
		2655 17 8	735	0.0	0+				from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , 0.00 8 from $\gamma(\theta)$ in ⁷⁶ As β^- .
2669.904	2-	882.213 20	18.2 6	1787.655	2 ⁺	(E1)		0.0002325 33	$\alpha(K)=0.0002074 \ 29; \ \alpha(L)=2.144\times10^{-5} \ 30; \alpha(M)=3.33\times10^{-6} \ 5 \alpha(N)=2.85\times10^{-7} \ 4 B(E1)(W.u.)=6.7\times10^{-5} \ 16 \delta: +0.26 \ 15 \ from \ \gamma\gamma(\theta) \ in \ ^{76}As \ \beta^{-} \ but \ it \ would give a large B(M2)(W.u.) exceeding BUI$
		980.80 8	13.0 5	1688.971	3+	(E1)		0.0001885 26	B(E1)(W.u.)= $3.5 \times 10^{-5} 8$ $\alpha(K)=0.0001683 24; \alpha(L)=1.737 \times 10^{-5} 24;$ $\alpha(M)=2.70 \times 10^{-6} 4$ $\alpha(N)=2.307 \times 10^{-7} 32$ $\delta_{1} < +0.24 \text{ or } > +16.4 \text{ from } \alpha(\theta) \text{ in } {}^{76} \Delta s \ \theta^{-1}$
		1453.717 20	35.4 16	1216.154	2+	(E1+M2)	+0.045 19	0.000308 4	α(K)=8.34×10-5 13; α(L)=8.57×10-6 13; α(M)=1.333×10-6 20 α(N)=1.141×10-7 17; α(IPF)=0.0002150 30 B(E1)(W.u.)=2.9×10-5 7; B(M2)(W.u.)=0.13 +13-9 δ: from γγ(θ) in 76Br ε decay. Others: +0.05 2 from γγ(θ), -0.11 12 from γ(θ) in 76As β

					Adopte	ed Levels, Gar	nmas (continued	<u>)</u>
						$\gamma(^{76}\text{Se})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
2669.904	2-	2110.75 5	100.0 7	559.103 2+	(E1+M2)	+0.047 12	0.000758 11	α (K)=4.64×10 ⁻⁵ 7; α (L)=4.75×10 ⁻⁶ 7; α (M)=7.39×10 ⁻⁷
								11 $\alpha(N)=6.34\times10^{-8}$ 9; $\alpha(IPF)=0.000706$ 10 B(E1)(W.u.)=2.7×10 ⁻⁵ 6; B(M2)(W.u.)=0.061 +39-30 E _{\gamma} : from ⁷⁶ As decay. Value of 2111.27 8 from ⁷⁶ Br decay fits poorly. Weighted average (NRM) of all available values is 2111.23 12.
								δ: from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: -0.09 2 from
		2670.1 5	0.16 7	0.0 0+	[M2]		0.000460 6	$\gamma\gamma(\theta)$, -0.02 16 from $\gamma(\theta)$ in (AS β). $\alpha(K)=8.79\times10^{-5}$ 12; $\alpha(L)=9.08\times10^{-6}$ 13; $\alpha(M)=1.413\times10^{-6}$ 20 $\alpha(N)=1.213\times10^{-7}$ 17; $\alpha(IPF)=0.000362$ 5
								B(M2)(W.u.)=0.014 + 7-6
2805.10 2812.130	(4^+) (3^+)	1474.21 15	100 22.4.9	$1330.872 \ 4^+$ 2429 131 3 ⁻				
2012.150	(5)	1123.07 10	27.1 11	1688.971 3 ⁺	(M1+E2)		0.000312 12	α (K)=0.000277 <i>11</i> ; α (L)=2.88×10 ⁻⁵ <i>12</i> ; α (M)=4.49×10 ⁻⁶ <i>18</i>
								α (N)=3.84×10 ⁻⁷ <i>15</i> ; α (IPF)=1.29×10 ⁻⁶ <i>21</i> Mult., δ : D+Q with δ =-1.61 + <i>30</i> - <i>21</i> or -0.045 <i>12</i> from (n,n' γ) are likely M1+E2.
		1481.48 16	9.6 11	$1330.872 \ 4^+$	$(\mathbf{M}_1(\mathbf{T}_2))$	0.02.2	0.0002500.25	$(K) = 0.0001241 + 10 + (L) = 1.2823 + 10^{-5} + 10$
		1595.93 13	100.0 11	1216.154 2	(MI(+E2))	+0.03 3	0.0002500 35	$\alpha(\mathbf{K}) = 0.0001341 \ 19; \ \alpha(\mathbf{L}) = 1.383 \times 10^{-5} \ 19; \ \alpha(\mathbf{M}) = 2.152 \times 10^{-6} \ 30$
		2253.00 18	27.0 12	559.103 2+	(M1+E2)		0.000485 30	$\alpha(K) = 1.347 \times 10^{-5} 20, \ \alpha(HF) = 2.57 \times 10^{-5} 14$ $\alpha(K) = 7.17 \times 10^{-5} 11; \ \alpha(L) = 7.37 \times 10^{-6} 12;$ $\alpha(M) = 1.147 \times 10^{-6} 18$
								$\alpha(N) = 9.84 \times 10^{-8}$ 16; $\alpha(IPF) = 0.000404$ 30
2817.24	(2+)	1486.67 <i>13</i>	1.3 4	1330.872 4+	[E2]		0.000258 4	α(L) = 1.0 + 14 - 2 or -4.8 + 10 - 3 from (n,n' γ). $ α(K) = 0.0001582 22; α(L) = 1.639 \times 10^{-5} 23; $ $ α(M) = 2.55 \times 10^{-6} 4 $
								α (N)=2.181×10 ⁻⁷ 31; α (IPF)=8.06×10 ⁻⁵ 11 B(E2)(W.u.)=0.33 10
		1600.92 7	100.0 10	1216.154 2+	[M1,E2]		0.000265 15	$\alpha(K)=0.0001349\ 25;\ \alpha(L)=1.394\times10^{-5}\ 27;\ \alpha(M)=2.17\times10^{-6}\ 4$
								$\alpha(N)=1.858 \times 10^{-7} 34; \ \alpha(IPF)=0.000114 13$ B(M1)(W.u.)=0.0331 21 if M1, B(E2)(W.u.)=17.4 11 if E2.
		2258.04 8	63.9 10	559.103 2+	[M1,E2]		0.000487 30	$\alpha(K)=7.14\times10^{-5}$ 11; $\alpha(L)=7.34\times10^{-6}$ 12; $\alpha(M)=1.142\times10^{-6}$ 18

						Adopte	d Levels, Gamr	nas (continued)	
							$\gamma(^{76}\text{Se})$ (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
					<u> </u>				α (N)=9.80×10 ⁻⁸ <i>15</i> ; α (IPF)=0.000407 <i>30</i> B(M1)(W.u.)=0.00752 + <i>50</i> - <i>45</i> if M1, B(E2)(W.u.)=1.99 <i>13</i> if E2.
2817.24	(2 ⁺)	2817.20 28	0.61 9	0.0	0+	[E2]		0.000753 11	$\alpha(K)=4.92\times10^{-5} \ 7; \ \alpha(L)=5.05\times10^{-6} \ 7; \alpha(M)=7.86\times10^{-7} \ 11 \alpha(N)=6.74\times10^{-8} \ 9; \ \alpha(IPF)=0.000698 \ 10 B(E2)(W,u)=0.0063 \ 10$
2824.797	5-	335.5 5	5.8	2489.35	5+	(E1)		2.34×10 ⁻³ 3	B(E1)(W.u.)= $4.2 \times 10^{-5} + 15 - 14$ $\alpha(K)=0.002089 \ 30; \ \alpha(L)=0.0002181 \ 32;$ $\alpha(M)=3.39 \times 10^{-5} \ 5$ $\alpha(N)=2.87 \times 10^{-6} \ 4$ $\gamma \ from (\alpha, 2n\gamma) \ only.$ $\delta(M2/E1)=+0.35 \ 15 \ gives \ B(M2)(W.u.)=210 \ 180.$ RUL $\leq 1 \ for \ M2 \ gives \ \delta < 0.01.$ Parity from the Adopted Levels.
		395.665 5	39 <i>3</i>	2429.131	3-	E2		0.00581 8	B(E2)(W.u.)=87 +27-23 α (K)=0.00515 7; α (L)=0.000563 8; α (M)=8.75×10 ⁻⁵ 12 α (N)=7.30×10 ⁻⁶ 10
		562.3 5	<20	2262.42	6+	[E1]		0.000625 9	$B(E1)(W.u.)<4.2\times10^{-5} \alpha(K)=0.000557 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 8; \alpha(M)=9.00\times10^{-6} \ 13 \alpha(N)=7.67\times10^{-7} \ 11$
		798.83 6	100 8	2026.020	4+	(E1)		0.000285 4	B(E1)(W.u.)=5.4×10 ⁻⁵ +16-14 α (K)=0.000254 4; α (L)=2.63×10 ⁻⁵ 4; α (M)=4.09×10 ⁻⁶ 6 α (N)=3.49×10 ⁻⁷ 5 δ (Q/D)=+0.04 4 from $\gamma(\theta)$ in (α ,2n γ). Parities from the Adopted Levels give mult=E1.
		1493.88 6	65 7	1330.872	4+	E1		0.000335 5	B(E1)(W.u.)= $5.4 \times 10^{-6} + 16 - 15$ α (K)= $7.93 \times 10^{-5} 11$; α (L)= $8.14 \times 10^{-6} 11$; α (M)= $1.266 \times 10^{-6} 18$ α (N)= $1.084 \times 10^{-7} 15$; α (IPF)= $0.0002457 34$ δ : + $0.03 5$ from $\gamma(\theta$,pol) in (α ,2n γ).
2829.61	(1,2)	1041.18 <i>32</i> 2829.99 <i>24</i>	100 <i>6</i> 0.54 <i>18</i>	1787.655 0.0	2^+ 0^+				
2859.781	4-	430.649 27	71 9	2429.131	3-	M1+E2	-0.7 +4-12	0.0031 9	B(M1)(W.u.)=0.053 +41-32; B(E2)(W.u.)= 1.9×10^{2} +27-15 α (K)=0.0028 8; α (L)= 2.9×10^{-4} 9; α (M)= 4.6×10^{-5} 14

	Adopted Levels, Gammas (continued)													
						$\gamma(^{76}\text{Se})$	(continued)	<u>)</u>						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
					<u> </u>				α (N)=3.9×10 ⁻⁶ <i>11</i> B(E2)(W.u.)=1.9×10 ² +27-15 upper bound exceeds RUL=300.					
2859.781	4-	1170.85 8	35 7	1688.971	3+	[E1]		0.0001659 23	$\alpha(K)=0.0001208 \ 17; \ \alpha(L)=1.244\times10^{-5} \ 17; \alpha(M)=1.934\times10^{-6} \ 27 \alpha(N)=1.655\times10^{-7} \ 23; \ \alpha(IPF)=3.06\times10^{-5} \ 4$					
		1528.87 8	100.0 13	1330.872	4+	(E1(+M2))	<0.1	0.000359 5	B(E1)(W.u.)= $3.3 \times 10^{-5} + 23 - 11^{-7}$ B(E1)(W.u.)= $4.3 \times 10^{-5} + 37 - 15^{-7}$ α (K)= $7.74 \times 10^{-5} 15$; α (L)= $7.95 \times 10^{-6} 16$; α (M)= $1.235 \times 10^{-6} 24^{-7}$					
20/0 24	(1+ 2+)	1652.06.10	51 7 10	1017 154	2+			0.000077.1/	α(N)=1.058×10-7 21; α(IPF)=0.000272.4 δ: ≈0.4 for ΔJ=0 from γ(θ) in (α,2nγ) is too high. From RUL(M2)=1, δ<0.1. B(M2)(W.u.)<1.6 upper limit exceeds RUL=1.					
2869.34	(1,2,)	1653.06 10	51.7 18	1216.154	21	(M1+E2)		0.000277 16	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0001268\ 22;\ \alpha(\mathbf{L}) = 1.310 \times 10^{-5}\ 24;\\ \alpha(\mathbf{M}) &= 2.04 \times 10^{-6}\ 4\\ \alpha(\mathbf{N}) &= 1.746 \times 10^{-7}\ 31;\ \alpha(\mathbf{IPF}) = 0.000135\ 14\\ \delta:\ +0.38\ +14 - 12\ \text{or}\ +1.1\ +3 - 8\ \text{from}\ (\mathbf{n},\mathbf{n}'\gamma).\\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) &= 1.76 \times 10^{-5}\ +15 - 13\ \text{if}\ \mathbf{M}1,\\ \mathbf{D}(\mathbf{T}2)(\mathbf{W}.\mathbf{u}.) &= 0.0006\ 7\ 15526\$					
		2310.09 16	100.0 11	559.103	2+	(M1+E2)		0.000508 <i>31</i>	B(E2)(W.d.)=0.0086 7 fr E2. $\alpha(K)=6.86 \times 10^{-5} 11; \ \alpha(L)=7.05 \times 10^{-6} 11; \ \alpha(M)=1.097 \times 10^{-6} 18$ $\alpha(N)=9.41 \times 10^{-8} 15; \ \alpha(IPF)=0.000431 31$ $\delta: -0.52 9 \text{ or } -12 + 52 - 6 \text{ from } (n,n'\gamma).$ B(M1)(W.u.)=1.25 \times 10^{-5} 10 \text{ if M1}.					
		2869.40 31	23.1 15	0.0	0^{+}				B(E2)(W.u.)=0.00314 + 25 - 22 if E2.					
2910.993 2917.32	(1 to 4) (4) ⁺	548.028 ^b 12 1586.41 8	100 100	2362.963 1330.872	4+	(M1+E2)	+0.34 4	0.000251 4	α (K)=0.0001360 <i>19</i> ; α (L)=1.403×10 ⁻⁵ <i>20</i> ; α (M)=2.183×10 ⁻⁶ <i>31</i>					
2950.171	1+	294.60 <i>17</i> 779.48 <i>10</i>	0.108 <i>24</i> 0.287 <i>28</i>	2655.383 2170.572	(0^+)	[M1]		0.000645 9	$\alpha(N) = 1.873 \times 10^{-7} 26; \ \alpha(IPF) = 9.87 \times 10^{-5} 15$ $\alpha(K) = 0.000575 8; \ \alpha(L) = 5.99 \times 10^{-5} 8;$					
				21.0.072	(~)	[]			$\alpha(M) = 9.32 \times 10^{-6} \ 13$ $\alpha(N) = 7.98 \times 10^{-7} \ 11$ $B(M1)(W.u.) = 9.0 \times 10^{-4} \ +19 - 15$					
		822.92 <i>31</i>	0.26 5	2127.224	(2)+	[M1,E2]		0.00063 5	$\alpha(K) = 0.00056 5; \ \alpha(L) = 5.8 \times 10^{-5} 5; \alpha(M) = 9.1 \times 10^{-6} 8 \alpha(N) = 7.7 \times 10^{-7} 7$					

 $^{76}_{34}$ Se $_{42}$ -26

	Adopted Levels, Gammas (continued)													
γ ⁽⁷⁶ Se) (continued)														
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments						
2950.171	1+	1158.68 <i>13</i>	1.64 20	1791.437 0+	[M1]		0.000284 4	B(M1)(W.u.)= $7.0 \times 10^{-4} + 20 - 16$ if M1, B(E2)(W.u.)= $1.38 + 39 - 31$ if E2. α (K)= $0.0002512 35; \alpha$ (L)= $2.60 \times 10^{-5} 4; \alpha$ (M)= $4.05 \times 10^{-6} 6$						
		1733.96 <i>19</i>	0.34 5	1216.154 2+	[M1,E2]		0.000298 18	$\begin{aligned} \alpha(N) &= 5.47 \times 10^{-5} 5; \ \alpha(PF) &= 2.70 \times 10^{-6} 4 \\ B(M1)(W.u.) &= 0.00157 + 35 - 28 \\ \alpha(K) &= 0.0001158 \ 20; \ \alpha(L) &= 1.195 \times 10^{-5} \ 21; \\ \alpha(M) &= 1.859 \times 10^{-6} \ 33 \\ \alpha(N) &= 1.593 \times 10^{-7} \ 27; \ \alpha(PF) &= 0.000168 \ 17 \end{aligned}$						
		1828.22 <i>39</i>	0.59 18	1122.279 0+	[M1]		0.000305 4	B(M1)(W.u.)=9.7×10 ⁻⁵ +24-19 if M1, B(E2)(W.u.)=0.044 +11-8 if E2. α (K)=0.0001039 15; α (L)=1.070×10 ⁻⁵ 15; α (M)=1.665×10 ⁻⁶ 23						
		2391.14 30	57.2 14	559.103 2+	M1+E2	-0.058 +4-5	0.000509 7	α (N)=1.429×10 ⁻⁷ 20; α (IPF)=0.0001888 26 B(M1)(W.u.)=1.4×10 ⁻⁴ 5 B(M1)(W.u.)=0.0062 +12-9; B(E2)(W.u.)=0.0049 +14-9						
		2950.49 9	100.0 <i>13</i>	0.0 0+	(M 1)		0.000731 10	$\alpha(K)=6.41\times10^{-3} \ 9; \ \alpha(L)=6.58\times10^{-6} \ 9; \alpha(M)=1.024\times10^{-6} \ 14 \alpha(N)=8.79\times10^{-8} \ 12; \ \alpha(IPF)=0.000437 \ 6 Mult.: M1,E2 \ from \ \alpha(K)exp \ and \ D+Q \ from \ \gamma\gamma(\theta) in \ ^{76}Br \ \varepsilon \ decay. B(M1)(W.u.)=0.0058 +11-8$						
			10010 12		()			$\alpha(K)=4.47\times10^{-5} 6; \ \alpha(L)=4.58\times10^{-6} 6; \alpha(M)=7.13\times10^{-7} 10 \alpha(N)=6.12\times10^{-8} 9; \ \alpha(IPF)=0.000681 10 Mult : from \ \alpha(K)exp in \ ^{76}Br \ \varepsilon; \ \gamma(\theta) in \ (\gamma, \gamma')$						
2969.48	2-,3-,4-	540.40 8	48.2 <i>13</i>	2429.131 3-	(M1+E2)		0.0018 4	$\alpha(K)=0.00161 \ 32; \ \alpha(L)=0.00017 \ 4; \ \alpha(M)=2.7\times10^{-5} \\ 6 \\ \alpha(N)=2.3\times10^{-6} \ 5 \\ \delta; \ -0.44 \ 12 \ \text{or} \ -1.7 \ 4 \ \text{from} \ (n,n'\gamma).$						
2975.00	(2+,3,4+)	1280.44 <i>10</i> 847.51 <i>11</i> 1286.04 <i>11</i> 1644.28 <i>12</i> 1758.90 <i>12</i> 2415 96 34	100.0 <i>13</i> 16.6 <i>16</i> 100 <i>10</i> 9.1 <i>10</i> 6.8 7 9.9 <i>10</i>	$\begin{array}{c} 1688.971 & 3^+ \\ 2127.224 & (2)^+ \\ 1688.971 & 3^+ \\ 1330.872 & 4^+ \\ 1216.154 & 2^+ \\ 559 & 103 & 2^+ \end{array}$										
2975.98	6+	713.8 5	9.5	2262.42 6+	[M1+E2]		0.00088 10	α (K)=0.00079 9; α (L)=8.3×10 ⁻⁵ 10; α (M)=1.29×10 ⁻⁵ 16						

From ENSDF

							Adopted	l Levels, G	ammas (continu	ued)
								$\gamma(^{76}\text{Se})$ (a	continued)	
	E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	a^{\dagger}	Comments
	2975.98	6+	950.0 <i>5</i>	100 7	2026.020	4+	E2		0.000475 7	$\frac{\alpha(N)=1.09\times10^{-6} \ 13}{B(M1)(W.u.)=0.0044 \ +24-18 \ \text{if } M1, \ B(E2)(W.u.)=12 \ +7-5 \ \text{if } E2.}{B(E2)(W.u.)=29 \ +15-11}$
	3007.75	(2)+	1791.52 12	10.3 6	1216.154	2+	(M1+E2)		0.000314 20	$\alpha(\mathbf{K}) = 0.000425 \text{ b}; \ \alpha(\mathbf{L}) = 4.44 \times 10^{-6} \text{ b}; \ \alpha(\mathbf{M}) = 0.91 \times 10^{-7} \text{ b}; \ \alpha(\mathbf{M}) = 5.88 \times 10^{-7} \text{ 8}; \ \alpha(\mathbf{K}) = 0.0001089 \text{ 18}; \ \alpha(\mathbf{L}) = 1.123 \times 10^{-5} \text{ 19}; \ \alpha(\mathbf{M}) = 1.747 \times 10^{-6} \text{ 30}; \ \alpha(\mathbf{M}) = 1.747 \times 10^{-6} \text{ c}; \ \alpha(\mathbf{M}) = 1.747 \times 10^{-6} \text$
			2448.74 12	100.0 8	559.103	2+	M1+E2	-0.16 5	0.000533 8	$\begin{aligned} &\alpha(\text{N}) = 1.497 \times 10^{-7} \ 25; \ \alpha(\text{IPF}) = 0.000192 \ 19 \\ &\delta: \ +5 \ +58 - 2 \ \text{or} \ -0.21 \ 19 \ \text{from} \ (\text{n},\text{n}'\gamma). \\ &\text{B}(\text{M1})(\text{W.u.}) = 0.0127 \ 12 \ \text{if} \ \text{M1}, \ \text{B}(\text{E2})(\text{W.u.}) = 5.3 \ 5 \ \text{if} \ \text{E2}. \\ &\alpha(\text{K}) = 6.15 \times 10^{-5} \ 9; \ \alpha(\text{L}) = 6.31 \times 10^{-6} \ 9; \ \alpha(\text{M}) = 9.82 \times 10^{-7} \ 14 \\ &\alpha(\text{N}) = 8.43 \times 10^{-8} \ 12; \ \alpha(\text{IPF}) = 0.000464 \ 7 \end{aligned}$
			3007.40 20	5.0 8	0.0	0+	[E2]		0.000832 12	B(M1)(W.u.)=0.0470 +38-36; B(E2)(W.u.)=0.27 +19-14 α (K)=4.42×10 ⁻⁵ 6; α (L)=4.53×10 ⁻⁶ 6; α (M)=7.05×10 ⁻⁷ 10 α (N)=6.05×10 ⁻⁸ 8; α (IPF)=0.000782 11 B(E2)(Wu)=0.194 33
28	3031.57	0+	1815.40 8	60.5 <i>19</i>	1216.154	2+	[E2]		0.000342 5	$\begin{array}{l} \alpha(\text{K}) = 0.0001072 \ 15; \ \alpha(\text{L}) = 1.106 \times 10^{-5} \ 15; \ \alpha(\text{M}) = 1.721 \times 10^{-6} \\ 24 \\ \alpha(\text{N}) = 1.473 \times 10^{-7} \ 21; \ \alpha(\text{IPF}) = 0.0002217 \ 31 \\ \text{B(F2)(Wu)} = 5.8 + 6^{-5} \end{array}$
			2472.39 12	100.0 <i>19</i>	559.103	2+	[E2]		0.000608 9	$\alpha(K)=6.14\times10^{-5} \ 9; \ \alpha(L)=6.31\times10^{-6} \ 9; \ \alpha(M)=9.82\times10^{-7} \ 14$ $\alpha(N)=8.42\times10^{-8} \ 12; \ \alpha(IPF)=0.000539 \ 8$ B(F2)(Wu)=2.04 + 19-16
	3045.79	(5 ⁻)	221.21 <i>11</i>	100 6	2824.797	5-	(M1)		0.0125 2	B(E2)(W.u.)=2.0+119-10 B(M1)(W.u.)=2.8+13-11 $\alpha(K)=0.01111$ 16; $\alpha(L)=0.001191$ 17; $\alpha(M)=0.0001856$ 26 $\alpha(N)=1.578\times10^{-5}$ 22 Mult., δ : $\gamma(\theta)$ in (α ,2n γ) consistent with $\Delta J=0$ or 2; $\delta(Q/D)=+0.6$ 3 from $\gamma(\theta)$ in (α ,2n γ) (1984Z001) would require a B(E2)(W.u.)=2.0×10 ⁴ +17-15 exceeding RUL=300; POL from (α ,2n γ) seems consistent with E1 but it would require a B(E1)(W.u.)=0.048 15-34 exceeding RUL=0.01. B(M1)(W.u.)=2.0 +10-9 upper bound exceeds RUL=3.
			1714.73 10	87 6	1330.872	4+	[E1]		0.000491 7	B(E1)(W.u.)= $8.8 \times 10^{-5} + 40 - 33$ α (K)= 6.35×10^{-5} 9; α (L)= 6.51×10^{-6} 9; α (M)= 1.012×10^{-6} 14 α (N)= 8.67×10^{-8} 12; α (IPF)= 0.000420 6
	3069.62	2^{+}	257.63 12	0.056 9	2812.130	(3 ⁺)				

	Adopted Levels, Gammas (continued)												
						$\gamma(^{76}\text{Se})$	(continued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments				
3069.62	2+	399.59 52	1.77 11	2669.904	2-	[E1]		1.47×10 ⁻³ 2	$\alpha(K)=0.001310 \ 19; \ \alpha(L)=0.0001365 \ 20; \alpha(M)=2.120\times10^{-5} \ 31 \alpha(N)=1.800\times10^{-6} \ 26 B(E1)(W,u,)=1.64\times10^{-4} \ 28$				
		414.14 10	0.093 7	2655.383	1								
		640.46 <i>31</i>	0.151 27	2429.131	3-	[M2]		0.00281 4	α (K)=0.002498 35; α (L)=0.000269 4; α (M)=4.20×10 ⁻⁵ 6 α (N)=3.58×10 ⁻⁶ 5 B(M2)(W,u)=38 +10-9 exceeds RUL=1.				
		942.21 12	4.1 26	2127.224	(2)+	(M1(+E2))	+0.04 5	0.000431 6	$\alpha(K)=0.000384 5; \alpha(L)=3.99\times10^{-5} 6; \alpha(M)=6.21\times10^{-6} 9 \alpha(N)=5.32\times10^{-7} 7 B(M1)(W.u.)=0.0017 +16-12; B(E2)(W.u.)<0.004$				
		1380.52 9	20.6 28	1688.971	3+	(M1+E2)		0.000245 10	$\alpha(K)=0.000181 \ 4; \ \alpha(L)=1.87\times10^{-5} \ 5; \alpha(M)=2.91\times10^{-6} \ 7 \alpha(N)=2.49\times10^{-7} \ 6; \ \alpha(IPF)=4.2\times10^{-5} \ 5 \delta: \ +0.04 \ 9 \ or \ -7 \ +14-3 \ from \ (n,n'\gamma). B(M1)(W.u.)=0.0027 \ 5 \ if \ M1, B(E2)(W.u.)=1 \ 91 \ 37 \ if \ E2. $				
		1853.24 20	100.0 9	1216.154	2+	M1+E2	+0.035 4	0.000313 4	$\alpha(K)=0.0001013 \ 14; \ \alpha(L)=1.043\times10^{-5} \ 15; \\ \alpha(M)=1.624\times10^{-6} \ 23 \\ \alpha(N)=1.393\times10^{-7} \ 20; \ \alpha(IPF)=0.0001993 \ 28 \\ B(M1)(W.u.)=0.0054 \ 9; \ B(E2)(W.u.)=0.0026 \\ +8-7 $				
		2510.68 <i>19</i>	12.7 16	559.103	2+	(M1+E2)	+0.069 6	0.000557 8	$\alpha(K) = 5.88 \times 10^{-5} \ 8; \ \alpha(L) = 6.04 \times 10^{-6} \ 8; \alpha(M) = 9.40 \times 10^{-7} \ 13 \alpha(N) = 8.07 \times 10^{-8} \ 11; \ \alpha(IPF) = 0.000491 \ 7 B(M1)(W.u.) = 2.8 \times 10^{-4} \ 5; B(F2)(Wu) = 2.8 \times 10^{-4} \ +8-7 $				
		3070.08 20	0.065 4	0.0	0+	[E2]		0.000857 12	$\alpha(K)=4.27\times10^{-5} 6; \ \alpha(L)=4.38\times10^{-6} 6; \alpha(M)=6.81\times10^{-7} 10 \alpha(N)=5.85\times10^{-8} 8; \ \alpha(IPF)=0.000809 \ 11 B(E2)(W.u.)=1.10\times10^{-4} \ 19$				
3084.58 3105.48	$(1^+, 2^+, 3^+)$ (3^-)	2525.43 6 1774.58 23	100 33.8 23	559.103 1330.872	2+ 4+	[E1]		0.000532 7	$\alpha(K)=6.01\times10^{-5} \ 8; \ \alpha(L)=6.17\times10^{-6} \ 9; \\ \alpha(M)=9.59\times10^{-7} \ 13 \\ \alpha(N)=8.21\times10^{-8} \ 12; \ \alpha(IPF)=0.000465 \ 7 \\ B(E1)(W.u.)=6.8\times10^{-5} \ +10-8 \\ \end{array}$				

I

	Adopted Levels, Gammas (continued)													
						$\gamma(2)$	⁷⁶ Se) (continued)						
E _i (level)	\mathbf{J}_i^{π}	E _y ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
3105.48	(3-)	1889.2 6	31 9	1216.154	2+	[E1]	_	0.000610 9	$\begin{aligned} &\alpha(\mathrm{K}) = 5.46 \times 10^{-5} \ 8; \ \alpha(\mathrm{L}) = 5.59 \times 10^{-6} \ 8; \\ &\alpha(\mathrm{M}) = 8.70 \times 10^{-7} \ 12 \\ &\alpha(\mathrm{N}) = 7.46 \times 10^{-8} \ 10; \ \alpha(\mathrm{IPF}) = 0.000549 \ 8 \end{aligned}$					
		2546.6 <i>4</i>	100.0 12	559.103	2+	[E1]		1.03×10 ⁻³ 1	B(E1)(W.u.)=5.2×10 ⁻⁵ 14 α (K)=3.53×10 ⁻⁵ 5; α (L)=3.61×10 ⁻⁶ 5; α (M)=5.61×10 ⁻⁷ 8 α (N)=4.81×10 ⁻⁸ 7; α (IPF)=0.000986 14 D(T1)(W.u.) = 6.0×10 ⁻⁵ + 0.7					
3160.115	(2+)	209.92 10	1.86 9	2950.171	1+	[M1,E2]		0.034 20	B(E1)(W.u.)= $6.9 \times 10^{-5} + 9 - 7$ $\alpha(K)=0.030 \ 17; \ \alpha(L)=0.0034 \ 20; \ \alpha(M)=5.3 \times 10^{-4} \ 32$ $\alpha(N)=4.3 \times 10^{-5} \ 25$ B(M1)(W.u.)= $0.048 + 18 - 16$ if M1. B(E2)(W.u.)= $1.5 \times 10^{3} + 6.5$ around BUL = 200 if E2					
		290.79 35	0.171 18	2869.34	$(1^+, 2^+)$				$B(E2)(W.U.)=1.5\times10^{-4}+0-5$ exceeds $RUL=500$ II E2.					
		347.88 10	1.32 18	2812.130	(3+)				_					
		489.98 13	12.9 8	2669.904	2-	[E1]		0.000873 12	$\alpha(K) = 0.000779 \ 11; \ \alpha(L) = 8.10 \times 10^{-5} \ 11; \alpha(M) = 1.259 \times 10^{-5} \ 18 \alpha(N) = 1.071 \times 10^{-6} \ 15 B(F1)(Wn) = 4.5 \times 10^{-4} \pm 17 = 15$					
		504.54 10	10.7 25	2655.383	1	[E1]		0.000812 11	$\alpha(K)=0.000724 \ 10; \ \alpha(L)=7.53\times10^{-5} \ 11; \\ \alpha(M)=1.171\times10^{-5} \ 16 \\ \alpha(N)=9.96\times10^{-7} \ 14 $					
		730.71 11	20.8 17	2429.131	3-	[E1]		0.000345 5	B(E1)(W.u.)= $3.4 \times 10^{-4} + 15 - 14$ α (K)= $0.000307 4$; α (L)= $3.19 \times 10^{-5} 4$; α (M)= 4.95×10^{-6} 7					
		1032.58 <i>10</i>	25 5	2127.224	(2)+	[M1,E2]		0.000373 18	$\alpha(N)=4.23\times10^{-7} \ 6$ B(E1)(W.u.)=2.2×10 ⁻⁴ +8-7 $\alpha(K)=0.000333 \ 16; \ \alpha(L)=3.47\times10^{-5} \ 18; \\ \alpha(M)=5.39\times10^{-6} \ 28 \\ \alpha(N)=-4.61\times10^{-7} \ 22$					
		1372.29 <i>13</i>	24.2 22	1787.655	2+	[M1,E2]		0.000245 10	B(M1)(W.u.)=0.0055 +22-20 if M1, B(E2)(W.u.)=6.9 +27-25 if E2. α (K)=0.000183 4; α (L)=1.89×10 ⁻⁵ 5; α (M)=2.95×10 ⁻⁶ 7					
		1471.08 7	100.0 18	1688.971	3+	[M1,E2]		0.000245 11	$\alpha(N)=2.52\times10^{-7} 6; \ \alpha(IPF)=4.0\times10^{-5} 5$ B(M1)(W.u.)=0.0023 +9-8 if M1, B(E2)(W.u.)=1.6 +6-5 if E2. $\alpha(K)=0.0001592 \ 33; \ \alpha(L)=1.65\times10^{-5} 4;$ $\alpha(M)=2.56\times10^{-6} 6$ $\alpha(N)=2.19\times10^{-7} 5; \ \alpha(IPF)=6.7\times10^{-5} 8$					

	Adopted Levels, Gammas (continued)													
							$\gamma(^{76}\text{Se})$ (cont	inued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments					
					<u> </u>				B(M1)(W.u.)=0.0075 +27-24 if M1, B(E2)(W.u.)=4.7 +17-15 if E2.					
3160.115	(2+)	1830.80 <i>15</i>	0.72 6	1330.872	4+	[E2]		0.000347 5	$\alpha(\mathbf{K})=0.0001055 \ 15; \ \alpha(\mathbf{L})=1.088 \times 10^{-5} \ 15; \alpha(\mathbf{M})=1.693 \times 10^{-6} \ 24 \alpha(\mathbf{N})=1.4503 \times 10^{-7} \ 20; \ \alpha(\mathbf{IPE})=0.0002289 \ 32$					
					- 1				B(E2)(W.u.)=0.0113 + 42 - 37					
		1944.18 <i>10</i>	17.0 7	1216.154	2+	(M1(+E2))	+0.05 6	0.000342 5	$\alpha(K) = 9.28 \times 10^{-5} \ 13; \ \alpha(L) = 9.55 \times 10^{-6} \ 13; \\ \alpha(M) = 1.486 \times 10^{-6} \ 21 \\ \alpha(M) = 1.425 \ 10^{-7} \$					
									$\alpha(N)=1.275\times10^{-7}$ 18; $\alpha(IPF)=0.0002384$ 34 B(M1)(W.u.)=5.5×10 ⁻⁴ +28-24; B(E2)(W.u.)<0.0036					
		2601.36 20	26.8 11	559.103	2+	(M1+E2)	+0.149 22	0.000595 8	$\alpha(K)=5.54\times10^{-5} \ 8; \ \alpha(L)=5.68\times10^{-6} \ 8; \ \alpha(M)=8.84\times10^{-7}$ 12					
									$\alpha(N)=7.59\times10^{-8}$ 11; $\alpha(IPF)=0.000533$ 7 $P(M1)(W_{12})=2.6\times10^{-4} + 12$ 12; $P(F2)(W_{12})=0.0016 + 8$ 7					
									B(M1)(w.u.)= $5.0 \times 10^{-7} + 15 - 12$; B(E2)(w.u.)= $0.0016 + 8 - 7$ This γ is placed in (n,n' γ) from a different level with $J^{\pi} = 0^{+}$.					
3161.80	(3 ⁻)	732.77 6	47.3 31	2429.131	3-	(M1+E2)	+0.2 +14-1	0.00074 12	α (K)=0.00066 <i>11</i> ; α (L)=6.9×10 ⁻⁵ <i>12</i> ; α (M)=1.08×10 ⁻⁵ <i>19</i> α (N)=9.2×10 ⁻⁷ <i>15</i>					
		1830 79 8	60 2 21	1330 872	4 ⁺	[F1]		0.000570.8	B(M1)(W.u.)=0.045 +8-13; B(E2)(W.u.)=5 +14-4 $\alpha(K)=5.73 \times 10^{-5} 8$; $\alpha(L)=5.87 \times 10^{-6} 8$; $\alpha(M)=9.13 \times 10^{-7}$					
		1030.77 0	00.2 21	1550.072				0.000570 0	$a(R) = 5.75 \times 10^{-5}$, $a(E) = 5.67 \times 10^{-5}$, $a(R) = 5.75 \times 10^{-10}$ I3 $a(R) = 7.83 \times 10^{-8}$ $I1$; $a(RE) = 0.000506$ 7					
									$B(E1)(W.u.)=6.5\times10^{-5} \ 13$					
		1945.48 10	100.0 29	1216.154	2+	[E1]		0.000649 9	$\alpha(K)=5.22\times10^{-5}$ 7; $\alpha(L)=5.35\times10^{-6}$ 7; $\alpha(M)=8.32\times10^{-7}$ 12					
									$\alpha(N)=7.13\times10^{-8}$ 10; $\alpha(IPF)=0.000590$ 8					
3191.67	(3)+	1502.74 20	100.0 32	1688.971	3+	(M1+E2)		0.000249 12	$\alpha(K)=0.0001526\ 30;\ \alpha(L)=1.578\times10^{-5}\ 34;$					
									$\alpha(M)=2.46\times10^{-6} 5$ $\alpha(N)=2.10\times10^{-7} 4$; $\alpha(IPE)=7.7\times10^{-5} 9$					
									δ : +1.93 +28-34 or -0.14 5 from (n,n' γ). B(M1)(W.u.)=0.0392 +36-32 if M1, B(E2)(W.u.)=23.3 +22-10 if E2					
		1860.91 26	17 6	1330.872	4+	(M1+E2)	-0.2 +88-1	0.00032 4	$\alpha(K)=0.0001006\ 22;\ \alpha(L)=1.036\times10^{-5}\ 24;$					
									$\alpha(M)=1.61\times10^{-6} 4$ $\alpha(N)=1.383\times10^{-7} 20; \alpha(IPE)=0.00020 4$					
									$a_{(1)}=1.363\times10^{-2.29}; a_{(1PF)}=0.000204^{-2.000204}$ B(M1)(W.u.)<0.0052; B(E2)(W.u.)<2.0					
		1975.6 6	17.5 10	1216.154	2^{+}	(M1+E2)		0.000377 24	α (K)=9.08×10 ⁻⁵ 15; α (L)=9.35×10 ⁻⁶ 15;					

						Adopted Le	vels, G	ammas (contin	ued)
						<u>γ(</u>	⁷⁶ Se) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{\dagger}	Comments
							_		$\begin{aligned} &\alpha(M) = 1.455 \times 10^{-6} \ 24 \\ &\alpha(N) = 1.248 \times 10^{-7} \ 20; \ \alpha(IPF) = 0.000275 \ 23 \\ &\delta: \ -0.02 \ 9 \ \text{or} \ -4.6 \ +33 - 14 \ \text{from} \ (n,n'\gamma). \\ &B(M1)(W.u.) = 0.00302 \ +33 - 29 \ \text{if} \ M1, \ B(E2)(W.u.) = 1.04 \\ &+ 11 - 10 \ \text{if} \ E2. \end{aligned}$
3191.67	(3)+	2632.9 5	13.4 34	559.103	2+	(M1+E2)		0.00064 4	$\begin{aligned} &\alpha(\mathbf{K}) = 5.47 \times 10^{-5} \ 9; \ \alpha(\mathbf{L}) = 5.61 \times 10^{-6} \ 9; \ \alpha(\mathbf{M}) = 8.73 \times 10^{-7} \ 14 \\ &\alpha(\mathbf{N}) = 7.49 \times 10^{-8} \ 12; \ \alpha(\mathbf{IPF}) = 0.00058 \ 4 \\ &\delta: \ +0.26 \ 10 \ \text{or} \ +14 \ +50 - 8 \ \text{from} \ (\mathbf{n}, \mathbf{n}' \gamma). \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 9.8 \times 10^{-4} \ 24 \ \text{if} \ \mathbf{M}1, \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.189 \ +48 - 46 \\ &\text{if} \ \mathbf{E}2. \end{aligned}$
3212.98	1+,2+	2653.82 10	100.0 4	559.103	2+	M1+E2		0.00065 4	$\begin{array}{l} \alpha(\mathrm{K}) = 5.39 \times 10^{-5} \; 9; \; \alpha(\mathrm{L}) = 5.54 \times 10^{-6} \; 9; \; \alpha(\mathrm{M}) = 8.61 \times 10^{-7} \; 14 \\ \alpha(\mathrm{N}) = 7.39 \times 10^{-8} \; 12; \; \alpha(\mathrm{IPF}) = 0.00059 \; 4 \\ \delta: \; +3.2 \; +7 - 4 \; \mathrm{or} \; -0.10 \; 5 \; \mathrm{from} \; (\mathrm{n}, \mathrm{n}' \gamma). \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.098 \; +15 - 11 \; \mathrm{if} \; \mathrm{M1}, \; \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 18.6 \; +28 - 21 \\ \mathrm{if} \; \mathrm{E2}. \end{array}$
		3214.7 20	8.6 4	0.0	0+	[M1,E2]		0.00087 4	$\alpha(K)=3.92\times10^{-5}$ 7; $\alpha(L)=4.02\times10^{-6}$ 7; $\alpha(M)=6.25\times10^{-7}$ 11 $\alpha(N)=5.37\times10^{-8}$ 10; $\alpha(IPF)=0.00083$ 4 B(M1)(W,u)=0.0047 +7-6 if M1, B(E2)(W,u)=0.62 +9-7 if E2.
3219.428	(2+,3+)	790.12 4	38 12	2429.131	3-	[E1]		0.000292 4	$\alpha(K)=0.000260 \ 4; \ \alpha(L)=2.69\times10^{-5} \ 4; \ \alpha(M)=4.19\times10^{-6} \ 6 \ \alpha(N)=3.57\times10^{-7} \ 5 \ B(E1)(W.u.)=0.0033 \ +8-9$
		1530.32 <i>43</i>	1.57 27	1688.971	3+	[M1,E2]		0.000252 13	α (K)=0.0001473 29; α (L)=1.523×10 ⁻⁵ 32; α (M)=2.37×10 ⁻⁶ 5 α (N)=2.03×10 ⁻⁷ 4; α (IPF)=8.7×10 ⁻⁵ 10 B(M1)(W.u.)=0.00110 +23-21 if M1, B(E2)(W.u.)=0.63 +13-12 if E2.
		1888.95 <i>36</i>	17.4 10	1330.872	4+	[M1,E2]		0.000346 22	$\alpha(K)=9.86\times10^{-5} \ 16; \ \alpha(L)=1.017\times10^{-5} \ 17; \ \alpha(M)=1.581\times10^{-6} \ 26 \ \alpha(N)=1.356\times10^{-7} \ 22; \ \alpha(IPF)=0.000235 \ 21 \ B(M1)(W.u.)=0.0065 \ +8-7 \ if \ M1, \ B(E2)(W.u.)=2.43 \ +31-27 \ if \ E2$
		2660.38 11	100.0 12	559.103	2+	[M1,E2]		0.00065 4	E2. $ \alpha(K)=5.37\times10^{-5} 9; \ \alpha(L)=5.51\times10^{-6} 9; \ \alpha(M)=8.58\times10^{-7} 14 $ $ \alpha(N)=7.36\times10^{-8} 12; \ \alpha(IPF)=0.00059 4 $ B(M1)(W.u.)=0.0133 +16-13 if M1, B(E2)(W.u.)=2.52 +29-25 if E2.
3225.7 3230.27 3238.78 3259.81	(6,8 ⁺) 1,2 ⁺	963.3 5 1059.69 8 413.98 8 309.77 12 604 33 10	100 100 100 46.2 <i>21</i> 100 5	2262.42 2170.572 2824.797 2950.171 2655.383	6 ⁺ (0 ⁺) 5 ⁻ 1 ⁺ 1	[D,E2]			Mult.: $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ consistent with $\Delta J=0$ or 2. B(E2)(W.u.)=32 +25-16 if E2.
3262.34	6-	402.7 5	27.3 23	2859.781	4 ⁻	(E2)		0.00548 8	B(E2)(W.u.) = 38 + 32 - 13

l

					A	Adopted Lev	els, Gamma	s (continued)		
						$\gamma(7)$	⁶ Se) (continu	(ied)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ #	α^{\dagger}	Comments	
3262.34	6-	437.6 5	100 7	2824.797	5-	M1+E2	-0.25 5	0.00247 6	$\alpha(K)=0.00486\ 7;\ \alpha(L)=0.000531\ 8;\alpha(M)=8.25\times10^{-5}\ 12\alpha(N)=6.88\times10^{-6}\ 10B(M1)(W.u.)=0.012\ +11-4;\ B(E2)(W.u.)=5\ +5-3\alpha(K)=0.00220\ 5;\ \alpha(L)=0.000232\ 5;\alpha(M)=3.62\times10^{-5}\ 8\alpha(N)=3.08\times10^{-6}\ 7$	
		999.9 5	40.9 <i>23</i>	2262.42	6+	(E1+M2)	-0.23 17	2.2×10 ⁻⁴ 6	δ = -0.25 5 from (α,2nγ). RUL (for E2 and M2) favors M1+E2. B(E1)(W.u.)=7×10 ⁻⁶ +6-3 $α(K)=1.9×10^{-4} 5; α(L)=2.0×10^{-5} 6;$ $α(M)=3.1×10^{-6} 9$ $α(N)=2.7×10^{-7} 8$	
3262.96 3267.57	(2+,3,4+)	1135.73 8 1578.45 <i>16</i> 1936.54 <i>24</i> 2051.3 <i>5</i>	100 15 8 100.0 22 42 6	2127.224 1688.971 1330.872 1216.154	$(2)^+$ 3^+ 4^+ 2^+				B(M2)(W.u.)=1.8 + 42 - 15 exceeds RUL=1.	
3268.70	(1 ⁻ ,2)	2708.8 5 163.35 11 318.74 10 456.75 16 598.78 10 613.35 10	84.2 22 2.81 21 15.0 7 2.8 4 100 7 11.9 6 2 15 27	559.103 3105.48 2950.171 2812.130 2669.904 2655.383 2127.224	2^+ (3 ⁻) 1^+ (3 ⁺) 2^- 1 (2) ⁺					
3269.75	8+	1007.2 5	100	2127.224	(2) 6 ⁺	E2		0.000414 6	B(E2)(W.u.)=82 +21-14 α (K)=0.000368 5; α (L)=3.86×10 ⁻⁵ 5; α (M)=6.00×10 ⁻⁶ 8 α (N)=5 11×10 ⁻⁷ 7	
3282.19	1,2+	464.67 <i>20</i> 2160.00 <i>13</i>	50.6 <i>14</i> 100.0 <i>14</i>	2817.24 1122.279	(2^+) 0^+	[D.E2]			$B(E_2)(W_{III}) = 4.14 + 40 - 36 \text{ if } E_2$	
3295.02	(1+,2+)	1124.33 <i>13</i> 2736.6 <i>4</i>	11.2 8 100.0 <i>19</i>	2170.572 559.103	(0 ⁺) 2 ⁺	[- , -]			E _y : unweighted average of 2737.07 24 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h) and 2736.21 10 from (n,n' γ).	
		3295.6 6	42.6 <i>34</i>	0.0	0+	[M1,E2]		0.00090 4		

From ENSDF

 $^{76}_{34}$ Se $_{42}$ -33

					A	dopted Leve	ls, Gamma	s (continued)			
						$\gamma(^{76}$	Se) (continu	ed)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	$lpha^{\dagger}$	Comments		
3296.2	(1+,2+)	1508.4 9	80 41	1787.655	2+				E _γ : unweighted average of 3296.14 20 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 3295.07 14 from (n,n'γ). I _γ : unweighted average of 45.9 17 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 39.2 14 from (n,n'γ). E _γ : unweighted average of 1509.23 16 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 1507.52 14 from (n,n'γ).		
		2173.9 8	100 7	1122.279	0^{+}				I_{γ} : from ⁷⁶ Br $\varepsilon + \beta^+$ decay. E_{γ} : unweighted average of 2174.66 30 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h) and 2173.06 18 from (n,n' γ). I_{γ} : from ⁷⁶ Br $\varepsilon + \beta^+$ decay.		
3312.04	(6 ⁻)	266.1 5	100 8	3045.79	(5 ⁻)	(M1+E2)		0.015 7	$\alpha(K)=0.014\ 7;\ \alpha(L)=0.0015\ 8;\ \alpha(M)=2.3\times10^{-4}\ 12$ $\alpha(N)=1.9\times10^{-5}\ 9$ B(M1)(W.u.)=0.0045 +45-22 if M1, B(F2)(Wu) =9\times10^{1}\ +9-4 if F2		
		487.1 5	85 8	2824.797	5-	(M1+E2)	+0.25 5	0.00191 4	B(L2)(W.u.)= $6 \times 10^{-4} + 6 - 3$; B(E2)(W.u.)= $0.21 + 23 - 11$ α (K)= $0.001700 \ 34$; α (L)= $0.000179 \ 4$; α (M)= 2.79×10^{-5} 6 α (M)= $2.28 \times 10^{-6} \ 5$		
3331.51 3346.25		2772.35 8 1320.57 <i>18</i> 2015 13 <i>14</i>	100 100.0 <i>35</i> 73 3 35	559.103 2026.020 1330.872	2^+ 4^+ 4^+				$\alpha(N) = 2.38 \times 10^{-6} 5$		
3348.48	(1+,2+)	1177.90 11	100	2170.572	(0 ⁺)	[M1,E2]		0.000286 10	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000251 \ 8; \ \alpha(\mathrm{L}) = 2.60 \times 10^{-5} \ 10; \\ &\alpha(\mathrm{M}) = 4.05 \times 10^{-6} \ 15 \\ &\alpha(\mathrm{N}) = 3.47 \times 10^{-7} \ 12; \ \alpha(\mathrm{IPF}) = 4.8 \times 10^{-6} \ 7 \\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.05 \ + 10 - 3 \ \mathrm{if} \ \mathrm{M1}, \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 4 \times 10^{1} \\ &+ 9 - 3 \ \mathrm{if} \ \mathrm{E2}. \end{aligned}$		
3351.462	(2) ⁺	191.44 <i>30</i> 401.30 <i>11</i>	0.42 <i>33</i> 0.58 <i>4</i>	3160.115 2950.171	(2 ⁺) 1 ⁺	[M1,E2]		0.0042 13	$\begin{aligned} &\alpha(\text{K}) = 0.0037 \ 12; \ \alpha(\text{L}) = 4.0 \times 10^{-4} \ 13; \ \alpha(\text{M}) = 6.3 \times 10^{-5} \\ &21 \\ &\alpha(\text{N}) = 5.3 \times 10^{-6} \ 17 \\ &\text{B}(\text{M}1)(\text{W.u.}) = 0.0134 \ + 18 - 15 \ \text{if M1, B}(\text{E2})(\text{W.u.}) = 112 \\ &+ 15 - 13 \ \text{if E2.} \end{aligned}$		
		539.25 <i>14</i> 681.44 <i>10</i>	0.148 <i>13</i> 7.8 <i>4</i>	2812.130 2669.904	(3 ⁺) 2 ⁻	[E1]		0.000402 6	$\alpha(K)=0.000358\ 5;\ \alpha(L)=3.72\times10^{-5}\ 5;\ \alpha(M)=5.78\times10^{-6}\ 8\ \alpha(N)=4.93\times10^{-7}\ 7\ B(E1)(W,u,)=6.3\times10^{-4}\ +8-7$		
		695.95 <i>10</i> 747.28 <i>13</i> 836.62 <i>10</i>	9.1 5 1.48 <i>11</i> 6.30 <i>31</i>	2655.383 2604.09 2514.681	$1 \\ 1^+, 2^+ \\ 2^+$	[M1,E2]		0.00060 5	$\alpha(K)=0.00054 4; \ \alpha(L)=5.6\times 10^{-5} 5; \ \alpha(M)=8.7\times 10^{-6} 8$		

					Adopted	l Levels, Gamn	nas (continued)	
						$\gamma(^{76}\text{Se})$ (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J ²	f Mult. [#]	δ#	$lpha^\dagger$	Comments
								α (N)=7.5×10 ⁻⁷ 6 B(M1)(W.u.)=0.0161 +20-17 if M1, B(E2)(W.u.)=30.9 +38-32 if E2.
3351.462	(2)+	922.21 11	0.51 8	2429.131 3-	[E1]		0.0002127 30	$\alpha(K) = 0.0001898 \ 27; \ \alpha(L) = 1.961 \times 10^{-5} \ 27; \alpha(M) = 3.05 \times 10^{-6} \ 4 \alpha(N) = 2.60 \times 10^{-7} \ 4$
		1180.71 <i>10</i>	2.10 15	2170.572 (0	+) [E2]		0.000294 4	B(E1)(W.u.)=1.67×10 ⁻³ +33-30 α (K)=0.000257 4; α (L)=2.68×10 ⁻⁵ 4; α (M)=4.17×10 ⁻⁶ 6 α (N)=3.55×10 ⁻⁷ 5; α (IPF)=5.90×10 ⁻⁶ 8 D(E2)(W.u.)=1.84+25-24
		1224.19 <i>12</i>	5.06 33	2127.224 (2)	⁺ [M1,E2]		0.000270 9	$\alpha(K)=0.000231 \ 7; \ \alpha(L)=2.40\times10^{-5} \ 8; \ \alpha(M)=3.73\times10^{-6} \ 12 \ \alpha(N)=3.19\times10^{-7} \ 10; \ \alpha(IPF)=1.07\times10^{-5} \ 16$
		1559.98 <i>10</i>	8.9 8	1791.437 0+	[E2]		0.000270 4	B(M1)(W.u.)=0.0041 5 if M1, B(E2)(W.u.)=3.70 +48-41 if E2. α (K)=0.0001437 20; α (L)=1.487×10 ⁻⁵ 21; α (M)=2 314×10 ⁻⁶ 32
		1564.10 57	0.439 21	1787.655 2+	[M1,E2]		0.000258 14	$\alpha(N) = 1.979 \times 10^{-7} 28; \ \alpha(IPF) = 0.0001091 \ 15$ B(E2)(W.u.)=1.94 +28-24 $\alpha(K) = 0.0001411 \ 27; \ \alpha(L) = 1.459 \times 10^{-5} \ 29;$ $\alpha(M) = 2.27 \times 10^{-6} \ 5$
		2135.60 8	17.06 <i>13</i>	1216.154 2+	(M1+E2)) -0.042 10	0.000411 6	$\begin{aligned} &\alpha(\text{N}) = 1.94 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 0.000100 \ 11 \\ &\text{B}(\text{M1})(\text{W.u.}) = 1.72 \times 10^{-4} \ + 21 - 18 \ \text{if M1}, \\ &\text{B}(\text{E2})(\text{W.u.}) = 0.094 \ + 12 - 10 \ \text{if E2}. \\ &\alpha(\text{K}) = 7.83 \times 10^{-5} \ 11; \ \alpha(\text{L}) = 8.05 \times 10^{-6} \ 11; \end{aligned}$
		2229.91 22	0.390 29	1122.279 0+	[E2]		0.000504 7	$\alpha(M)=1.252\times10^{-6} \ I8$ $\alpha(N)=1.075\times10^{-7} \ I5; \ \alpha(IPF)=0.000323 \ 5$ $B(M1)(W.u.)=0.00262 \ +30-24; \ B(E2)(W.u.)=0.0014 \ +8-6$ $\alpha(K)=7.36\times10^{-5} \ I0; \ \alpha(L)=7.57\times10^{-6} \ I1; \ \alpha(L)=1.177\times10^{-6} \ I6$
		2792.61 <i>21</i>	100.0 5	559.103 2+	M1+E2	-0.060 19	0.000670 9	$\alpha(M)=1.177\times10^{-7} I6$ $\alpha(N)=1.009\times10^{-7} I4; \ \alpha(IPF)=0.000422 6$ $B(E2)(W.u.)=0.0142 + 20 - 17$ $\alpha(K)=4.90\times10^{-5} 7; \ \alpha(L)=5.03\times10^{-6} 7; \ \alpha(M)=7.82\times10^{-7}$ $I1$
		3351.94 22	3.09 12	0.0 0+	[E2]		0.000967 14	$\begin{aligned} &\alpha(\text{N}) = 6.72 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 0.000615 \ 9 \\ &\text{B}(\text{M}1)(\text{W.u.}) = 0.0069 \ +8-6; \ \text{B}(\text{E2})(\text{W.u.}) = 0.0043 \ +32-23 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp in } ^{76}\text{Br } \varepsilon. \\ &\alpha(\text{K}) = 3.71 \times 10^{-5} \ 5; \ \alpha(\text{L}) = 3.80 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 5.91 \times 10^{-7} \\ & 8 \end{aligned}$

 $^{76}_{34}$ Se $_{42}$ -35

 $^{76}_{34}\mathrm{Se}_{42}$ -35

	Adopted Levels, Gammas (continued)												
	γ ⁽⁷⁶ Se) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
									$\alpha(N) = 5.07 \times 10^{-8}$ 7; $\alpha(IPF) = 0.000926$ 13				
3376.37	$1^{(+)}.2^{+}$	3376.29 12	100	0.0	0^{+}				B(E2)(W.u.)=0.0147 + 18 - 15				
3377.0	$(1^+, 2^+, 3^+)$	2160.80 41	100	1216.154	2+								
3403.82	(2+,3+,4+)	592.02 14	79.9 <i>34</i>	2812.130	(3+)	[M1]			B(M1)(W.u.)=1.45 +18-15 If E2, B(E2)(W.u.)=5.5×10 ³ +7-6 exceeds RUL=300; if E1, B(E1)(W.u.)=0.0248 28 exceeds RUL=0.01;				
		2072.68 12	100.0 34	1330.872	4+	[M1,E2]		0.000413 26	$\alpha(K)=8.32\times10^{-5} \ 13; \ \alpha(L)=8.57\times10^{-6} \ 14; \\ \alpha(M)=1.333\times10^{-6} \ 22 \\ \alpha(N)=1.143\times10^{-7} \ 18; \ \alpha(IPF)=0.000320 \ 25 \\ B(M1)(W.u.)=0.042 \ +5-4 \ if \ M1,$				
3405.9	(1)	3405.8 7	100	0.0	0^{+}	(D)			B(E2)(W.u.)=13.2 + <i>17</i> - <i>13</i> if E2. If M1, B(M1)(W.u.)=0.0027 5. If E1, B(E1)(W.u.)=4.7E-5 8.				
3407.91	(4 ⁺)	548.12 4	100.0 24	2859.781	4-	[E1]		0.000664 9	$\alpha(K)=0.000592 \ 8; \ \alpha(L)=6.16\times10^{-5} \ 9; \ \alpha(M)=9.57\times10^{-6} \ 13$				
									$\alpha(N) = 8.15 \times 10^{-7} 11$				
		1710 02 10	25.0.24	1600.071	2+			0.000204.19	B(E1)(W.u.) = 0.0035 + 20 - 16				
		1/18.93 10	25.9 24	1688.971	3'	[M1,E2]		0.000294 18	$\alpha(K)=0.000117720; \alpha(L)=1.215\times10^{-5}22; \alpha(M)=1.890\times10^{-6}34$				
									$\alpha(N)=1.620 \times 10^{-7} 28; \ \alpha(IPF)=0.000162 \ 16$ B(M1)(W.u.)=0.0017 +10-8 if M1, B(E2)(W.u.)=0.78 +46-35 if E2.				
3432.31	7+	942.8 5	100 8	2489.35	5+	E2		0.000484 7	$B(E2)(W.u.) = 40 \ I3$ $\alpha(K) = 0.000431 \ 6: \ \alpha(L) = 4.52 \times 10^{-5} \ 6:$				
									$\alpha(M) = 7.03 \times 10^{-6} \ 10$				
		1169.6.5	24.2	2262.42	6+	M1(+E2)	+0.08.15	0 000280 4	$\alpha(N)=5.99\times10^{-7}$ 8 B(M1)(W µ)=0.0033 +18-15 B(F2)(W µ)<0.25				
		1109.000	212	2202.12	Ū	MI((122)	10.00 10	0.000200 7	$\alpha(K) = 0.0002466 \ 35; \ \alpha(L) = 2.55 \times 10^{-5} \ 4; \\ \alpha(M) = 3.97 \times 10^{-6} \ 6$				
	(+) a +				a +				$\alpha(N) = 3.41 \times 10^{-7} 5; \alpha(IPF) = 3.46 \times 10^{-6} 8$				
3436.09	1(+),2+	2876.40 28	100.0 14	559.103	2+	(M1+E2)	+0.64 +28-20	0.000724 16	$\alpha(K) = 4.69 \times 10^{-5}$ 7; $\alpha(L) = 4.81 \times 10^{-6}$ 7; $\alpha(M) = 7.48 \times 10^{-7}$ 11				
									$\alpha(N)=6.42\times10^{-8}$ 9; $\alpha(IPF)=0.000672$ 16 P(M1)(Wy)=0.0081 + 16, 20; P(F2)(Wy)=0.54				
									B(M1)(W.U.)=0.0081 +10-20; B(E2)(W.U.)=0.54 +31-25				
		3436.28 20	28.0 14	0.0	0^+	[M1,E2]		0.00096 4	$\alpha(K)=3.52\times10^{-5}$ 7; $\alpha(L)=3.61\times10^{-6}$ 7; $\alpha(M)=5.61\times10^{-7}$ 10				

From ENSDF
				Ad	lopted Lev	vels, Gammas (co	ontinued)
					$\gamma(7)$	⁶ Se) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$lpha^\dagger$	Comments
							α (N)=4.82×10 ⁻⁸ 9; α (IPF)=0.00092 4 B(M1)(W.u.)=0.00188 +18-16 if M1, B(E2)(W.u.)=0.214 +20-18 if E2.
3441.27	(3 ⁻)	2882.11 22	100	559.103 2+			
3441.54	/-	179.2 5	8.19	3262.34 6	[M1]	0.02147 34	B(M1)(W.u.)=0.0/0 +20-14 α (K)=0.01907 30; α (L)=0.002056 33; α (M)=0.000321 5 α (N)=2.72×10 ⁻⁵ 4
		465 3 5	63	2975 98 6+	[F1]	0 000994 14	$\delta(\text{E2/M1}) < 0.7$ for RUL<300 for E2. B(E1)(W u) = 5.3×10 ⁻⁵ + 18-13
		100.00	0.5	2773.90		0.00077117	$\alpha(K) = 0.000886 \ 13; \ \alpha(L) = 9.22 \times 10^{-5} \ 13; \ \alpha(M) = 1.433 \times 10^{-5} \ 20$
		616.8.5	100.7	2824 707 5-	F2	1.48×10^{-3} 2	$\alpha(N)=1.218\times10^{-6}$ 17 B(E2)(Wu)=74 + 18-13
		010.8 5	100 7	2024.191 5	62	1.40×10 2	$\alpha(K) = 0.001314 \ 19; \ \alpha(L) = 0.0001401 \ 20; \ \alpha(M) = 2.178 \times 10^{-5}$ 31
		1170 1 5	9.0	2262 12 6+	[E1]	0.0001684.24	$\alpha(N)=1.840\times10^{-6}\ 26$ B(E1)(Wu) -4.7×10 ⁻⁶ +15-11
		1179.1 5	9.0	2202.72 0	[L1]	0.000100+ 24	$\alpha(K) = 0.0001193 \ 17; \ \alpha(L) = 1.228 \times 10^{-5} \ 17; \alpha(M) = 1.909 \times 10^{-6} \ 27$
3/150 13	(2^{+})	101 68 15	0.88.18	$326757(2^+34^+)$			α (N)=1.634×10 ⁻⁷ 23; α (IPF)=3.48×10 ⁻⁵ 6
5757.15	(2)	267.47 36	0.88 18	3191.67 (2, 3,4) 3191.67 (3) ⁺			
		353.68 17	1.17 9	$3105.48 (3^{-})$			
		389.50 <i>18</i> 647 05 33	1.77 23	$3069.62 2^{+}$ 2812 130 (3^{+})			
		789.09 10	74 5	2669.904 2			
		803.59 10	87 4	2655.383 1			
		1029.89 15	100 11	2429.131 3 ⁻ 1787.655 2 ⁺			
		1769.93 41	6.3 6	1688.971 3 ⁺			
		2900.53 20	63.4 26	559.103 2+			
3466.39	(1,2,3)	796.15 19	7.8 14	2669.904 2 ⁻			
		2250.64 23	2.8.5	1210.154 2 559 103 2 ⁺			
3528.69	1^{+}	3528.6 3	100 17	$0.0 0^+$	[M1]	0.000951 13	B(M1)(W.u.)=0.0100 + 11-9
							$\alpha(K)=3.33\times10^{-5} 5; \alpha(L)=3.41\times10^{-6} 5; \alpha(M)=5.31\times10^{-7} 7$ $\alpha(N)=4.56\times10^{-8} 6; \alpha(IPF)=0.000913 13$ F : from ($\alpha\alpha'$)
3552.89	(1,2)	897.57 11	31.5 17	2655.383 1			Ly. nom (γ, γ) .
		2337.37 26	35.0 19	1216.154 2+			

					tinued)			
						$\gamma(^{76}S)$	Se) (continued)	
E _i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α^{\dagger}	Comments
3552.89	(1,2)	2431.38 <i>24</i> 2994.27 <i>20</i>	38.2 <i>20</i> 100 <i>6</i>	1122.279 559.103	0 ⁺ 2 ⁺			
3556.210	(2 ⁻)	3553.53 96 287.32 25 288.68 20 336.61 12 450.83 13 486.44 10 581.20 11 605.97 14 686.81 12 696.39 10 738.88 13 744.40 45 886.14 12 900.71 10 1127.15 23 1428.91 10 1768.52 10 1867.35 10 2339.53 21	$\begin{array}{c} 7.1 \ 18 \\ 1.32 \ 13 \\ 0.085 \ 26 \\ 2.1 \ 5 \\ 1.78 \ 14 \\ 10.5 \ 7 \\ 1.18 \ 16 \\ 2.3 \ 4 \\ 1.69 \ 12 \\ 5.4 \ 33 \\ 0.57 \ 5 \\ 0.44 \ 4 \\ 32.4 \ 21 \\ 10.9 \ 5 \\ 15.4 \ 22 \\ 27.5 \ 18 \\ 24.5 \ 10 \\ 13.8 \ 13 \\ 6.54 \ 26 \\ 100 \ 4 \end{array}$	0.0 3268.70 3267.57 3219.428 3105.48 3069.62 2975.00 2950.171 2869.34 2859.781 2817.24 2812.130 2669.904 2655.383 2429.131 2127.224 1787.655 1688.971 1216.154	0^{+} $(1^{-},2)$ $(2^{+},3,4^{+})$ $(2^{+},3^{+})$ (3^{-}) 2^{+} $(2^{+},3,4^{+})$ 1^{+} $(1^{+},2^{+})$ 4^{-} (2^{+}) (3^{+}) 2^{-} 1 3^{-} $(2)^{+}$ 2^{+} 3^{+} 2^{+} 2^{+} 2^{+} 2^{+}			
3566.6	1 ⁽⁺⁾	3566.5 10	100	0.0	0^{+}	(M1)	0.000964 14	$\alpha(K)=3.28\times10^{-5} 5; \ \alpha(L)=3.36\times10^{-6} 5; \ \alpha(M)=5.22\times10^{-7} 7$ $\alpha(N)=4.48\times10^{-8} 6; \ \alpha(IPF)=0.000928 \ 13$ B(M1)(W.u.)=0.0031 +6-4
3604.192	1+	734.78 <i>14</i> 934.26 <i>12</i>	0.238 <i>19</i> 4.9 <i>4</i>	2869.34 2669.904	(1 ⁺ ,2 ⁺) 2 ⁻	[E1]	0.0002073 29	$\alpha(K)=0.0001850\ 26;\ \alpha(L)=1.911\times10^{-5}\ 27;\ \alpha(M)=2.97\times10^{-6}\ 4$
		948.70 <i>13</i> 999 96 <i>10</i>	2.91 <i>14</i> 2 46 <i>18</i>	2655.383	1 1+ 2+			$\alpha(N)=2.54\times10^{-7} 4$ B(E1)(W.u.)=3.14×10 ⁻⁴ +43-36
		1089.42 10	5.17 27	2514.681	2+	[M1,E2]	0.000332 14	$\begin{aligned} &\alpha(\mathrm{K}){=}0.000296 \ 12; \ \alpha(\mathrm{L}){=}3.08{\times}10^{-5} \ 14; \ \alpha(\mathrm{M}){=}4.79{\times}10^{-6} \ 21 \\ &\alpha(\mathrm{N}){=}4.10{\times}10^{-7} \ 17 \\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}){=}0.0122 \ {+}14{-}12 \ \mathrm{if} \ \mathrm{M1}, \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}){=}13.8 \ {+}16{-}14 \ \mathrm{if} \\ &\mathrm{E2}. \end{aligned}$
		1433.53 10	2.37 16	2170.572	(0 ⁺)	[M1]	0.0002337 <i>33</i>	$\alpha(K)=0.0001648\ 23;\ \alpha(L)=1.702\times10^{-5}\ 24;\ \alpha(M)=2.65\times10^{-6}\ 4$ $\alpha(N)=2.272\times10^{-7}\ 32;\ \alpha(IPF)=4.90\times10^{-5}\ 7$ P(M)(M)=0.00245+34-27
		1476.91 10	0.70 11	2127.224	(2) ⁺	[M1,E2]	0.000246 11	$\alpha(\text{K})=0.0001579 \ 32; \ \alpha(\text{L})=1.63\times10^{-5} \ 4; \ \alpha(\text{M})=2.54\times10^{-6} \ 6$

From ENSDF

				Adop	ted Levels,	Gammas (conti	nued)
					$\gamma(^{76}\text{Se})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger}	Comments
							α (N)=2.18×10 ⁻⁷ 5; α (IPF)=6.9×10 ⁻⁵ 8 B(M1)(W.u.)=6.6×10 ⁻⁴ +13-12 if M1, B(E2)(W.u.)=0.41 +8-7 if E2.
3604.192	1+	1812.92 <i>12</i>	1.9 5	1791.437 0+	[M1]	0.000301 4	B(M1)(W.u.)=9.7×10 ⁻⁴ +28-26 α (K)=0.0001055 <i>15</i> ; α (L)=1.087×10 ⁻⁵ <i>15</i> ; α (M)=1.691×10 ⁻⁶ 24 (DE) 1.451×10 ⁻⁷ 20 (DE) 0.0001025 26
		1816.71 <i>12</i>	2.06 10	1787.655 2+	[M1,E2]	0.000322 21	$\alpha(N)=1.451\times10^{-7} 20; \ \alpha(IPF)=0.0001825 \ 20$ $\alpha(K)=0.0001061 \ 18; \ \alpha(L)=1.094\times10^{-5} \ 19; \ \alpha(M)=1.701\times10^{-6} \ 29$ $\alpha(N)=1.458\times10^{-7} \ 24; \ \alpha(IPF)=0.000203 \ 19$ B(M1)(W.u.)=0.00105 +12-11 if M1, B(E2)(W.u.)=0.426 \ +49-42 if F2
		2482.60 20	6.42 27	1122.279 0+	[M1]	0.000545 8	B(M1)(W.u.)=0.00128 +15-12 α (K)=6.00×10 ⁻⁵ 8; α (L)=6.16×10 ⁻⁶ 9; α (M)=9.58×10 ⁻⁷ 13 α (N)=8.23×10 ⁻⁸ 12; α (IPF)=0.000478 7
		3045.51 20	2.15 24	559.103 2+	[M1,E2]	0.00081 4	$\begin{aligned} &\alpha(K) = 4.28 \times 10^{-5} \ 7; \ \alpha(L) = 4.39 \times 10^{-6} \ 8; \ \alpha(M) = 6.83 \times 10^{-7} \ 12 \\ &\alpha(N) = 5.86 \times 10^{-8} \ 10; \ \alpha(IPF) = 0.00076 \ 4 \\ &B(M1)(W.u.) = 2.32 \times 10^{-4} \ +37 - 32 \ \text{if } M1, \ B(E2)(W.u.) = 0.034 \ 5 \\ &\text{if } F2 \end{aligned}$
		3604.01 8	100 3	0.0 0+	(M1)	0.000978 14	B(M1)(W.u.)=0.0065 +7-6 $\alpha(K)=3.22\times10^{-5} 5; \alpha(L)=3.30\times10^{-6} 5; \alpha(M)=5.13\times10^{-7} 7$ $\alpha(N)=4.41\times10^{-8} 6; \alpha(IPF)=0.000941 13$ E _{γ} : weighted average of 3603.99 8 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 3604.3 3 from (γ,γ'). L: from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h)
3636.88 3651.88	(2 ⁺) (1 ⁺ ,2 ⁺ ,3 ⁺)	$\begin{array}{c} 531.36 \ 37\\ 767.61 \ 14\\ 966.78 \ 11\\ 981.24 \ 20\\ 1122.12 \ 43\\ 1466.13 \ 35\\ 1509.44 \ 11\\ 1845.58 \ 16\\ 1848.72 \ 72\\ 2421.08 \ 20\\ 2515.16 \ 59\\ 3078.56 \ 21\\ 701.66 \ 12\\ \end{array}$	$\begin{array}{c} 1.64 \ 18 \\ 1.64 \ 18 \\ 9.7 \ 7 \\ 26.9 \ 28 \\ 7.8 \ 26 \\ 2.4 \ 5 \\ 28.7 \ 21 \\ 90 \ 8 \\ 23.6 \ 13 \\ 17.7 \ 9 \\ 100 \ 4 \\ 10.0 \ 5 \\ 10.8 \ 19 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$, · · · · · · · · · · · · · · · · · · ·
		1963.00 <i>34</i> 2436.05 <i>27</i>	6.5 7 8.2 7	1688.971 3 ⁺ 1216.154 2 ⁺			

From ENSDF

I

Adopted Levels, Gammas (continued)											
						$\gamma(7)$	⁶ Se) (continued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	$lpha^\dagger$	Comments		
3651.88	$(1^+, 2^+, 3^+)$	3092.95 20	100 6	559.103	2+						
3657.7?	(1,2)	3098.3 <mark>b</mark> 5	100	559.103	2+						
	- (1)	3657.8 5	100	0.0	0^+						
3670.2	1(+)	3670.1 4	100	0.0	0+	(M1)		1.00×10 ⁻³ 1	$\alpha(K)=3.13\times10^{-5} 4; \ \alpha(L)=3.20\times10^{-6} 4; \ \alpha(M)=4.98\times10^{-7} 7 \ \alpha(N)=4.28\times10^{-8} 6; \ \alpha(IPF)=0.000965 \ 14 \ B(M1)(W.u.)=0.0061 \ +8-6 \ E_{\rm eff} \ from (uu') \ only$		
3696.27	(7 ⁻)	254.5 5	100 8	3441.54	7-	(M1+E2)	+0.045 5	0.00882 13	B _γ : from (γ,γ) only. B(M1)(W.u.)=0.019 +7-4; B(E2)(W.u.)=0.79 +36-23 α (K)=0.00784 12; α (L)=0.000838 12; α (M)=0.0001305 19 α (N)=1.110×10 ⁻⁵ 17 Mult.: γ(θ) in (α ,2nγ) consistent with		
		384.2 5	42	3312.04	(6 ⁻)	(M1+E2)	≈-0.9	≈0.00464	$\Delta J=0.$ B(M1)(W.u.)=0.0013 +8−5; B(E2)(W.u.)=9 6 α (K)≈0.00412; α (L)≈0.000445; α (M)≈6.92×10 ⁻⁵ α (N)≈5 82×10 ⁻⁶		
		434.1 5	28	3262.34	6-	[M1+E2]		0.0034 9	$\alpha(1) = 0.0210^{-5} \alpha(L) = 3.2 \times 10^{-4} 9;$ $\alpha(M) = 5.0 \times 10^{-5} 15$ $\alpha(N) = 4.2 \times 10^{-6} 12$ B(M1)(W.u.) = 0.00106 + 43 - 28 if M1, B(E2)(W.u.) = 7.6 + 31 - 20 if E2		
		650.8 <i>5</i>	83	3045.79	(5 ⁻)	[E2]		1.27×10 ⁻³ 2	B(E2)(W.u.)=3.0 + 11-7 $\alpha(K)=0.001129 \ 16; \ \alpha(L)=0.0001201 \ 17;$ $\alpha(M)=1.868\times10^{-5} \ 26$ $\alpha(N)=1.579\times10^{-6} \ 22$		
3716.52	(2)	1060.87 10	24.2 12	2655.383	1						
		1929.05 11	14.9 8	1787.655	2^+						
		2028.04 54	7.6 8	1688.971	3 ⁺ 2+	D(+0)	+0.004 + 24 - 25		Mult , a (1) in 76Br a decay consistent with		
		5157.04 20	100 4	559.105	2	D(+Q)	+0.004 + 34 - 33		Al=0 or 2.		
3752.1	1 ⁽⁺⁾	3752.0 14	100	0.0	0+	(M1)		1.03×10 ⁻³ 1	B(M1)(W.u.)=0.0024 +9-5 α (K)=3.02×10 ⁻⁵ 4; α (L)=3.09×10 ⁻⁶ 4; α (M)=4.81×10 ⁻⁷ 7 α (N)=4.13×10 ⁻⁸ 6; α (IPF)=0.000995 14		
3758.79	1	2542.6 8	19 5	1216.154	2^{+}						
		2636.1 6	42 6	1122.279	0^{+}	D			IF M1, B(M1)(W.u.)=0.040 8. IF E1, B(E1)(W.u.)=0.00069 13.		

					1	Adopted Lev	els, Gamma	s (continued)	
						$\gamma(7)$	⁶ Se) (continu	ied)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	α^{\dagger}	Comments
3758.79	1	3199.8 <i>3</i> 3758.6 <i>3</i>	47 5 100 9	559.103 0.0	2^+ 0 ⁺	D			IF M1, B(M1)(W.u.)=0.033 5. IF E1, B(E1)(Wu)=0.00057.9
3785.7	(8+)	515.7 5	89	3269.75	8+	[M1+E2]		0.0021 4	$\alpha(K)=0.0018 \ 4; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=3.0\times10^{-5} \ 7 \ \alpha(N)=2.6\times10^{-6} \ 6 \ B(M1)(W.u.)=0.084 \ +46-31 \ if \ M1. \ B(E2)(W.u.)=4.2\times10^2 \ +23-16 \ exceeds \ RUL=300 \ if \ E2.$
		1523.5 5	100	2262.42	6+	[E2]		0.000263 4	B(E2)(W.u.)=2.1 +11-8 α (K)=0.0001506 21; α (L)=1.560×10 ⁻⁵ 22; α (M)=2.427×10 ⁻⁶ 34 α (N)=2.076×10 ⁻⁷ 29; α (IPF)=9.44×10 ⁻⁵ 13 Mult.: $\gamma(\theta)$ in (α ,2n γ) consistent with Δ J=0.2.
3853.75	(8)+	583.9 5	58 4	3269.75	8+	M1+E2	-0.45 25	0.00131 8	B(M1)(W.u.)=0.147 49; B(E2)(W.u.)= 1.2×10^{2} + $12-9$ α (K)=0.00116 7; α (L)=0.000122 8; α (M)= 1.90×10^{-5} 13 α (N)= 1.62×10^{-6} 11
		878.3 1591.1 <i>5</i>	100	2975.98 2262.42	6+ 6+	[E2]		0.000277 4	E _γ : γ from (¹² C,α2nγ) only. B(E2)(W.u.)=8.0 22 α (K)=0.0001382 <i>19</i> ; α (L)=1.430×10 ⁻⁵ 20; α (M)=2.224×10 ⁻⁶ 31 α (N)=1.903×10 ⁻⁷ 27; α (IPF)=0.0001222 <i>17</i>
3857.8	1+	3857.7 11	100	0.0	0+	(M1)		1.07×10 ⁻³ 2	B(M1)(W.u.)= $0.0022 + 6 - 4$ α (K)= $2.89 \times 10^{-5} 4$; α (L)= $2.96 \times 10^{-6} 4$; α (M)= $4.60 \times 10^{-7} 6$ α (M)= $3.95 \times 10^{-8} 6$; α (JPE)= $0.001034 14$
3880.46 3915.48	(2-)	1225.07 18 647.79 20 695.70 33 809.89 12 845.76 17 965.33 15 1055.90 13 1103.25 10 1245.49 32 1400.74 18 1787.99 32 2226.68 20	100 4.9 <i>I8</i> 36 <i>9</i> 3.04 <i>29</i> 27.5 <i>27</i> 8.6 <i>I1</i> 1.9 <i>I3</i> 30 <i>6</i> 8.8 <i>8</i> 8.7 <i>8</i> 58 <i>5</i> 61 <i>6</i>	2655.383 3267.57 3219.428 3105.48 3069.62 2950.171 2859.781 2812.130 2669.904 2514.681 2127.224 1688.971	$1 \\ (2^+,3,4^+) \\ (2^+,3^+) \\ (3^-) \\ 2^+ \\ 1^+ \\ 4^- \\ (3^+) \\ 2^- \\ 2^+ \\ (2)^+ \\ 3^+ \end{cases}$				u(1)-3.33×10 0, u(11)-0.00103414

н

	Adopted Levels, Gammas (continued)											
						γ (⁷⁶ S	e) (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments				
3915.48	(2 ⁻)	2699.08 20 3356.87 20	28.6 26 100 5	1216.154 559.103	2+ 2+							
3922.5	1	3922.4 <i>4</i>	100	0.0	0^{+}	D		If M1, B(M1)(W.u.)=0.0087 9. If E1, B(E1)(W.u.)=0.000149 15.				
3930.02	$(1,2^+)$	1060.51 25	3.94 <i>32</i>	2869.34	$(1^+, 2^+)$							
		1259.87 19	17.8 <i>13</i>	2669.904	2-							
		1759.34 <i>13</i>	1.23 13	2170.572	(0^{+})							
		1802.65 11	26.1 18	2127.224	$(2)^{+}$							
		2142.50 21	10.5 7	1787.655	2^{+}							
		2714.09 20	37.8 25	1216.154	2+							
		2808.17 22	46.2 19	1122.279	0^{+}							
		3371.00 20	100 7	559.103	2+							
		3929.96 40	65 4	0.0	0^{+}							
3970.407	(2^{+})	701.64 10	15.3 14	3268.70	$(1^{-},2)$							
		750.94 20	0.97 24	3219.428	$(2^+, 3^+)$							
		778.84 12	7.0 13	3191.67	$(3)^+$							
		810.32 18	6.4 5	3160.115	(2^+)							
		864.93 11	2.92.22	3105.48	(3)							
		900.82 14	27.7 18	3069.62	2^{+}							
		995.41 13	11.9 15	2975.00	$(2^{+}, 3, 4^{+})$							
		1020.32 11	/.1 4	2950.171	(1+2+)							
		1101.07 11	21.0 13	2809.34	(1,2)							
		1158.14 10	21.8 10	2017.24	$\binom{2}{2^+}$							
		1300.48.12	9.4 / 13 8 20	2612.130	(3)							
		1314 70 11	$+3.6\ 29$	2655 383	2 1							
		1455 63 10	30 5 16	2514 681	2^{+}							
		1541 25 11	8013	2429 131	3-							
		2183 01 20	55 8 24	1787 655	2^{+}							
		2754.54 20	5.8 6	1216.154	$\frac{1}{2^{+}}$							
		3411.55 20	100 4	559,103	- 2 ⁺							
4005.1		309.3 5	100	3696.27	(7^{-})							
4008.7	(8-)	746.3 5	100	3262.34	6-	E2	0.000874 12	B(E2)(W.u.) = 58 + 27 - 14				
								α (K)=0.000778 <i>11</i> ; α (L)=8.23×10 ⁻⁵ <i>12</i> ; α (M)=1.280×10 ⁻⁵ <i>18</i> α (N)=1.085×10 ⁻⁶ <i>15</i>				
4045.61	1^{+}	1440.7 12	13.0 19	2604.09	$1^+, 2^+$							
		1918.41 <i>45</i>	56 5	2127.224	(2)+	[M1,E2]	0.000356 23	$\alpha(K)=9.59\times10^{-5} \ 16; \ \alpha(L)=9.88\times10^{-6} \ 16; \ \alpha(M)=1.537\times10^{-6} \ 26 \\ \alpha(N)=1.317\times10^{-7} \ 21; \ \alpha(IPF)=0.000249 \ 22 \\ B(M1)(W.u.)=0.0151 \ +22-19 \ if \ M1, \ B(E2)(W.u.)=5.5 \ +8-7 \ if \ E2.$				
		2258.06 23	100 5	1787.655	2+	[M1,E2]	0.000487 30	$\alpha(K)=7.14\times10^{-5} II; \ \alpha(L)=7.34\times10^{-6} I2; \ \alpha(M)=1.142\times10^{-6} I8$ $\alpha(N)=9.80\times10^{-8} I5; \ \alpha(IPF)=0.000407 \ 30$				

 $^{76}_{34}\mathrm{Se}_{42}$ -42

						γ (⁷⁶ Se	e) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}	Mult.#	α^{\dagger}	Comments
								E _γ ,I _γ : from ⁷⁶ Br ε+β ⁺ decay (16.14 h). B(M1)(W.u.)=0.0165 +21-17 if M1, B(E2)(W.u.)=4.3 +6-5 if E2.
4045.61	1+	2356.89 21	38 5	1688.971	3+	[E2]	0.000558 8	$\alpha(K)=6.67\times10^{-5}$ 9; $\alpha(L)=6.86\times10^{-6}$ 10; $\alpha(M)=1.067\times10^{-6}$ 15
								α (N)=9.15×10 ⁻⁸ <i>13</i> ; α (IPF)=0.000484 7 B(E2)(W.u.)=1.33 +23-20
		2830.11 23	66 4	1216.154	2+	[M1,E2]	0.00072 4	$\alpha(K)=4.84\times10^{-5} \ 8; \ \alpha(L)=4.96\times10^{-6} \ 8; \ \alpha(M)=7.72\times10^{-7} \ 13$
								α (N)=6.63×10 ⁻⁸ <i>11</i> ; α (IPF)=0.00067 <i>4</i> B(M1)(W.u.)=0.0055 +8-6 if M1, B(E2)(W.u.)=0.93 +13-10 if E2.
		4046.2 3	100	0.0	0^{+}	(M1)	$1.13 \times 10^{-3} 2$	B(M1)(W.u.)=0.0029 5
								$\alpha(K)=2.69\times10^{-5}$ 4; $\alpha(L)=2.75\times10^{-6}$ 4; $\alpha(M)=4.27\times10^{-7}$ 6 $\alpha(N)=3.67\times10^{-8}$ 5; $\alpha(IPF)=0.001100$ 15
4055.22	1+	4055.1 <i>3</i>	100	0.0	0+	M1	1.13×10 ⁻³ 2	B(M1)(W.u.)= $1.13 \times 10^{-5} + 11-9$ α (K)= $2.68 \times 10^{-5} 4$; α (L)= $2.74 \times 10^{-6} 4$; α (M)= $4.26 \times 10^{-7} 6$ α (N)= $3.66 \times 10^{-8} 5$; α (IPF)= $0.001102.15$
4083.68	(1 ⁻ ,2)	816.29 <i>13</i> 864.16 <i>70</i> 979.0 <i>17</i> 1133.70 <i>61</i> 1271.45 <i>12</i> 1413.70 <i>14</i> 1428.61 <i>57</i> 1568.63 <i>14</i> 1654.57 <i>21</i> 2296.07 <i>26</i> 3524.99 <i>20</i>	1.55 24 3.5 8 0.66 10 7.7 4 5.8 5 2.66 24 5.7 34 8.6 12 41 5 6.00 17 100 4	3267.57 3219.428 3105.48 2950.171 2812.130 2669.904 2655.383 2514.681 2429.131 1787.655 559.103	$(2^+,3,4^+)$ $(2^+,3^+)$ (3^-) 1^+ (3^+) 2^- 1 2^+ 3^- 2^+ 2^+ 2^+			
4086.58	(1,2,3+)	1136.10 71 1416.48 49 1431.9 22 2298.95 22	14.7 <i>31</i> 12.5 <i>22</i> 17 <i>6</i> 100 <i>6</i>	2950.171 2669.904 2655.383 1787.655	1+ 2- 1 2+			
4125.5	1+	4125.4 10	100	0.0	0+	M1	1.15×10 ⁻³ 2	B(M1)(W.u.)=0.0026 +7-4 α (K)=2.61×10 ⁻⁵ 4; α (L)=2.66×10 ⁻⁶ 4; α (M)=4.14×10 ⁻⁷ 6 α (N)=3.56×10 ⁻⁸ 5; α (IPE)=0.001124 16
4151.36	(2)	1481.34 <i>11</i> 1495.89 <i>13</i> 1636.56 <i>10</i> 1722.24 <i>12</i>	78 7 78 4 67.8 35 100 15	2669.904 2655.383 2514.681 2429.131	2 ⁻ 1 2 ⁺ 3 ⁻			a(ii) 5.50/10 5, a(iii)=0.00112+10

				ontinued)				
						γ (⁷⁶ S	e) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	α^{\dagger}	Comments
4151.36	(2)	2364.10 <i>23</i> 2462 82 <i>20</i>	46.9 <i>29</i> 90 9	1787.655 1688 971	$\frac{2^{+}}{3^{+}}$			
4174.33	(1,2)	1504.32 10 1518.79 10 1659.66 30 2003.79 20 2047.10 21 2383.45 20 2386.77 33	63 5 55.8 27 13.2 6 6.9 5 62 5 53 8 100 12	2669.904 2655.383 2514.681 2170.572 2127.224 1791.437 1787.655	$ \begin{array}{c} 2^{-} \\ 1 \\ 2^{+} \\ (0^{+}) \\ (2)^{+} \\ 0^{+} \\ 2^{+} \\ 0^{+} \\ 0^{+} \\ \end{array} $			
4199.19	(1 ⁻ ,2)	3052.38 20 3615.08 22 4174.22 40 482.72 29 980.1 13 1093.62 10 1249.15 25 1329.77 30 1543.69 15 1684.40 12 1770.02 10	18.1 20 6.0 8 20.0 16 6.6 5 10.7 26 21.3 17 12.6 12 5.0 4 12.9 8 10.1 6 56 8	1122.279 559.103 0.0 3716.52 3219.428 3105.48 2950.171 2869.34 2655.383 2514.681 2429.131	$ \begin{array}{c} 0 \\ 2^{+} \\ 0^{+} \\ (2) \\ (2^{+}, 3^{+}) \\ (3^{-}) \\ 1^{+} \\ (1^{+}, 2^{+}) \\ 1 \\ 2^{+} \\ 3^{-} \end{array} $			
4205.44	(1-,2)	2072.05 22 2411.79 20 2983.39 20 3639.99 20 937.73 13 985.62 10 1255.15 44 1335.66 34 1388.08 11 1393.21 10	71 5 47.0 23 38.5 21 100 5 8.6 13 79 19 44 6 1.43 22 9.9 11 43 4	2127.224 1787.655 1216.154 559.103 3267.57 3219.428 2950.171 2869.34 2817.24 2812.130	$\begin{array}{c} (2)^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ (2^{+}, 3, 4^{+}) \\ (2^{+}, 3^{+}) \\ 1^{+} \\ (1^{+}, 2^{+}) \\ (2^{+}) \\ (3^{+}) \end{array}$			
4214.0	(8 ⁻)	1549.99 <i>14</i> 1776.22 <i>11</i> 2989.94 <i>69</i> 3646.17 <i>21</i> 518.0 <i>5</i> 901.7 <i>5</i>	31.7 <i>18</i> 100 <i>13</i> 14.1 22 50.1 24 37	2655.383 2429.131 1216.154 559.103 3696.27 3312.04	$ \frac{1}{3^{-}} \\ 2^{+} \\ 2^{+} \\ (7^{-}) $ (6 ⁻)	[M1+E2] E2	0.0020 <i>4</i> 0.000539 <i>8</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0018 \ 4; \ \alpha(\mathbf{L}) = 0.00019 \ 4; \ \alpha(\mathbf{M}) = 3.0 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 2.5 \times 10^{-6} \ 6 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.025 \ +22 - 12 \ \text{if } \mathbf{M}1, \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 1.3 \times 10^2 \ +11 - 6 \ \text{if } \\ &\mathbf{E}2. \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 21 \ +19 - 10 \\ &\alpha(\mathbf{K}) = 0.000480 \ 7; \ \alpha(\mathbf{L}) = 5.05 \times 10^{-5} \ 7; \ \alpha(\mathbf{M}) = 7.85 \times 10^{-6} \ 11 \\ &\alpha(\mathbf{N}) = 6.68 \times 10^{-7} \ 9 \end{aligned}$

 $_{34}^{76}\mathrm{Se}_{42}$ -44

					Ado	opted Leve	els, Gammas (co	ontinued)
						$\gamma(^{76}$	Se) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
4218.81	1+	3659.6 1	100 8	559.103	2+	(M1)	0.000997 14	B(M1)(W.u.)=0.077 +11-9 α (K)=3.15×10 ⁻⁵ 4; α (L)=3.22×10 ⁻⁶ 5; α (M)=5.01×10 ⁻⁷ 7 α (N)=4.30×10 ⁻⁸ 6; α (IPE)=0.000962 13
		4218.8 <i>3</i>	95 8	0.0	0+	M1	1.18×10 ⁻³ 2	B(M1)(W.u.)=0.048 + 7-6 $\alpha(K)=2.517\times10^{-5} 35; \ \alpha(L)=2.57\times10^{-6} 4; \ \alpha(M)=4.00\times10^{-7}$
								α (N)=3.44×10 ⁻⁸ 5; α (IPF)=0.001153 16
4249.20	(1,2)	2121.95 38	100 12	2127.224	$(2)^{+}$			
		4249.06 41	7.1 14	0.0	0^{+}			
4257.59	(1,2)	2087.00 28	14.7 13	2170.572	(0^+)			
		2470.0 11	91 7	1787.655	2 ⁺			
		3042.4 15	100 9	1216.154	2+			
		3698.41 26	475	559.103	2 ⁺			
1000 07	$(1, 2, 2^{+})$	4257.79 43	14.7 13	0.0	0^{-1}			
4298.87	(1,2,3')	110/.1/11	11.2 1/	5191.0/ 2050-171	$(5)^{-1+}$			
		1349.0 13	21.21/	2930.1/1	(2^+)			
		1401.39 20	100.7 29	2617.24	$\binom{2}{2^{-}}$			
		16/3 28 28	23 /	2655 383	2			
		3082 92 21	61 8	1216 154	2+			
4299.5	10^{+}	1029.8.5	100	3269.75	<u></u> 8 ⁺	E2	0.000393 6	B(E2)(W.u.) = 52.9
					-			$\alpha(K) = 0.000350$ 5: $\alpha(L) = 3.66 \times 10^{-5}$ 5: $\alpha(M) = 5.69 \times 10^{-6}$ 8
								$\alpha(N) = 4.85 \times 10^{-7} 7$
4324.6	(9)-	883.0 5	100	3441.54	7-	E2	0.000568 8	B(E2)(W.u.)=39 + 16 - 9
	(-)							$\alpha(K) = 0.000506 \ 7: \ \alpha(L) = 5.32 \times 10^{-5} \ 7: \ \alpha(M) = 8.27 \times 10^{-6} \ 12$
								$\alpha(N) = 7.03 \times 10^{-7} 10$
4328.36	(1.2)	724,15 11	13.3 7	3604.192	1+			
	(-,-)	976.89 16	7.9 8	3351.462	$(2)^{+}$			
		1672.95 10	100 5	2655.383	1			
		4328.36 42	0.33 6	0.0	0^{+}			
4329.2	1	3112.4 6	100 14	1216.154	2+			
		4329.7 6	30 6	0.0	0^{+}			
4347.53	(1,2)	3131.30 56	100 5	1216.154	2+			
		4347.40 41	23.7 13	0.0	0^{+}			
4366.55		649.76 40	64 5	3716.52	(2)			
		1098.81 15	100 11	3267.57	$(2^+, 3, 4^+)$			
		1146.32 64	37 9	3219.428	$(2^+, 3^+)$			
		2239.60 24	57 7	2127.224	$(2)^{+}$			
		2677.57 28	29.6 35	1688.971	3' 2+			
		1	10 7 25	1.1.6 1.5/	<i>,</i> ·			
		3130.0720	18.5 55	1210.134	2			

From ENSDF

Adopted Levels, Gammas (continued)												
	γ ⁽⁷⁶ Se) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$lpha^\dagger$	Comments				
4405.9	(9 ⁺)	973.1 5	100	3432.31	7+	(E2)	0.000449 6	B(E2)(W.u.)=38 +11-7 α (K)=0.000400 6; α (L)=4.19×10 ⁻⁵ 6; α (M)=6.52×10 ⁻⁶ 9 α (N)=5.55×10 ⁻⁷ 8				
4411.65	(2)	1136.1 859.45 <i>12</i> 945.27 <i>18</i> 1143.89 <i>12</i> 1191.79 <i>10</i> 1219.73 <i>59</i> 1342.03 <i>12</i> 1461.42 <i>12</i> 1542.28 <i>38</i> 1599.21 <i>25</i> 1741.51 ^b <i>10</i> 1756.42 <i>11</i> 1896.96 <i>34</i> 1982.31 <i>46</i> 2284 <i>54 24</i>	7.1 11 26 7 16.3 12 17 4 8.2 11 40.0 27 17.2 8 1.92 16 38.2 29 100 7 27.2 14 1.14 26 17.0 29 6 0 5	3269.75 3552.89 3466.39 3267.57 3219.428 3191.67 3069.62 2950.171 2869.34 2812.130 2669.904 2655.383 2514.681 2429.131 2127 224	8^{+} (1,2) (1,2,3) (2 ⁺ ,3,4 ⁺) (2 ⁺ ,3 ⁺) (3) ⁺ 2 ⁺ 1 ⁺ (1 ⁺ ,2 ⁺) (3 ⁺) 2 ⁻ 1 2 ⁺ 3 ⁻ (2) ⁺			E_{γ} : from (¹² C, $\alpha 2n\gamma$).				
4437.72	(1+,2+)	2624.11 20 2722.99 21 3195.52 20 3853.03 45 721.22 11 1277.59 15 1782.38 11 1833.61 25 1922.89 10 2267.05 20 2310.69 27 2650.64 44 3221.81 20 3315.98 52 2878.00 22	20.6 <i>1</i> 2 5.1 <i>5</i> 13.8 <i>9</i> 0.10 <i>5</i> 5.8 <i>5</i> 26 <i>4</i> 14.2 <i>6</i> 19.9 <i>15</i> 75 <i>4</i> 12.1 <i>10</i> 58 <i>8</i> 9.8 <i>15</i> 17.1 <i>10</i> 3.59 <i>33</i> 1.00 22	1787.655 1688.971 1216.154 559.103 3716.52 3160.115 2655.383 2604.09 2514.681 2170.572 2127.224 1787.655 1216.154 1122.279	$ \begin{array}{c} (2) \\ 2^{+} \\ 3^{+} \\ 2^{+} \\ 2^{+} \\ (2) \\ (2^{+}) \\ 1 \\ 1^{+}, 2^{+} \\ 2^{+} \\ (0^{+}) \\ (2)^{+} \\ 2^{+} \\ 2^{+} \\ 0^{+} \\ 2^{+} \\ 2^{+} \\ 0^{+} \\ 2^{+} \end{array} $							
4451.92	(1+,2+)	3878.09 25 4437.33 40 1501.99 24 1796.56 21 3235.88 22 3892.32 20 4451 81	1.09 22 100 6 28.9 22 21.7 17 28.3 17 100 6 50 4 23	0.0 2950.171 2655.383 1216.154 559.103	$2 \\ 0^{+} \\ 1^{+} \\ 1 \\ 2^{+} \\ 2^{+} \\ 0^{+} $							
4473.46	(2 ⁺)	1803.44 <i>13</i> 1817.96 <i>19</i>	39.4 39.4 39.5	2669.904 2655.383	2 ⁻ 1							

 $^{76}_{34}$ Se $_{42}$ -46

					Ado	pted Leve	ls, Gammas (co	ntinued)
						$\gamma(^{76}$	Se) (continued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. [#]	α^{\dagger}	Comments
4473.46	(2 ⁺)	3257.58 <i>21</i> 3913.93 <i>21</i>	37.0 <i>21</i> 100 <i>6</i>	1216.154 559.103	2+ 2+			
4489.23	(1,2)	936.04 26 1137.74 10 1539.05 30 1819.27 12 1833.87 10 2698.18 21 3366.2 19 3930.06 40 4488 56 40	24.6 33 44.3 35 9.7 6 9.0 8 100 5 10.3 <i>12</i> 9.9 6 32.4 22 3 24 34	3552.89 3351.462 2950.171 2669.904 2655.383 1791.437 1122.279 559.103 0.0	$(1,2) (2)^+ 1^+ 2^- 1 0^+ 0^+ 2^+ 0^+ 0^+ \\$			
4523.47	(3 ⁻)	1255.89 72 1304.1 <i>I0</i> 1653.91 <i>63</i> 1711.26 <i>I2</i> 2008.33 <i>83</i> 2835.30 <i>45</i> 3307.29 <i>21</i>	43 20 30 7 29.3 35 80 13 19.0 26 25.9 35 100 10	3267.57 3219.428 2869.34 2812.130 2514.681 1688.971 1216.154	$ \begin{array}{c} (2^+,3,4^+) \\ (2^+,3^+) \\ (1^+,2^+) \\ (3^+) \\ 2^+ \\ 3^+ \\ 2^+ \end{array} $			
4532.91	(1 ⁻ ,2,3)	1265.30 78 1862.81 <i>13</i> 2103.93 60 2746.09 47 3974.67 41	30 <i>11</i> 100 8 50 <i>14</i> 41 6 55.4 27	3267.57 2669.904 2429.131 1787.655 559.103	$(2^+,3,4^+)$ 2^- 3^- 2^+ 2^+ 2^+			
4534.93	(0,1,2)	1584.72 <i>10</i> 1879.55 <i>12</i>	57.9 28 100 5	2950.171 2655.383	1+ 1			
4535.7	1+	3977.2 11	68 <i>13</i>	559.103	2+	[M1]	1.11×10 ⁻³ 2	B(M1)(W.u.)=0.0140 +35-29 α (K)=2.76×10 ⁻⁵ 4; α (L)=2.82×10 ⁻⁶ 4; α (M)=4.39×10 ⁻⁷ 6 α (N)=3.77×10 ⁻⁸ 5; α (IPF)=0.001077 15
		4535.4 6	100 13	0.0	0+	M1	1.28×10 ⁻³ 2	B(M1)(W.u.)=0.0139 +32-24 α (K)=2.254×10 ⁻⁵ 32; α (L)=2.304×10 ⁻⁶ 32; α (M)=3.58×10 ⁻⁷ 5 α (N)=3.08×10 ⁻⁸ 4; α (IPF)=0.001260 18
4576.11	(1,2)	1906.26 <i>35</i> 1921.1 <i>12</i> 3453.80 <i>27</i> 4575.70 <i>40</i>	67 <i>11</i> 76 <i>31</i> 50 <i>5</i> 100 <i>11</i>	2669.904 2655.383 1122.279 0.0	2 ⁻ 1 0 ⁺ 0 ⁺			
4581.05	(1,2)	1313.70 81 1420.92 49 1605.80 88 1911.10 12 2152.17 35 2454.00 52	4.0 21 20 7 4.1 6 9.2 10 6.1 18 20.2 16	3267.57 3160.115 2975.00 2669.904 2429.131 2127.224	$(2^+,3,4^+)$ (2^+) $(2^+,3,4^+)$ 2^- 3^- $(2)^+$			

$\gamma(^{76}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
4581.05	(1,2)	3364.74 32	11.2 9	1216.154	2+			
4603.26	$(1.2)^{+}$	4021.65 <i>40</i> 4043.89 <i>40</i>	100 9	559.103 559.103	2^+ 2^+			
	(-,-)	4603.27 40	100 5	0.0	0^{+}			
4603.3	1-	4603.1 6	100 5	0.0	0+	E1	1.91×10 ⁻³ 3	B(E1)(W.u.)= $4.8 \times 10^{-4} + 20 - 11$ α (K)= $1.624 \times 10^{-5} 23$; α (L)= $1.655 \times 10^{-6} 23$; α (M)= $2.57 \times 10^{-7} 4$ α (N)= $2.209 \times 10^{-8} 31$; α (IPF)= $0.001887 26$
4663.08	1-	4104.2 5	32 4	559.103	2+	(E1)	1.73×10 ⁻³ 2	B(E1)(W.u.)= $2.4 \times 10^{-4} + 6 - 5$ α (K)= $1.873 \times 10^{-5} 26$; α (L)= $1.910 \times 10^{-6} 27$; α (M)= $2.97 \times 10^{-7} 4$
		1662 7 1	100 10	0.0	0^+	F1	1.02×10^{-3} 3	$\alpha(N)=2.55\times10^{-6}$ 4; $\alpha(IPF)=0.001/13$ 24 B(E1)(Wu)=5.2×10 ⁻⁴ +11=8
		4002.7 4	100 10	0.0	0	LI	1.92×10 5	$\alpha(K)=1.598\times10^{-5}\ 22;\ \alpha(L)=1.629\times10^{-6}\ 23;\ \alpha(M)=2.532\times10^{-7}$
								α (N)=2.174×10 ⁻⁸ 30; α (IPF)=0.001905 27
4673.7	1+	4673.5 14	100	0.0	0+	M1	$1.32 \times 10^{-3} 2$	B(M1)(W.u.)=0.0040 +19-10 α (K)=2.154×10 ⁻⁵ 30; α (L)=2.201×10 ⁻⁶ 31; α (M)=3.42×10 ⁻⁷ 5 α (N)=2.94×10 ⁻⁸ 4: α (IPE)=0.001299 18
4687.21	$(1,2,3^+)$	1736.92 17	100 11	2950.171	1^{+}			$u(n) = 2.94 \times 10^{-4}$, $u(n + 1) = 0.001299 + 10^{-6}$
		1875.23 16	65 25	2812.130	(3+)			
		2017.14 46	52 6 63 4	2669.904	2 ⁻ 2 ⁺			
		4127.74 50	6.3 21	559.103	2^{+}			
4687.3	$(10)^+$	388.0 5	30	4299.5	10^{+}	[M1]	0.00314 4	B(M1)(W.u.)=0.108 +29-25
								$\alpha(K)=0.00279 4; \alpha(L)=0.000295 4; \alpha(M)=4.60\times10^{-5} 7$ $\alpha(N)=3.92\times10^{-6} 6$
								δ : RUL=300 for E2 suggests δ (E2/M1)<0.7.
		833.8 5	100	3853.75	(8)+	[E2]	0.000656 9	B(E2)(W.u.)=70 + 14 - 13
								$\alpha(K)=0.000584 \ 8; \ \alpha(L)=6.15\times10^{-5} \ 9; \ \alpha(M)=9.56\times10^{-6} \ 13$
		1417.7 5	83 4	3269.75	8+	E2	0.0002532 35	$B(E_2)(W.u.)=4.1+9-6$
								$\alpha(K) = 0.0001742\ 24;\ \alpha(L) = 1.808 \times 10^{-5}\ 25;\ \alpha(M) = 2.81 \times 10^{-6}\ 4$ $\alpha(L) = 2.404 \times 10^{-7}\ 24,\ \alpha(L) = 5.70 \times 10^{-5}\ 8$
4720.6	1-	4161 3 6	100 10	559 103	2+	F1	1.75×10^{-3} 3	$\alpha(N)=2.404\times10^{-5}34; \ \alpha(PF)=5.79\times10^{-5}8$ B(F1)(Wu) -4.9×10 ⁻⁴ +9-7
720.0	1	4101.5 0	100 10	557.105	2	LI	1.75×10 5	$\alpha(K) = 1.841 \times 10^{-5} 26; \ \alpha(L) = 1.877 \times 10^{-6} 26; \ \alpha(M) = 2.92 \times 10^{-7} 4$
								α (N)=2.505×10 ⁻⁸ 35; α (IPF)=0.001732 24
		4720.5 7	66 8	0.0	0^+	E1	1.94×10 ⁻³ 3	$B(E1)(W.u.)=2.22\times10^{-4}+43-34$
								$\alpha(K)=1.574\times10^{-5}$ 22; $\alpha(L)=1.605\times10^{-6}$ 22; $\alpha(M)=2.494\times10^{-7}$ 35
								$\alpha(N)=2.141\times10^{-8}$ 30; $\alpha(IPF)=0.001924$ 27

48

$\gamma(^{76}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α^{\dagger}	Comments
4723.2 4728.6 4731.6	(3 ⁺)	1772.95 59 3507.05 54 4163.45 98 1287.0 5 1781.37 40	100 8 86 12 80 8 100 100 6	2950.171 1216.154 559.103 3441.54 2950.171	1+ 2+ 2+ 7- 1+			
4766.96 4794.97	1 (1,2)	3515.7 <i>11</i> 4766.8 <i>3</i> 1982.95 <i>56</i> 2139.93 <i>26</i> 2365.29 <i>27</i> 3672.54 <i>22</i> 4235.89 <i>41</i> 4794 <i>96 40</i>	46 6 100 36 9 60.4 27 100 15 19.5 14 53 4 8 7 7	1216.154 0.0 2812.130 2655.383 2429.131 1122.279 559.103	2^+ 0^+ (3^+) 1^- 3^- 0^+ 2^+ 0^+	D		If M1, B(M1)(W.u.)=0.0117 10. If E1, B(E1)(W.u.)=0.000200 18.
4880.0	1-	4879.8 <i>4</i>	100	0.0	0^{+}	E1	1.99×10 ⁻³ 3	B(E1)(W.u.)= $1.64 \times 10^{-4} + 18 - 15$ α (K)= $1.512 \times 10^{-5} 21$; α (L)= $1.540 \times 10^{-6} 22$; α (M)= $2.394 \times 10^{-7} 34$ α (N)= $2.056 \times 10^{-8} 20$; α (IBE)= $0.001076 28$
4887.07	1-	4886.9 <i>3</i>	100	0.0	0^+	E1	2.00×10 ⁻³ 3	$\begin{array}{l} a(N)=2.050\times10^{-2} 29, \ \alpha(\mathrm{IFF})=0.001970\ 28\\ \mathrm{B(E1)(W.u.)}=1.19\times10^{-4} +17-13\\ \alpha(\mathrm{K})=1.509\times10^{-5}\ 21; \ \alpha(\mathrm{L})=1.538\times10^{-6}\ 22; \ \alpha(\mathrm{M})=2.390\times10^{-7}\ 33\\ \alpha(\mathrm{N})=2.052\times10^{-8}\ 29; \ \alpha(\mathrm{IFF})=0.001978\ 28 \end{array}$
4931.6	1-	4931.4 17	100	0.0	0+	E1	2.01×10 ⁻³ 3	$B(E1)(W.u.)=4.0\times10^{-5} + 14-9$ $\alpha(K)=1.492\times10^{-5} 21; \ \alpha(L)=1.521\times10^{-6} 21; \ \alpha(M)=2.364\times10^{-7} 33$ $\alpha(N)=2.029\times10^{-8} 28; \ \alpha(IPF)=0.001993 28$
4938.6	1	4938.4 15	100 10	0.0	0^{+}	D		If M1, $B(M1)(W,u_{1})=0.0043 \ 8$, If E1, $B(E1)(W,u_{1})=7.3\times105 \ 14$.
4971.5	1+	4971.3 17	100	0.0	0+	(M1)	1.41×10 ⁻³ 2	B(M1)(W.u.)=0.0047 +11-7 α (K)=1.964×10 ⁻⁵ 28; α (L)=2.006×10 ⁻⁶ 28; α (M)=3.12×10 ⁻⁷ 4 α (N)=2.68×10 ⁻⁸ 4: α (IPE)=0.001390 19
4984.81	1-	4426.1 5	73 12	559.103	2+	(E1)	1.85×10 ⁻³ 3	$B(E1)(W.u.)=3.1\times10^{-4} + 6-5$ $\alpha(K)=1.705\times10^{-5} 24; \ \alpha(L)=1.738\times10^{-6} 24; \ \alpha(M)=2.70\times10^{-7} 4$ $\alpha(K)=2.210\times10^{-8} 32; \ \alpha(M)=0.001820 26$
		4984.3 <i>4</i>	100 9	0.0	0^{+}	E1	2.03×10 ⁻³ 3	$\begin{array}{l} a(N)=2.519\times10^{-5} \ 52,\ \alpha(\mathrm{IFF})=0.001829\ 20\\ B(\mathrm{E1})(\mathrm{W.u.})=2.9\times10^{-4}\ +5-4\\ \alpha(\mathrm{K})=1.473\times10^{-5}\ 21;\ \alpha(\mathrm{L})=1.501\times10^{-6}\ 21;\ \alpha(\mathrm{M})=2.333\times10^{-7}\ 33\\ \alpha(\mathrm{M})=2.003\times10^{-8}\ 28;\ \alpha(\mathrm{IFF})=0.002011\ 28\\ \end{array}$
5001.48	1-	5001.3 2	100	0.0	0^+	E1	2.03×10 ⁻³ 3	$a(N)=2.003\times10^{-4} 22; \ \alpha(\text{IPP})=0.00201128$ B(E1)(W.u.)=3.58×10 ⁻⁴ +27-24 $\alpha(\text{K})=1.467\times10^{-5} 21; \ \alpha(\text{L})=1.495\times10^{-6} 21; \ \alpha(\text{M})=2.323\times10^{-7} 33$ c(N)=1.005×10 ⁻⁸ 28; \ \alpha(\text{IPP})=0.002016 28
5010.76	1-	4451.8 <i>3</i>	36 6	559.103	2+	(E1)	1.86×10 ⁻³ 3	$B(E1)(W.u.)=3.1\times10^{-4} 5$ $\alpha(K)=1.692\times10^{-5} 24; \ \alpha(L)=1.725\times10^{-6} 24; \ \alpha(M)=2.68\times10^{-7} 4$ $\alpha(N)=2.202\times10^{-8} 32; \ \alpha(IEE)=0.001928 26$
		5010.3 <i>3</i>	100 7	0.0	0^+	E1	2.04×10 ⁻³ 3	$B(E1)(W.u.)=6.0\times10^{-4} +7-6$

 $^{76}_{34}\mathrm{Se}_{42}$ -49

	Adopted Levels, Gammas (continued)											
							$\gamma(^{76}\text{Se})$ (cont	inued)				
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments				
5068.1	(10)-	1059.4 5	100	4008.7	(8-)	E2	0.000368 5	$\begin{aligned} &\alpha(\mathrm{K}) = 1.464 \times 10^{-5} \ 20; \ \alpha(\mathrm{L}) = 1.492 \times 10^{-6} \ 21; \ \alpha(\mathrm{M}) = 2.318 \times 10^{-7} \ 32 \\ &\alpha(\mathrm{N}) = 1.990 \times 10^{-8} \ 28; \ \alpha(\mathrm{IPF}) = 0.002019 \ 28 \\ &\mathrm{B(E2)(W.u.)} = 22 \ 6 \\ &\alpha(\mathrm{K}) = 0.000328 \ 5; \ \alpha(\mathrm{L}) = 3.43 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 5.33 \times 10^{-6} \ 7 \end{aligned}$				
5074.00	1-	4515.8 <i>3</i>	35 <i>3</i>	559.103	2+	(E1)	1.88×10 ⁻³ 3	$\alpha(N)=4.54\times10^{-7} 6$ B(E1)(W.u.)=4.34×10^{-4} +48-42 $\alpha(K)=1.663\times10^{-5} 23; \ \alpha(L)=1.695\times10^{-6} 24; \ \alpha(M)=2.63\times10^{-7} 4$ (N)= 2.2(2):10^{-8} 32 (DE) = 0.001950 26				
		5073.7 1	100 7	0.0	0+	E1	2.06×10 ⁻³ 3	$\alpha(N)=2.262\times10^{-5} 32; \ \alpha(IPF)=0.001859 \ 26$ B(E1)(W.u.)=8.7×10 ⁻⁴ 6 $\alpha(K)=1.442\times10^{-5} \ 20; \ \alpha(L)=1.469\times10^{-6} \ 21; \ \alpha(M)=2.283\times10^{-7} \ 32$ $\alpha(N)=1.960\times10^{-8} \ 27; \ \alpha(IPF)=0.002039 \ 29$				
5122.19 5128.59 5142.3	1 1 1	5122.0 2 5128.4 <i>1</i> 5142.1 7	100 100 100	$0.0 \\ 0.0 \\ 0.0$	$0^+ \\ 0^+ \\ 0^+$	D D D		If M1, $B(M1)(W.u.)=0.0047$ 11. If E1, $B(E1)(W.u.)=8.0\times10_5$ 19. If M1, $B(M1)(W.u.)=0.0065$ 11. IF E1, $BE1W=0.000112$ 18. If M1, $B(M1)(W.u.)=0.0062$ 8. If E1, $B(E1)(W.u.)=0.000106$ 13.				
5195.00	1-	4635.1 <i>3</i>	67 6	559.103	2+	(E1)	1.91×10 ⁻³ 3	B(E1)(W.u.)= 6.7×10^{-4} 7 α (K)= 1.610×10^{-5} 23; α (L)= 1.641×10^{-6} 23; α (M)= 2.55×10^{-7} 4 α (N)= 2.190×10^{-8} 31; α (IPF)= 0.001897 27				
		5194.5 <i>3</i>	100 7	0.0	0+	E1	2.09×10 ⁻³ 3	B(E1)(W.u.)=7.1×10 ⁻⁴ +7-6 α (K)=1.401×10 ⁻⁵ 20; α (L)=1.427×10 ⁻⁶ 20; α (M)=2.219×10 ⁻⁷ 31 α (N)=1.905×10 ⁻⁸ 27; α (IPF)=0.002074 29				
5217.8	1-	5217.6 11	100	0.0	0+	E1	2.10×10 ⁻³ 3	B(E1)(W.u.)= $2.2 \times 10^{-4} + 6 - 4$ α (K)= $1.394 \times 10^{-5} 20$; α (L)= $1.420 \times 10^{-6} 20$; α (M)= $2.207 \times 10^{-7} 31$ α (N)= $1.895 \times 10^{-8} 27$; α (IPF)= $0.002081 29$				
5239.6	1	4023.1 <i>10</i> 5239.7 <i>12</i>	28 6 100 <i>18</i>	1216.154 0.0	$2^+_{0^+}$	D		If M1, $B(M1)(W,u)=0.012$ 4. If E1, $B(E1)(W,u)=0.00021$ 6.				
5284.40 5297.90	1 (1 ⁺)	5284.2 <i>3</i> 5297.7 <i>3</i>	100 100	0.0 0.0	0+ 0+	D (M1)	1.50×10 ⁻³ 2	If M1, B(M1)(W.u.)=0.0178 <i>13</i> . If E1, B(E1)(W.u.)=0.000304 <i>22</i> . B(M1)(W.u.)=0.0108 <i>6</i> $\alpha(K)=1.788\times10^{-5} 25$; $\alpha(L)=1.826\times10^{-6} 26$; $\alpha(M)=2.84\times10^{-7} 4$ $\alpha(N)=2.440\times10^{-8} 34$; $\alpha(ME)=0.001481 21$				
5298.60	1-	4175.0 [@] 12	3.9 9	1122.279	0+	(E1)	1.76×10 ⁻³ 3	B(E1)(W.u.)=8.6×10 ⁻⁵ 20 α (K)=1.834×10 ⁻⁵ 26; α (L)=1.870×10 ⁻⁶ 26; α (M)=2.91×10 ⁻⁷ 4 α (N)=2.495×10 ⁻⁸ 35; α (IPF)=0.001737 24				
		4739.6 [@] 5	15.1 <i>16</i>	559.103	2+	(E1)	1.95×10 ⁻³ 3	B(E1)(W.u.)= $2.26 \times 10^{-4} + 28 - 26$ α (K)= $1.567 \times 10^{-5} 22$; α (L)= $1.597 \times 10^{-6} 22$; α (M)= $2.482 \times 10^{-7} 35$ α (N)= $2.131 \times 10^{-8} 30$; α (IPF)= $0.001930 27$				
		5298.4 1	100 6	0.0	0+	E1	2.12×10 ⁻³ 3	B(E1)(W.u.)=0.00108 7 α (K)=1.368×10 ⁻⁵ <i>19</i> ; α (L)=1.394×10 ⁻⁶ <i>20</i> ; α (M)=2.166×10 ⁻⁷ <i>30</i> α (N)=1.860×10 ⁻⁸ <i>26</i> ; α (IPF)=0.002102 <i>29</i>				

From ENSDF

н

$\gamma(^{76}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I _γ ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
5324.18	1-	4766.9 10	67 10	559.103	2+	[E1]	1.96×10 ⁻³ 3	B(E1)(W.u.)= 4.5×10^{-4} 7 α (K)= 1.556×10^{-5} 22; α (L)= 1.585×10^{-6} 22; α (M)= 2.464×10^{-7} 35 α (L)= 2.116×10^{-8} 20 α (JDE) 0.001028 27
		5323.8 <i>3</i>	100 10	0.0	0+	E1	2.12×10 ⁻³ 3	$\alpha(N)=2.116\times10^{-5}30; \ \alpha(IPF)=0.001938\ 27$ B(E1)(W.u.)=4.8×10 ⁻⁴ +7-6 $\alpha(K)=1.360\times10^{-5}\ 19; \ \alpha(L)=1.386\times10^{-6}\ 19; \ \alpha(M)=2.154\times10^{-7}\ 30$
5346.94	1-	4131.5 9	38 6	1216.154	2+	(E1)	1.74×10 ⁻³ 2	$\alpha(N)=1.849\times10^{-6}\ 26;\ \alpha(IPF)=0.002109\ 30$ B(E1)(W.u.)=3.3×10 ⁻⁴ +7-6 $\alpha(K)=1.858\times10^{-5}\ 26;\ \alpha(L)=1.895\times10^{-6}\ 27;\ \alpha(M)=2.94\times10^{-7}\ 4$
		4788.0 <i>3</i>	43 6	559.103	2+	(E1)	1.96×10 ⁻³ 3	$\alpha(N)=2.528\times10^{-6} 35; \ \alpha(IPF)=0.001722 24$ B(E1)(W.u.)=2.40×10 ⁻⁴ +45-39 $\alpha(K)=1.547\times10^{-5} 22; \ \alpha(L)=1.577\times10^{-6} 22; \ \alpha(M)=2.451\times10^{-7} 34$ $\alpha(N)=2.104\times10^{-8} 29; \ \alpha(IPF)=0.001945 27$
		5346.0 4	100 9	0.0	0+	E1	2.13×10 ⁻³ 3	B(E1)(W.u.)=4.0×10 ⁻⁴ +6-5 α (K)=1.353×10 ⁻⁵ <i>19</i> ; α (L)=1.379×10 ⁻⁶ <i>19</i> ; α (M)=2.143×10 ⁻⁷ <i>30</i> α (N)=1.840×10 ⁻⁸ <i>26</i> ; α (IPF)=0.002115 <i>30</i>
5367.5 5368.3	1 (11 ⁺)	5367.3 <i>13</i> 681.4 962.0	100	0.0 4687.3 4405.9	0^+ (10) ⁺ (9 ⁺)	D		If M1, B(M1)(W.u.)=0.0032 8. If E1, B(E1)(W.u.)=5.5×10 ₅ 13.
5375.45	1-	4816.1 2	100 8	4299.5 559.103	10* 2+	(E1)	1.97×10 ⁻³ 3	B(E1)(W.u.)=0.00129 +14-12 α (K)=1.536×10 ⁻⁵ 22; α (L)=1.565×10 ⁻⁶ 22; α (M)=2.433×10 ⁻⁷ 34 α (N)=2.089×10 ⁻⁸ 29; α (IPF)=0.001954 27
		5375.6 4	83 6	0.0	0+	E1	2.14×10 ⁻³ 3	B(E1)(W.u.)=7.7×10 ⁻⁴ +9-8 α (K)=1.344×10 ⁻⁵ <i>19</i> ; α (L)=1.369×10 ⁻⁶ <i>19</i> ; α (M)=2.129×10 ⁻⁷ <i>30</i> α (N)=1.828×10 ⁻⁸ <i>26</i> : α (IPF)=0.002122, <i>30</i>
5405.2	1-	5405.0 18	100	0.0	0+	E1	2.15×10 ⁻³ 3	B(E1)(W.u.)= $9.2 \times 10^{-5} + 40 - 22$ α (K)= $1.336 \times 10^{-5} 19$; α (L)= $1.361 \times 10^{-6} 19$; α (M)= $2.115 \times 10^{-7} 30$ α (N)= $1.816 \times 10^{-8} 25$; α (IPF)= $0.002130 30$
5411.33	1-	4852.0 <i>3</i>	100 9	559.103	2+	(E1)	1.98×10 ⁻³ 3	B(E1)(W.u.)=0.00168 +46-32 α (K)=1.522×10 ⁻⁵ 21; α (L)=1.551×10 ⁻⁶ 22; α (M)=2.411×10 ⁻⁷ 34 α (N)=2.070×10 ⁻⁸ 29; α (IPF)=0.001966 28
		5412.4 <i>14</i>	28 7	0.0	0+	E1	2.15×10 ⁻³ 3	$B(E1)(W.u.)=3.4\times10^{-4} + 12-9$ $\alpha(K)=1.333\times10^{-5} \ 19; \ \alpha(L)=1.358\times10^{-6} \ 19; \ \alpha(M)=2.111\times10^{-7} \ 30$ $\alpha(N)=1.813\times10^{-8} \ 25; \ \alpha(IPE)=0.002132 \ 30$
5425.21	1-	4865.9 <i>3</i>	100 10	559.103	2+	(E1)	1.99×10 ⁻³ 3	B(E1)(W.u.)= $4.5 \times 10^{-4} + 7-6$ α (K)= $1.517 \times 10^{-5} 21$; α (L)= $1.546 \times 10^{-6} 22$; α (M)= $2.403 \times 10^{-7} 34$ α (N)= $2.063 \times 10^{-8} 29$; α (IPF)= $0.001971 28$
		5425.1 5	100 10	0.0	0^+	E1	2.15×10 ⁻³ 3	$B(E1)(W.u.)=3.27\times10^{-4} + 48-40$

51

From ENSDF

 $^{76}_{34}\mathrm{Se}_{42}$ -51

							Adopted Levels	s, Gammas (continued)
							γ (⁷⁶ S	e) (continued)
	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}	E_f	J_f^{π} Mult	α^{\dagger}	Comments
								$\alpha(\text{K})=1.330 \times 10^{-5} \ 19; \ \alpha(\text{L})=1.354 \times 10^{-6} \ 19; \ \alpha(\text{M})=2.105 \times 10^{-7} \ 29$ $\alpha(\text{N})=1.808 \times 10^{-8} \ 25; \ \alpha(\text{IPF})=0.002136 \ 30$
	5431.8	12*	1133.0 5	100	4299.5 10	0 ⁺ (E2)	0.000318 4	B(E2)(W.u.)=8×10 ⁴ +7-3 α (K)=0.000282 4; α (L)=2.94×10 ⁻⁵ 4; α (M)=4.57×10 ⁻⁶ 6 α (N)=3.90×10 ⁻⁷ 5; α (IPF)=1.96×10 ⁻⁶ 4
	5551.8	1-	5551.6 <i>15</i>	100	0.0 0	+ E1	2.19×10 ⁻³ 3	B(E1)(W.u.)= $2.3 \times 10^{-4} + 8 - 5$ α (K)= 1.294×10^{-5} 18; α (L)= 1.317×10^{-6} 18; α (M)= 2.048×10^{-7} 29 α (N)= 1.758×10^{-8} 25; α (IPF)= 0.002171 30
	5629.8	1-	5629.6 15	100	0.0 0	+ E1	2.21×10 ⁻³ 3	B(E1)(W.u.)=8.8×10 ⁻⁵ +42-22 α (K)=1.272×10 ⁻⁵ 18; α (L)=1.296×10 ⁻⁶ 18; α (M)=2.014×10 ⁻⁷ 28 α (N)=1 729×10 ⁻⁸ 24; α (IPE)=0.002193 31
	5637.7	1-	5637.5 15	100	0.0 0	+ E1	2.21×10 ⁻³ 3	$B(E1)(W.u.) = 8.8 \times 10^{-5} + 44 - 22$ $\alpha(K) = 1.270 \times 10^{-5} I8; \ \alpha(L) = 1.293 \times 10^{-6} I8; \ \alpha(M) = 2.010 \times 10^{-7} 28$ $\alpha(N) = 1.726 \times 10^{-8} 24; \ \alpha(IPE) = 0.002196 31$
S	5669.2	1-	5669.0 <i>15</i>	100	0.0 0	+ E1	2.22×10 ⁻³ 3	$B(E1)(W.u.) = 9 \times 10^{-5} + 5 - 3$ $\alpha(K) = 1.262 \times 10^{-5} I8; \ \alpha(L) = 1.285 \times 10^{-6} I8; \ \alpha(M) = 1.997 \times 10^{-7} 28$ $\alpha(N) = 1.715 \times 10^{-8} 24; \ \alpha(IPE) = 0.002205 31$
2	5685.5	1-	5685.3 4	100	0.0 0	+ E1	2.22×10 ⁻³ 3	$B(E1)(W.u.) = 2.56 \times 10^{-4} + 25 - 21$ $\alpha(K) = 1.257 \times 10^{-5} I8; \ \alpha(L) = 1.280 \times 10^{-6} I8; \ \alpha(M) = 1.990 \times 10^{-7} 28$ $\alpha(N) = 1.709 \times 10^{-8} 24; \ \alpha(PE) = 0.002209 31$
	5709.8	1-	5709.6 4	100	0.0 0	+ E1	2.23×10 ⁻³ 3	$B(E1)(W.u.) = 2.73 \times 10^{-4} + 29 - 23$ $\alpha(K) = 1.251 \times 10^{-5} \ 18; \ \alpha(L) = 1.274 \times 10^{-6} \ 18; \ \alpha(M) = 1.980 \times 10^{-7} \ 28$ $\alpha(K) = 1.700 \times 10^{-8} \ 24; \ \alpha(RE) = 0.002216 \ 34$
	5740.73	1-	5740.5 <i>3</i>	100	0.0 0	+ E1	2.24×10 ⁻³ 3	$B(E1)(W.u.) = 3.55 \times 10^{-4} + 35 - 29$ $\alpha(K) = 1.243 \times 10^{-5} \ 17; \ \alpha(L) = 1.266 \times 10^{-6} \ 18; \ \alpha(M) = 1.967 \times 10^{-7} \ 28$
	5762.0	1-	5761.8 10	100	0.0 0	+ E1	2.24×10 ⁻³ 3	$a(N)=1.089\times10^{-2}24; a(IPP)=0.002224 51^{-1}$ B(E1)(W.u.)=1.25×10 ⁻⁴ +34-23 a(K)=1.237×10 ⁻⁵ 17; a(L)=1.260×10 ⁻⁶ 18; a(M)=1.959×10 ⁻⁷ 27
	5773.3	1-	5773.1 10	100	0.0 0	+ E1	2.25×10 ⁻³ 3	$\alpha(N)=1.082\times10^{-5} 24; \ \alpha(IPF)=0.002230 \ 51^{-1}$ B(E1)(W.u.)=1.09×10 ⁻⁴ +19-14 $\alpha(K)=1.235\times10^{-5} \ 17; \ \alpha(L)=1.257\times10^{-6} \ 18; \ \alpha(M)=1.954\times10^{-7} \ 27$
	5781.24	1-	5781.0 2	100	0.0 0	+ E1	2.25×10 ⁻³ 3	$\alpha(N)=1.678\times10^{-6} 23; \ \alpha(IPF)=0.002233 31$ B(E1)(W.u.)=4.94×10 ⁻⁴ +39-34 $\alpha(K)=1.233\times10^{-5} 17; \ \alpha(L)=1.255\times10^{-6} 18; \ \alpha(M)=1.951\times10^{-7} 27$ $\alpha(N)=1.675\times10^{-8} 23; \ \alpha(IPF)=0.002235 31$
	5796.7	(12+)	1109.6 1496.7		4687.3 (1 4299.5 10	10) ⁺ 0 ⁺		E_{γ} : 5/83.3 3 in (γ, γ') .

From ENSDF

 $^{76}_{34}\mathrm{Se}_{42}$ -52

I

$\gamma(^{76}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Iγ [‡]	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
5804.0	1-	5246.1 <i>14</i>	100 19	559.103	2+	(E1)	2.10×10 ⁻³ 3	B(E1)(W.u.)= $5.7 \times 10^{-4} + 16 - 12$ α (K)= 1.385×10^{-5} 19; α (L)= 1.410×10^{-6} 20; α (M)= 2.192×10^{-7} 31
		5803.4 7	64 11	0.0	0^{+}	E1	2.25×10 ⁻³ 3	α (N)=1.882×10 ⁻⁸ 26; α (IPF)=0.002088 29 B(E1)(W.u.)=2.7×10 ⁻⁴ +9-6 α (K)=1.227×10 ⁻⁵ 17; α (L)=1.249×10 ⁻⁶ 17; α (M)=1.942×10 ⁻⁷ 27
5813.9	1-	5813.7 5	100	0.0	0^{+}	E1	2.26×10 ⁻³ 3	α (N)=1.668×10 ⁻⁸ 23; α (IPF)=0.002241 31 B(E1)(W.u.)=2.39×10 ⁻⁴ +27-22 α (K)=1.224×10 ⁻⁵ 17; α (L)=1.247×10 ⁻⁶ 17; α (M)=1.938×10 ⁻⁷ 27
5842.31	1-	5283.8 ^{&} 10	25 8	559.103	2+	[E1]	2.11×10 ⁻³ 3	α (N)=1.664×10 ⁻⁸ 23; α (IPF)=0.002243 31 B(E1)(W.u.)=1.7×10 ⁻⁴ 5 α (K)=1.373×10 ⁻⁵ 19; α (L)=1.398×10 ⁻⁶ 20; α (M)=2.173×10 ⁻⁷ 30
		5842.0 <i>3</i>	100 11	0.0	0^{+}	E1	2.26×10 ⁻³ 3	α (N)=1.866×10 ⁻⁸ 26; α (IPF)=0.002098 29 B(E1)(W.u.)=4.9×10 ⁻⁴ +8-6 α (K)=1.217×10 ⁻⁵ 17; α (L)=1.240×10 ⁻⁶ 17; α (M)=1.927×10 ⁻⁷ 27
5865.3	1-	5865.1 7	100	0.0	0^{+}	E1	2.27×10 ⁻³ 3	α (N)=1.654×10 ⁻⁸ 23; α (IPF)=0.002251 32 B(E1)(W.u.)=2.45×10 ⁻⁴ +40-31 α (K)=1.212×10 ⁻⁵ 17; α (L)=1.234×10 ⁻⁶ 17; α (M)=1.918×10 ⁻⁷ 27
5879.6	1-	5879.4 6	100	0.0	0^{+}	E1	2.27×10 ⁻³ 3	α (N)=1.647×10 ⁻⁸ 23; α (IPF)=0.002256 32 B(E1)(W.u.)=1.25×10 ⁻⁴ +18-14 α (K)=1.208×10 ⁻⁵ 17; α (L)=1.230×10 ⁻⁶ 17; α (M)=1.912×10 ⁻⁷ 27
5892.30	1-	5333.1 4	81 11	559.103	2+	(E1)	2.13×10 ⁻³ 3	α (N)=1.642×10 ⁻⁸ 23; α (IPF)=0.002260 32 B(E1)(W.u.)=3.3×10 ⁻⁴ +7-5 α (K)=1.357×10 ⁻⁵ 19: α (L)=1.383×10 ⁻⁶ 19: α (M)=2.149×10 ⁻⁷ 30
		5891.9 5	100 11	0.0	0^{+}	E1	2.28×10 ⁻³ 3	$\alpha(N) = 1.845 \times 10^{-8} \ 26; \ \alpha(IPF) = 0.002111 \ 30$ B(E1)(W.u.)=3.0×10 ⁻⁴ +6-5 $\alpha(K) = 1.205 \times 10^{-5} \ 17; \ \alpha(L) = 1.227 \times 10^{-6} \ 17; \ \alpha(M) = 1.907 \times 10^{-7} \ 27$
5996.1	1-	5435.2 11	100 22	559.103	2+	(E1)	2.15×10 ⁻³ 3	$\begin{aligned} \alpha(\text{N}) &= 1.20 \times 10^{-8} \ 23; \ \alpha(\text{IPF}) &= 0.002263 \ 32 \\ \text{B}(\text{E1})(\text{W.u.}) &= 2.6 \times 10^{-4} \ +9-6 \\ \alpha(\text{K}) &= 1.327 \times 10^{-5} \ 19; \ \alpha(\text{L}) &= 1.351 \times 10^{-6} \ 19; \ \alpha(\text{M}) &= 2.101 \times 10^{-7} \ 29 \end{aligned}$
		5998.4 <i>14</i>	69 <i>19</i>	0.0	0^{+}	E1	2.30×10 ⁻³ 3	α (N)=1.804×10 ⁻⁸ 25; α (IPF)=0.002139 30 E _{γ} : 5438.0 4 in (γ , γ') due to very different branching ratio. B(E1)(W.u.)=1.3×10 ⁻⁴ +5-4
		0						$\alpha(\mathbf{K})=1.180\times10^{-5} \ 17; \ \alpha(\mathbf{L})=1.201\times10^{-6} \ 17; \ \alpha(\mathbf{M})=1.867\times10^{-7} \ 26$ $\alpha(\mathbf{N})=1.603\times10^{-8} \ 22; \ \alpha(\mathbf{IPF})=0.002289 \ 32$ $\mathbf{I}_{\gamma}: \ 21 \ 5 \ \mathbf{IN} \ (\gamma, \gamma').$
6035.4	1-	5474.6 ^{&} 13	52 11	559.103	2+	[E1]	2.16×10 ⁻³ 3	B(E1)(W.u.)= $3.0 \times 10^{-4} + 8 - 6$ α (K)= 1.315×10^{-5} 18; α (L)= 1.340×10^{-6} 19; α (M)= 2.082×10^{-7} 29 α (N)= 1.788×10^{-8} 25; α (IPF)= 0.002149 30

53

$\gamma(^{76}Se)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} [‡]	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
6035.4	1-	6035.4 5	100 12	0.0	0^{+}	E1		$B(E1)(W.u.)=4.3\times10^{-4}+9-7$
6099.3	1-	5540.2 7	54 6	559.103	2+	(E1)	2.18×10 ⁻³ 3	$B(E1)(W.u.) = 2.8 \times 10^{-4} + 7-5$
								$\alpha(K) = 1.297 \times 10^{-5} \ I8; \ \alpha(L) = 1.321 \times 10^{-6} \ I8; \ \alpha(M) = 2.053 \times 10^{-7} \ 29$
								$\alpha(N)=1.763\times10^{-8}$ 25; $\alpha(IPF)=0.002168$ 30
		6098.9 5	100 11	0.0	0^{+}	E1		$B(E1)(W.u.)=3.9\times10^{-4}+9-6$
6131.5	1-	6131.2 6	100	0.0	0^{+}	E1		$B(E1)(W.u.)=1.42\times10^{-4}+27-19$
6156.6	1-	6156.3 14	100	0.0	0^{+}	E1		$B(E1)(W.u.)=2.9\times10^{-5}+7-5$
6165.1	1-	6164.8 11	100	0.0	0^{+}	E1		$B(E1)(W.u.)=7.7\times10^{-5}+30-17$
6196.2	1-	6195.9 <i>11</i>	100	0.0	0^{+}	E1		$B(E1)(W.u.)=1.59\times10^{-4}+24-18$
6208.7	1-	6208.4 15	100	0.0	0^{+}	E1		$B(E1)(W.u.)=3.2\times10^{-4}+8-5$
6242.7	1-	6242.4 6	100	0.0	0^{+}	E1		$B(E1)(W.u.) = 6.0 \times 10^{-4} + 41 - 18$
								E_{γ} : 6247.4 9 in (γ, γ').
6250.7	1-	6250.4 5	100	0.0	0^{+}	E1		$B(E1)(W.u.) = 2.76 \times 10^{-4} + 47 - 34$
								E_{γ} : 6254.0 9 in (γ, γ') .
6297.9	1-	6297.6 14	100	0.0	0^{+}	E1		$B(E1)(W.u.) = 1.51 \times 10^{-4} + 27 - 20$
6315.9	1-	6315.6 4	100	0.0	0^{+}	E1		$B(E1)(W.u.) = 4.8 \times 10^{-4} + 7 - 6$
6336.8	1-	6336.5 20	100	0.0	0^{+}	E1	2	$B(E1)(W.u.) = 3.4 \times 10^{-4} + 30 - 12$
6342.64	1-	5783.3 ^{&} 3	100 14	559.103	2+	[E1]	2.25×10^{-3} 3	B(E1)(W.u.)=0.0054 +19-12
								$\alpha(K)=1.232\times10^{-5}$ 17; $\alpha(L)=1.255\times10^{-6}$ 18; $\alpha(M)=1.950\times10^{-7}$ 27
								α (N)=1.674×10 ⁻⁸ 23; α (IPF)=0.002236 31
		6342.3 11	30 7	0.0	0+	E1		B(E1)(W.u.)=0.00122+50-34
6387.5	1-	6387.2 14	100	0.0	0^+	E1		$B(E1)(W.u.)=2.16\times10^{-4}+38-28$
6438.1	l 1-	6437.8 19	100	0.0	0^{+}	D		If MI, B(MI)(W.u.)= $0.0098\ 23$. If EI, B(EI)(W.u.)= $0.00017\ 4$.
6449.0	l 1-	6448.7 20	100	0.0	0^{+}	EI		$B(E1)(W.u.) = 2.31 \times 10^{-4} + 43 - 33$
649/./	(12+)	6497.4 0	100	0.0	0^{+} 12+	EI		$B(E1)(W.u.) = 3.8 \times 10^{-1} + 23 - 11$
0300.8	(15^{-})	1009.5		5368 3	(11^+)			
6532 7	1-	6532.4.4	100	0.0	(11) 0^+	F1		$B(F1)(W_{11}) - 4.43 \times 10^{-4} \pm 45 - 38$
6551.00	1+	6550.7.3	100	0.0	0^{+}	M1		B(M1)(W.u.) = 0.0071 + 15 - 11
6562.9	1-	6562.6.9	100	0.0	0^{+}	E1		$B(E1)(W_{III}) = 1.74 \times 10^{-4} 6$
6570.4	1-	6570.1.9	100	0.0	0^{+}	E1		$B(E1)(W,u) = 2.71 \times 10^{-4} + 38 - 31$
6596.2	1-	6595.9 7	100	0.0	0^{+}	E1		$B(E1)(W.u.)=2.39\times10^{-4}+35-27$
6608.5	1-	6608.2 9	100	0.0	0^{+}	E1		$B(E1)(W.u.)=2.18\times10^{-4}+33-26$
6631.8	1-	6071.8 8	40 15	559.103	2+	(E1)		$B(E1)(W.u.)=3.5\times10^{-4}+15-12$
		6632.9 12	100 23	0.0	0^{+}	E1		$B(E1)(W.u.)=6.6\times10^{-4}+20-14$
								E_{γ} : 6630.8 4 in (γ, γ') .

54

From ENSDF

$\gamma(^{76}Se)$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.#	Comments
L	6641.3	1-	6641.0 17	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.3\times10^{-4}+7-4$
L	6653.7	1-	6653.4 14	100	0.0	0^{+}	E1	$B(E1)(W.u.)=3.9\times10^{-4}+11-7$
L	6680.0	1-	6679.7 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.07\times10^{-4}+26-22$
L	6691.5	1-	6691.2 8	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.27\times10^{-4}+24-18$
L	6700.3	1-	6700.0 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.5\times10^{-4}+6-3$
L	6709.0	1-	6708.7 21	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.4\times10^{-4}+5-3$
L	6736.2	1-	6735.9 15	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.4\times10^{-4}+5-3$
L	6743.31	1-	6182.8 7	30 5	559.103	2^{+}	(E1)	$B(E1)(W.u.)=3.3\times10^{-4}+7-6$
L			6743.2 <i>3</i>	100 8	0.0	0^{+}	E1	$B(E1)(W.u.)=8.5\times10^{-4}+13-10$
L	6749.2	1-	6190.0 <i>6</i>	52 13	559.103	2^{+}	(E1)	$B(E1)(W.u.)=4.1\times10^{-4}+12-10$
L			6748.7 5	100 18	0.0	0^{+}	E1	$B(E1)(W.u.)=6.1\times10^{-4}+13-11$
L	6751.5	(14^{+})	1319.8		5431.8	12^{+}		
L	6813.9	1-	6813.6 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=7.5 \times 10^{-5} + 43 - 21$
L	6830.2	1-	6829.9 15	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.43\times10^{-4}+39-26$
L	6882.7	1-	6323.4 6	86 24	559.103	2^{+}	(E1)	$B(E1)(W.u.)=4.5\times10^{-4}+12-11$
L			6881.9 <i>14</i>	100 14	0.0	0^{+}	E1	$B(E1)(W.u.)=4.1\times10^{-4}+12-8$
L	6908.3	1-	6908.0 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=7.6 \times 10^{-5} + 27 - 16$
L	6913.3	1+	6913.0 <i>17</i>	100	0.0	0^{+}	M1	B(M1)(W.u.)=0.0048 +19-11
L	6922.2	1-	6921.9 <i>18</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 9.0 \times 10^{-5} + 32 - 18$
L	6970.3	1-	6970.0 5	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.8\times10^{-4}+8-5$
L								E_{γ} : 6973.0 8 in (γ, γ') .
L	6992.9	1-	6992.5 <i>5</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=3.3\times10^{-4}+6-5$
L	7018.1	1-	7017.7 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.0\times10^{-4}+8-3$
L	7025.1	1+	7024.7 20	100	0.0	0^{+}	M1	B(M1)(W.u.) = 0.0053 + 26 - 14
L	7047.4	1+	7047.0 15	100	0.0	0+	MI	B(M1)(W.u.)=0.0045+25-12
L	7053.1	1^{-}	7052.7 19	100	0.0	0^+	E1	$B(E1)(W.u.) = 8.6 \times 10^{-3} + 37 - 20$
L	/084.5	(14')	1287.5		5/96./	(12^+)		
L	7002 1	1-	1035.0	100	3451.8	12	E1	$B(E1)(W_{12})=0.4\times10^{-5}+24.21$
L	7095.1	1	7092.7 20	100	0.0	0		$B(E1)(W_{11}) = 9.4 \times 10^{-5} + 44 - 21$ $B(E1)(W_{11}) = 0.2 \times 10^{-5} + 40 - 22$
L	7101.1	1 1+	7100.7 19	100	0.0	0^{+}	EI M1	$B(E1)(W.u.)=9.2\times10^{-1}+40-22$ B(M1)(W.u.)=0.0061+26-14
L	7115.5	1 1-	6557.2.16	100 37	550 103	2^+		$B(K1)(Wn) - 24 \times 10^{-4} \pm 15 - 0$
L	/115.5	1	7113 6 10	06 35	0.0	2 0+	E1	$B(E1)(Wu) = 1.8 \times 10^{-4} \pm 11^{-6}$
L	7128 /	1-	6570 6 19	30 22	550 103	2^+		$B(E1)(Wu) = 1.0 \times 10^{-4} \pm 31 = 10^{-4}$
L	/120.4	1	7127 3 13	100 30	0.0	0^{+}	E1	B(E1)(Wu) = 0.00100 + 37 - 28
	7156.0	1-	7155 6 17	100 50	0.0	0^{+}	El	$B(E1)(Wn) = 1.4 \times 10^{-4} + 5 - 3$
	7168 1	1-	7167 7 18	100	0.0	0^{+}	E1	$B(E1)(Wu) = 8.7 \times 10^{-5} + 36 - 20$
	7195.6	1-	7195 2 14	100	0.0	0^{+}	E1	$B(E1)(Wn) = 1.6 \times 10^{-4} + 7 - 4$
L	,175.0	1	,175.2 17	100	0.0	0	L 1	

55

$^{76}_{34}\mathrm{Se}_{42}$ -55

$\gamma(^{76}Se)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
7225.6	1-	7225.2 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.7\times10^{-4}+6-4$
7241.6	1-	7241.2 7	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.21\times10^{-4}+49-34$
7292.8	1-	7292.4 15	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.4\times10^{-4}+8-5$
7324.6	1-	7324.2 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.16\times10^{-4}+47-26$
7335.0	1-	7334.6 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=9.3\times10^{-5}+44-23$
7342.2	1-	7341.8 14	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.1\times10^{-4}+7-4$
7362.2	1-	7361.8 21	100	0.0	0^{+}	E1	$B(E1)(W.u.)=7.9\times10^{-5}+37-20$
7392.6	1-	7392.2 8	100	0.0	0^{+}	E1	$B(E1)(W.u.)=7.2 \times 10^{-5} + 31 - 17$
7406.0	1-	6846.0 17	45 29	559.103	2^{+}	[E1]	$B(E1)(W.u.)=1.5\times10^{-4}+18-8$
		7406.0 15	100 38	0.0	0^{+}	E1	$B(E1)(W.u.) = 2.7 \times 10^{-4} + 23 - 11$
7427.1	1-	7426.7 14	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.2\times10^{-4}+8-5$
7455.5	1-	7455.1 <i>13</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 2.3 \times 10^{-4} + 12 - 6$
7464.9	1-	6905.8 <i>21</i>	82 35	559.103	2+	[E1]	$B(E1)(W.u.) = 2.9 \times 10^{-4} + 18 - 11$
		7464.3 18	100 36	0.0	0^{+}	E1	$B(E1)(W.u.) = 2.8 \times 10^{-4} + 16 - 10$
7508.4	1-	7508.0 8	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 2.23 \times 10^{-4} + 32 - 25$
7522.7	1-	6963.9 7	56 12	559.103	2+	(E1)	$B(E1)(W.u.)=3.4\times10^{-4}+10-8$
		7521.7 7	100 19	0.0	0^{+}	E1	$B(E1)(W.u.) = 4.8 \times 10^{-4} + 12 - 9$
7546.9	1-	7546.5 6	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 5.4 \times 10^{-4} + 5 - 4$
7580.5	1-	7580.1 16	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 1.04 \times 10^{-4} + 41 - 23$
7617.2	1-	7616.8 <i>17</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.55\times10^{-4}+40-27$
7627.8	1-	7627.4 15	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.1\times10^{-4}+5-3$
7643.3	1-	7642.9 17	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.13\times10^{-4}+39-23$
7652.9	1-	7652.5 17	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.05\times10^{-4}+49-34$
7658.71	1-	7658.3 2	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.31\times10^{-4}+24-18$
7698.3	1-	7137.0 ^{&} 20	54 22	559.103	2^{+}	[E1]	$B(E1)(W.u.)=3.8\times10^{-4}+20-14$
		7698.2 9	100 25	0.0	0^{+}	E1	$B(E1)(W.u.) = 5.5 \times 10^{-4} + 25 - 15$
7729.7	1-	7729.3 16	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.2\times10^{-4}+6-4$
7781.6	1-	7781.2 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.2\times10^{-4}+6-3$
7817.5	1-	7817.1 10	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 8.1 \times 10^{-5} + 44 - 22$
7830.0	1-	7829.6 9	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 9 \times 10^{-5} + 6 - 3$
7846.9	(15^{+})	1095.5		6751.5	(14^{+})		
		1346.0		6500.8	(13^{+})		<i>.</i>
7866.1	1-	7865.7 17	100	0.0	0+	E1	$B(E1)(W.u.)=9.3\times10^{-5}+43-23$
7890.9	1-	7890.5 18	100	0.0	0+	E1	$B(E1)(W.u.)=9.8\times10^{-5}+44-25$
7920.1	1-	7919.7 17	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.5\times10^{-4}+7-4$
7927.6	1-	7927.2 17	100	0.0	0^+	E1	$B(E1)(W.u.)=1.4\times10^{-4}+7-4$
7952.1	1-	7951.6 2 <i>1</i>	100	0.0	0+	E1	$B(E1)(W.u.)=1.1\times10^{-4}+6-3$
7960.4	1-	7959.9 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.3\times10^{-4}+6-3$

56

$^{76}_{34}\mathrm{Se}_{42}$ -56

From ENSDF

 $_{34}^{76}$ Se₄₂-56

$\gamma(^{76}Se)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ} [‡]	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
7979.0	1-	7978.5.8	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.5\times10^{-4}+6-4$
8017.9	1-	8017.4 23	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.1\times10^{-4}+5-3$
8062.5	1-	8062.0 22	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.3\times10^{-4}+6-3$
8082.7	1-	7521.3 25	100 58	559.103	2+	[E1]	$B(E1)(W.u.)=2.1\times10^{-4}+14-9$
		8084.2 26	85 46	0.0	0^{+}	E1	$B(E1)(W.u.)=1.4\times10^{-4}+11-7$
8107.3	1-	8106.8 22	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.2\times10^{-4}+6-3$
8132.1	1-	8131.6 22	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.23\times10^{-4}+50-29$
8154.9	1-	8154.4 <i>21</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.07\times10^{-4}+42-25$
8170.1	1-	8169.6 22	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.15\times10^{-4}+45-26$
8198.0	1-	6982.8 15	92 22	1216.154	2+	(E1)	$B(E1)(W.u.)=7.0\times10^{-4}+19-15$
		8196.5 <i>13</i>	100 15	0.0	0^{+}	E1	$B(E1)(W.u.)=4.7\times10^{-4}+13-9$
8210.5	1-	8210.0 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.7\times10^{-4}+6-4$
8222.5	1-	8222.0 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.7\times10^{-4}+9-6$
8251.9	1-	8251.4 23	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 5.6 \times 10^{-5} + 37 - 17$
8268.5	(16^{+})	1517.0		6751.5	(14^{+})		
8288.5	1-	8288.0 <i>23</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.8\times10^{-4}+6-4$
8316.7	1-	8316.2 22	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.1\times10^{-4}+6-3$
8340.7	1-	8340.2 10	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.5\times10^{-4}+7-3$
8394.9	1-	8394.4 19	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 2.55 \times 10^{-4} + 42 - 31$
8453.5	1-	8453.0 21	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.2\times10^{-4}+7-5$
8486.5	1-	8486.0 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=6.8\times10^{-4}+23-14$
8528.1	1-	7970.8 6	100 28	559.103	2+	(E1)	$B(E1)(W.u.) = 7.9 \times 10^{-4} + 25 - 19$
							E_{γ} : not used in the fitting procedure due to its poor fit. Level-energy difference=7967.4.
		8526.0 5	97 22	0.0	0^{+}	E1	$B(E1)(W.u.)=6.2\times10^{-4}+22-15$
8539.8	1-	7979.7 13	100 29	559.103	2+	[E1]	$B(E1)(W.u.) = 4.9 \times 10^{-4} + 15 - 12$
		8540.4 20	61 24	0.0	0+	E1	$B(E1)(W.u.)=2.4\times10^{-4}+10-8$
8571.7	1-	8571.2 19	100	0.0	0^+	E1	$B(E1)(W.u.) = 3.5 \times 10^{-4} + 15 - 8$
8573.8	(16 ⁺)	1489.3	100	7084.5	(14 ⁺)	-	
8590.1	1-	8589.6 20	100	0.0	0+	EI	$B(E1)(W.u.)=2.6\times10^{-4}+14-7$
8654.9	1	8654.4 19	100	0.0	0	EI	$B(E1)(W.u.)=2.9\times10^{-4}+13-7$
8709.9	1	8709.4 13	100	0.0	0	EI	$B(E1)(W.u.)=3.4\times10^{-4}+7-5$
8719.5	1-	8719.0 21	100	0.0	0^+	El	$B(E1)(W.u.)=1.9\times10^{-4}+10-5$
8770.9	1-	8770.4 23	100	0.0	0^+	El	$B(E1)(W.u.)=2.9\times10^{-4}+14-7$
8843.4	1	8283.3 20	47 29	559.103	21	[EI]	$B(E1)(W.u.)=2.6\times10^{-4}+28-13$
00(1.0	1 -	8843.2 18	100 38	0.0	0^+	El E1	$B(E1)(W.u.)=4.5\times10^{-7}+40-18$
8864.8	1 1-	8864.2 20	100	0.0	0'	EI E1	$B(E1)(W.u.)=1.9\times10^{-7}+9-5$
8890.8	l 1-	8890.2 19	100	0.0	0'	EI E1	$B(E1)(W.u.)=2.0\times10^{-4}+10-6$
8918.8	1-	8918.2 19	100	0.0	0+	EI	$B(E1)(W.u.)=2.5\times10^{-7}+10-6$

$\gamma(^{76}\text{Se})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^π	Mult. [#]	Comments
8935.6	1-	8935.0 20	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.0\times10^{-4}+9-5$
9394.7	(17^{+})	1547.8		7846.9	(15^{+})		
9963.8	(18+)	1695.3		8268.5	(16+)		
11147.1	(19^{+})	1752.4		9394.7	(17^{+})		
(11154.19)	$2^+, 3^+$	8284.0 5	4.1 3	2869.34	$(1^+, 2^+)$		
		8293.2 5	3.8 <i>3</i>	2859.781	4-		
		8336.5 5	8.0 9	2817.24	(2^{+})		
		8341.8 5	8.1 9	2812.130	(3+)		
		8483.7 <i>4</i>	11.2 6	2669.904	2-		
		8639.6 10	0.61 11	2514.681	2+		
		8724.4 5	100 5	2429.131	3-		
		9027.4 13	0.40 10	2127.224	$(2)^{+}$		
		9127.3 7	2.45 16	2026.020	4+		
		9365.9 9	2.07 14	1787.655	2+		
		9464.9 9	2.06 14	1688.971	3+		
		9937.5 14	4.7 4	1216.154	2+		
		10031.5 16	1.22 10	1122.279	0^{+}		
		10594.5 25	16.0 9	559.103	2+		
		11153.0 40	1.01 11	0.0	0+		
11774.8	(20^{+})	1810.9		9963.8	(18^{+})		
13681.3	(22^{+})	1906.5		11774.8	(20^{+})		

[†] Additional information 4.
[‡] Weighted average of available values from various γ-ray studies.
[#] From γ(θ), γγ(θ), γ(lin pol) in (α,2nγ), ⁷⁶As β⁻ and some data in ⁷⁶Br ε decay, unless otherwise noted.
[@] The γ from (γ,γ'); not given in (pol γ,γ').
[&] The γ from (pol γ,γ'); not given in (γ,γ').
^a Multiply placed.

85

^b Placement of transition in the level scheme is uncertain.

Level Scheme

 $^{76}_{34}{\rm Se}_{42}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{76}_{34}{
m Se}_{42}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{76}_{34}{
m Se}_{42}$

Level Scheme (continued)

 $^{76}_{34}$ Se $_{42}$

Level Scheme (continued)

⁷⁶₃₄Se₄₂

 $^{76}_{34}{
m Se}_{42}$

Level Scheme (continued)

⁷⁶₃₄Se₄₂

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

⁷⁶₃₄Se₄₂
Level Scheme (continued)

⁷⁶₃₄Se₄₂

 $^{76}_{34}{\rm Se}_{42}$

Level Scheme (continued)

 $^{76}_{34}{\rm Se}_{42}$

Level Scheme (continued)

 $^{76}_{34}{\rm Se}_{42}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{76}_{34}$ Se $_{42}$ -81

From ENSDF

 $^{76}_{34}\mathrm{Se}_{42}$ -81

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

 $^{76}_{34}$ Se₄₂

84

 $^{76}_{34}$ Se₄₂-84

58

 $^{76}_{34}\mathrm{Se}_{42}$ -85

From ENSDF

 $^{76}_{34}\mathrm{Se}_{42}$ -85

