70 Zn(12 C, α 2n γ) 2015Xu09

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024				

2015Xu09: $E(^{12}C)=60$, 65 MeV. Target=self-supporting ⁷⁰Zn of 0.85 mg/cm² thickness. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) using AFRODITE array of eight Compton-suppressed clover detectors, and DIAMANT array of 64 CsI(Tl) scintillators at iThemba LABS. Deduced high-spin levels, J, π , bands, alignments. Discussed $g_{9/2}$ proton-pair alignment, and shape transition from prolate to oblate in terms of the cranked shell model.

⁷⁶Se Levels

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}
0.0#	0+	2974.8 [@] 6	6+	5429.4 [#] 8	12+	9392.6 ^{&} 10	17+
558.9 [#] 4	2^{+}	3268.6 [#] 7	8+	5794.9 [@] 8	12+	9961.6 [#] 11	18^{+}
1215.4 [@] 4	2^{+}	3431.6 ^{&} 6	7^{+}	6498.7 <mark>&</mark> 8	13+	11145.0 ^{&} 11	(19 ⁺)
1330.3 [#] 5	4+	3853.1 [@] 7	8+	6749.3 [#] 9	14+	11772.5 [#] 13	(20^{+})
1688.8 <mark>&</mark> 5	3+	4298.2 [#] 7	10^{+}	7082.5 [@] 8	14+	13679.0 [#] 13	(22^{+})
2025.1 [@] 6	4^{+}	4404.7 ^{&} 7	9+	7844.8 ^{&} 9	15+		
2261.5 <mark>#</mark> 6	6+	4685.3 [@] 7	10^{+}	8266.3 [#] 10	16+		
2488.8 <mark>&</mark> 6	5+	5366.7 ^{&} 7	11^{+}	8571.8 [@] 10	(16 ⁺)		

[†] From a least-squares fit to E γ data, assuming 0.5 keV uncertainty for each γ ray.

[‡] From 2015Xu09, based on previous assignments for low-lying levels, and from band assignments in the present work for higher levels.

[#] Band(A): Yrast band. First band crossing at $\hbar\omega \approx 0.55$ MeV due to pair of $g_{9/2}$ neutrons, second crossing at $\hbar\omega \approx 0.80$ MeV, due to pair of $g_{9/2}$ protons, and interpreted as shape transition from prolate to oblate.

[@] Band(B): γ band, even spin.

[&] Band(b): γ band, odd spin.

						<u> </u>	
E_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
358.5	1688.8	3+	1330.3 4+	1029.6	4298.2	10^{+}	3268.6 8+
387.1	4685.3	10^{+}	4298.2 10+	1068.5	5366.7	11+	4298.2 10+
473.4	1688.8	3+	1215.4 2+	1069.3	6498.7	13+	5429.4 12+
558.9	558.9	2+	$0.0 \ 0^+$	1095.5	7844.8	15+	6749.3 14+
584.5	3853.1	8+	3268.6 8+	1109.6	5794.9	12^{+}	4685.3 10+
656.5	1215.4	2+	558.9 2+	1129.9	1688.8	3+	558.9 2+
681.4	5366.7	11^{+}	4685.3 10+	1131.2	5429.4	12^{+}	4298.2 10+
694.8	2025.1	4+	1330.3 4+	1132.0	6498.7	13+	5366.7 11+
713.3	2974.8	6+	2261.5 6+	1136.1	4404.7	9+	3268.6 8+
771.4	1330.3	4+	558.9 2+	1158.5	2488.8	5+	1330.3 4+
800.0	2488.8	5+	1688.8 3+	1170.1	3431.6	7+	2261.5 6+
809.7	2025.1	4+	1215.4 2+	1215.4	1215.4	2^{+}	$0.0 0^+$
832.2	4685.3	10^{+}	3853.1 8+	1287.5	7082.5	14^{+}	5794.9 12+
878.3	3853.1	8+	2974.8 6+	1319.8	6749.3	14^{+}	5429.4 12+
931.2	2261.5	6^{+}	1330.3 4+	1346.0	7844.8	15^{+}	6498.7 13+
942.8	3431.6	7+	2488.8 5+	1416.7	4685.3	10^{+}	3268.6 8+
949.7	2974.8	6^{+}	2025.1 4+	1489.3	8571.8	(16^{+})	7082.5 14+
962.0	5366.7	11^{+}	4404.7 9+	1496.7	5794.9	12+	4298.2 10+
973.1	4404.7	9+	3431.6 7+	1517.0	8266.3	16^{+}	6749.3 14+
1007.1	3268.6	8+	2261.5 6+	1547.8	9392.6	17^{+}	7844.8 15+

 $\gamma(^{76}\text{Se})$

Continued on next page (footnotes at end of table)

⁷⁰Zn(¹²C, α 2n γ) 2015Xu09 (continued)

$\gamma(^{76}Se)$ (continued)

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	
1591.6	3853.1	8+	2261.5	6+	
1653.0	7082.5	14^{+}	5429.4	12^{+}	
1695.3	9961.6	18^{+}	8266.3	16^{+}	
1752.4	11145.0	(19^{+})	9392.6	17^{+}	
1810.9	11772.5	(20^{+})	9961.6	18+	
1906.5	13679.0	(22^{+})	11772.5	(20^{+})	

70 Zn(12 C, α 2n γ) 2015Xu09

Level Scheme

⁷⁶₃₄Se₄₂

70 Zn(12 C, $\alpha 2n\gamma$) 2015Xu09

⁷⁶₃₄Se₄₂