⁷⁶Sr ε decay (8.9 s) 1993Ad12,1992Gr09

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	NDS 74,63 (1995)	22-Dec-1994							

Parent: ⁷⁶Sr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=8.9$ s 3; $Q(\varepsilon)=6090$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

1993Ad12: measured γ , $\gamma\gamma$.

1992Gr09: measured G. Source of ⁷⁶Sr produced by Nb(p,x) E=600 MeV followed by mass separation (1993Ad12,1992Gr09).

⁷⁶Rb Levels

$J^{\pi \ddagger}$
1(-)
(2^{-})
(3 ⁻)
(4^{+})
(1^{+})
(1^{+})
(1^{+})
(1^{+})

[†] From least squares fit to $E\gamma's$.

[‡] From Adopted Levels.

ε, β^+ radiations

The $\varepsilon_{\beta}\beta^{+}$ feedings are given as upper limits only since it is possible that additional higher energy levels are populated in this decay which would reduce the feedings given here.

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
$(4815^{\ddagger} SY)$ (5107 SY) $(5574^{\ddagger} SY)$	1275? 982.87 516.0	<11 <25	<0.3 <1	>4.8 >4.5	<11 <26	av $E\beta$ =1732 144; εK =0.025 7; εL =0.0029 8; εM +=0.00061 17 av $E\beta$ =1872 145; εK =0.020 5; εL =0.0023 6; εM +=0.00049 13 av $E\beta$ =2007 145; εK =0.015 4; εL =0.0017 4; εM +=0.00036 8
(5613 SY)	476.81	<4.5 <67	<0.1 <1	>3.3	<4.0 <68	av $E\beta = 2097$ 145; $\epsilon K = 0.015$ 4; $\epsilon L = 0.0017$ 4; $\epsilon M + = 0.00056$ 8 av $E\beta = 2116$ 145; $\epsilon K = 0.014$ 4; $\epsilon L = 0.0017$ 4; $\epsilon M + = 0.00035$ 8

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{76}\text{Rb})$

Iv normalization: Σ ((I(γ +ce) of γ 's to g.s. (except 101 γ and to 101 level))=100, assuming no $\varepsilon \beta^+$ to g.s. The $\varepsilon \beta^+$ feeding to 101 level is expected to be < 0.5% from log $f^{lu}t > 8.5$. The normalization is, however, considered approximate since levels are reported only up to about 1300 keV, much below the $Q(\varepsilon)$ value of ≈ 6100 . Also there is no information for feeding to g.s..

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{a}	Comments
(70.55)	317.0?	(4 ⁺)	246.63	(3 ⁻)	[E1]	0.27	E_{γ} : from (HI,xnγ). I_{γ} : 2.2 12 deduced from intensity balance at 317 level. But it must be noted that the population of the 317 level in ⁷⁶ Sr ε decay is uncertain. Also, there is no evidence of 317γ in (HI,xnγ).

			⁷⁶ Sr ε decay (8.9 s) 1993Ad12,1992Gr09 (continued)							
				γ ⁽⁷⁶ Rb) (continued)						
E_{γ}^{\dagger}	I_{γ} †&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{a}	Comments		
101.4 2 145.2 2	56 <i>14</i> 6.0 <i>20</i>	101.40	(2^{-}) (3^{-})	0.0	$1^{(-)}$ (2 ⁻)	(M1) [@] [M1]	0.139			
159.8^{b} 4	1.2 5	476.81	(1^+)	317.0?	(2^{+}) (4^{+}) (3^{-})	[M3]	1.95			
246.6 <i>3</i>	1.5 5	246.63	(1^{-}) (3^{-})	0.0	$1^{(-)}$	[E2]	0.030			
317.0° 3 375.4 2	1.3 4 28 5	317.0? 476.81	(4^+) (1^+) (1^+)	0.0	(2^{-})	[E3]	0.059			
414.6 2 466.9 ^b 2	3.7 9	982.87	(1^+) (1^+)	516.0	(2) (1^+)					
476.8 2 506.1 ^{‡b} 5	100	476.81 982.87	(1^+) (1^+)	0.0 476.81	(1^{+})					
516.0 ^{‡b} 5 665.7 ^b 4	063	516.0 982.87	(1^+) (1^+)	0.0 317 0?	$1^{(-)}$ (4 ⁺)					
735.8 ^b 4	1.1 4	982.87	(1^+) (1^+)	246.63	(3^{-}) (2^{-})					
982.9 2	305	982.87	(1^{+})	0.0	(2^{-}) $1^{(-)}$					
11/4"	22" 6	1275?	(1^{+})	101.40	(2^{-})					

[†] From 1993Ad12 unless otherwise stated. 1992Gr09 report 5 γ 's at 102, 375, 414, 477, and 1174.

[‡] Unresolved from strong γ^{\pm} line.

[#] γ reported by 1992Gr09 only. 1993Ad12 point out that 1174 γ from ⁷⁶Sr ε decay could not be confirmed due to the presence of a 1174.0 γ from ⁷⁶Rb ε decay and a background 1173.2 γ from ⁶⁰Co. The $\gamma\gamma$ data of 1993Ad12 were limited to energy range of 1100.

^(a) Intensity balance at 101 level gives $\alpha < 0.6$ which implies $\delta(E2/M1) < 1$. However, $\gamma(\theta)$ and intensity balance in (HI,xn γ) are consistent with mult=dipole.

[&] For absolute intensity per 100 decays, multiply by ≈ 0.50 .

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

