⁷⁶Sr ε+ $β^+$ decay (7.89 s) 2004De24

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balrai Singh, Jun Chen and Ameenah R. Farhan	NDS 194.3 (2024)	8-Jan-2024

Parent: ⁷⁶Sr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=7.89$ s 7; $Q(\varepsilon+\beta^+)=6230\ 30$; $\%\varepsilon+\beta^+$ decay=100

⁷⁶Sr-T_{1/2}: From ⁷⁶Sr Adopted Levels.

⁷⁶Sr-Q(ε + β ⁺): From 2021Wa16.

⁷⁶Sr-% ε + β ⁺ decay: Measured % ε p=0.0034 8 (2004De24).

2004De24: measured E γ , I γ , $\gamma\gamma$ -coin, β , $\beta\gamma$ -coin, delayed protons, half-life. Source of ⁷⁶Sr produced as mass-separated beam using fragmentation reaction Nb(p,X),E=1 GeV at ISOLDE-CERN.

2004Na16, 2013Pe13 (also 2003Ma69,2004Na17,2005Ru07): measurement of total absorption gamma-ray spectrum, deduced B(GT) functions. The spectrometer was a NaI(Tl) detector system "Lucrecia".

1993Ad12: measured E γ , I γ , $\gamma\gamma$ -coin.

1992Gr09: measured $E\gamma$, $I\gamma$.

Due to a large gap of about 3.3 MeV between the highest observed level at E=2881 keV and Q-value=6230 keV 30 (2021Wa16), the decay scheme is considred incomplete.

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{#‡}
0.0 101.35 <i>13</i> 246.56 <i>17</i> 476.83 <i>14</i> 515.92 <i>15</i>	$ \begin{array}{r} 1^{-} \\ 2^{(-)} \\ 3^{(-)} \\ (1^{+}) \\ (1^{+}) \end{array} $	708.4 <i>3</i> 968.9 <i>4</i> 982.88 <i>15</i> 1289.1 <i>4</i> 1412.3 <i>4</i>	(1^+) (1^+)	1533.0 6 1640.1 4 1948.1 4 2061.8 4 2090.7 4	$(1^+) \\ (1^+) \\ (1^+) \\ (1^+) \\ (1^+) \\ (1^+) $	2140.1 <i>3</i> 2172.7 <i>3</i> 2281.9 <i>6</i> 2881.8 <i>6</i>	(1^+) (1^+) (1^+) (1^+)

[†] From a least squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

ε, β^+ radiations

76Rb Levels

av E β : Additional information 1.

Intensity balance gives $\%\epsilon + \%\beta^+ = -0.55$ for 708 level, -0.17 18 for 969 level, -0.11 14 for 1412 level.

E(decay)	E(level)	$I\beta^+$ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger \#}$	Comments
(3348 30)	2881.8	≈0.32	≈0.04	≈5.3	≈0.36	av Eβ=1035 14; εK=0.094 11; εL=0.0114 13; εM+=0.00251 25
(3948 30)	2281.9	≈1.20	≈0.07	≈5.2	≈1.27	av E _β =1314 14; εK=0.050 6; εL=0.0060 7; εM+=0.00133 13
(4057 30)	2172.7	≈0.91	≈0.05	≈5.3	≈0.96	av $E\beta$ =1365 14; ε K=0.045 5; ε L=0.0055 6; ε M+=0.00119 11
(4090 30)	2140.1	≈3.28	≈0.17	≈4.8	≈3.45	av Eβ=1381 14; εK=0.044 5; εL=0.0053 6; εM+=0.00116 11
(4139 30)	2090.7	≈0.84	≈0.04	≈5.4	≈0.88	av Eβ=1404 14; εK=0.042 5; εL=0.0051 6; εM+=0.00111 11
(4168 30)	2061.8	≈1.83	≈0.09	≈5.1	≈1.92	av Eβ=1418 14; εK=0.041 4; εL=0.0049 5; εM+=0.00108 10
(4282 30)	1948.1	≈0.86	≈0.04	≈5.5	≈0.90	av E β =1471 14; ε K=0.037 4; ε L=0.0045 5; ε M+=9.8×10 ⁻⁴ 9
(4590 30)	1640.1	≈0.77	≈0.03	≈5.7	≈0.80	av E β =1617 14; ε K=0.0283 31; ε L=0.0034 4; ε M+=7.6×10 ⁻⁴ 7
(4697 30)	1533.0	≈2.2	≈0.07	≈5.3	≈2.27	av E β =1667 14; ε K=0.0260 28; ε L=0.00316 34; ε M+=6.9×10 ⁻⁴ 6
(4941 <i>30</i>)	1289.1	≈4.2	≈0.1	≈5.2	≈4.3	av E β =1783 14; ε K=0.0216 23; ε L=0.00263 28; ε M+=5.7×10 ⁻⁴ 5
(5247 30)	982.88	≈20	≈0.4	≈4.7	≈20.4	av E β =1929 14; ε K=0.0174 19; ε L=0.00212 23; ε M+=4.7×10 ⁻⁴ 4
(5714 <i>30</i>)	515.92	≈47.3	≈0.7	≈4.5	≈48	av Eβ=2152 14; εK=0.0129 13; εL=0.00157 16;

Continued on next page (footnotes at end of table)

⁷⁶Sr ε + β ⁺ decay (7.89 s) 2004De24 (continued) ϵ, β^+ radiations (continued) $I\beta^+$ # Ie# $I(\varepsilon + \beta^+)^{\dagger \ddagger \#}$ $\log ft^{\ddagger}$ E(level) Comments E(decay) εM +=3.43×10⁻⁴ 31 (5753 30) 476.83 ≈11.8 ≈0.2 ≈5.1 ≈12 av Eβ=2171 14; εK=0.0126 13; εL=0.00153 16; €M+=3.35×10⁻⁴ 30 (5983[@] 30) 246.56 < 0.08 >9.7 av Eβ=2292 14; εK=0.043 4; εL=0.0052 5; εM+=0.00114 10 <1.62 <1.7 $I(\varepsilon + \beta^+): 0.8 \ 9.$ (6129[@] 30) 101.35 $>7.3^{1u}$ av Eβ=2348 14; εK=0.0221 23; εL=0.00269 28; < 6.8 < 0.2 <7 εM +=5.9×10⁻⁴ 5 $I(\varepsilon + \beta^+)$: 1 6. (6230[@] 30) 0.0 < 0.033 av Eβ=2400 14; εK=0.0096 10; εL=0.00116 12; <3.0 >5.9 <3 €M+=2.54×10⁻⁴ 23 I($\varepsilon + \beta^+$): from assumed log *ft*>5.9 for the first-forbidden

[†] From γ +ce intensity balance at each level.

[‡] As pointed out by 2004Na16 the "pandemonium effect" may be significant here in view of large gap of about 3.3 MeV between Q value and the highest level reported here. Thus all the $\varepsilon + \beta^+$ feedings are considered as approximate.

transition.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{76}\text{Rb})$

Iγ normalization: From $\Sigma I(\gamma + ce \text{ to g.s.}) = 98.5 \ 15$, assuming $\% \epsilon + \% \beta^+ < 3.0$ to g.s. from assumed log ft > 5.9 for the first forbidden transition. 2004De24 quote nearly the same value of 0.495. Due to incomplete decay scheme and unplaced γ transitions, the normalization is considered as approximate.

Following tentative γ rays with $E\gamma(I\gamma)$ reported in 1993Ad12 are omitted here since these are not confirmed in later work by 2004De24: 159.8 4(1.2 5); 317.0 3(1.3 4); 665.7 4(0.6 3); 735.8 4(1.1 4). Also a tentative 1174 γ with I γ =22 6 from 1992Gr09 is omitted.

E_{γ}^{\ddagger}	$I_{\gamma}^{@a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. &	α^{\dagger}	$I_{(\gamma+ce)}^{\textcircled{a}a}$	Comments
39.0 5	29 5	515.92	(1 ⁺)	476.83 ((1 ⁺)	[M1]	2.11 9	91 17	$\begin{array}{l} \mbox{ce(K)}/(\gamma + ce) = 0.597 \ 13; \ ce(L)/(\gamma + ce) = 0.0687 \ 32; \ ce(M)/(\gamma + ce) = 0.0114 \\ 6 \\ \mbox{ce(N)}/(\gamma + ce) = 0.00128 \ 6; \ ce(O)/(\gamma + ce) = 5.34 \times 10^{-5} \ 26 \\ \mbox{$\alpha(K) = 1.86 \ 8; \ \alpha(L) = 0.214 \ 9; \ \alpha(M) = 0.0353 \ 14 \end{array}$
u.									α(N)=0.00397 <i>16</i> ; α(O)=0.000166 7 %Iγ≈14
101.4# 2	59 10	101.35	2 ⁽⁻⁾	0.0	1-	(M1)	0.1393 21	67 11	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.1078 \ 14; \ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.01220 \ 18; \\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=0.002017 \ 31 \\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=0.0002276 \ 34; \ {\rm ce}({\rm O})/(\gamma+{\rm ce})=9.64\times10^{-6} \ 15 \\ \alpha({\rm K})=0.1228 \ 18; \ \alpha({\rm L})=0.01390 \ 21; \ \alpha({\rm M})=0.002298 \ 35 \\ \alpha({\rm N})=0.000259 \ 4; \ \alpha({\rm O})=1.098\times10^{-5} \ 16 \\ \%{\rm I}\gamma\approx29 \end{array}$
									Mult.: intensity balance at 101 level gives α <0.6 which implies δ (E2/M1)<1. However, $\gamma(\theta)$ and intensity balance in in-beam γ -ray studies are consistent with Δ J=1, dipole.
145.2 [#] 2	6.7 10	246.56	3(-)	101.35 2	2(-)	(M1)	0.0526 8	7.1 11	$\begin{array}{l} \operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce})=0.0441\ 6;\ \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce})=0.00494\ 7;\\ \operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce})=0.000817\ 12\\ \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce})=9.23\times10^{-5}\ 13;\ \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce})=3.93\times10^{-6}\ 6\\ \alpha(\mathbf{K})=0.0464\ 7;\ \alpha(\mathbf{L})=0.00520\ 8;\ \alpha(\mathbf{M})=0.000860\ 12\\ \alpha(\mathbf{N})=9.71\times10^{-5}\ 14;\ \alpha(\mathbf{O})=4.14\times10^{-6}\ 6\\ \%_{1}\gamma\approx3.3 \end{array}$
192.4 5	2.7 5	708.4		515.92 ((1^{+})				%Iγ≈1.3
230.3 [#] 3	7.1 <i>13</i>	476.83	(1 ⁺)	246.56 3	3(-)	[M2]	0.0841 <i>12</i>	7.7 14	$ce(K)/(\gamma+ce)=0.0677 \ 9; ce(L)/(\gamma+ce)=0.00831 \ 12; ce(M)/(\gamma+ce)=0.001384 \ 20 ce(N)/(\gamma+ce)=0.0001552 \ 23; ce(O)/(\gamma+ce)=6.41\times10^{-6} \ 9 \alpha(K)=0.0734 \ 11; \ \alpha(L)=0.00901 \ 13; \ \alpha(M)=0.001501 \ 22 \alpha(N)=0.0001683 \ 25; \ \alpha(O)=6.94\times10^{-6} \ 10 \%I\gamma\approx3.5 L : 4.7 \ 12 in 1993 \ Ad12 is in disagreement$
246.6 [#] 3	2.2 3	246.56	3(-)	0.0	1-	(E2)	0.0360 5	2.3 3	$ce(K)/(\gamma+ce)=0.0304 4; ce(L)/(\gamma+ce)=0.00367 5; ce(M)/(\gamma+ce)=0.000604 9$

ω

⁷⁶ Sr .				76 Sr ε + β +	decay (7.89 s)	2004De24 ((continued)		
γ ⁽⁷⁶ Rb) (continued)									
E_{γ}^{\ddagger}	$I_{\gamma}^{@a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.&	α^{\dagger}	$I_{(\gamma+ce)}$ ^{@a}	Comments
275 4# 2	20.4	176 92	(1+)	101 25	2(-)	1211	2 17×10 ⁻³ 2	20.4	$ce(N)/(\gamma+ce)=6.61\times10^{-5} \ 10; \ ce(O)/(\gamma+ce)=2.49\times10^{-6} \ 4$ $\alpha(K)=0.0315 \ 5; \ \alpha(L)=0.00380 \ 6; \ \alpha(M)=0.000626 \ 9$ $\alpha(N)=6.85\times10^{-5} \ 10; \ \alpha(O)=2.58\times10^{-6} \ 4$ $\%I\gamma\approx1.1$ $\alpha(K)=0.001020 \ 27; \ \alpha(L)=0.0002062 \ 20;$
575.4 2	30 4	470.85	(1)	101.55	2. ,	[E1]	2.17×10 5	50 4	$\begin{array}{l} ce(\text{K})/(\gamma+\text{ce})=0.001920\ 27,\ ce(\text{L})/(\gamma+\text{ce})=0.0002002\ 29,\\ ce(\text{M})/(\gamma+\text{ce})=3.39\times10^{-5}\ 5\\ ce(\text{N})/(\gamma+\text{ce})=3.83\times10^{-6}\ 5;\ ce(\text{O})/(\gamma+\text{ce})=1.633\times10^{-7}\ 23\\ \alpha(\text{K})=0.001924\ 27;\ \alpha(\text{L})=0.0002066\ 29;\ \alpha(\text{M})=3.40\times10^{-5}\ 5\\ \alpha(\text{N})=3.84\times10^{-6}\ 5;\ \alpha(\text{O})=1.637\times10^{-7}\ 23\\ \%\text{I}\gamma\approx15 \end{array}$
414.6 [#] 2	15.0 15	515.92	(1^{+})	101.35	2(-)				%Iγ≈7.4
453.0 5	2.35 23	968.9		515.92	(1^{+})				%Iy≈1.2
466.9# 2	2.7 3	982.88	(1^{+})	515.92	(1^{+})				%Iγ≈1.3
476.8 [#] 2	100	476.83	(1 ⁺)	0.0	1-	[E1]	1.18×10 ⁻³ 2		$\alpha(K)=0.001044 \ I5; \ \alpha(L)=0.0001118 \ I6; \ \alpha(M)=1.841\times10^{-5} \ 26 \ \alpha(N)=2.082\times10^{-6} \ 29; \ \alpha(O)=8.93\times10^{-8} \ I3 \ \%_{I} \times 49$
^x 494.0 5	5.8 11								$\%$ I γ ≈2.9
506.1 5	11.7 <i>14</i>	982.88	(1^{+})	476.83	(1^{+})				%Iγ≈5.8
515.8 5	6.8 8	515.92	(1^{+})	0.0	1-				%Iy≈3.4
550.1 5	4.6 5	1533.0	(1^{+})	982.88	(1^{+})				%Iγ≈2.3
*563.7 5	1.3 2	1000 1	(1+)	700 4					$\%1\gamma\approx0.64$
580.8 5	6.5 8	1289.1	(1^{+})	/08.4	$\alpha(-)$				$\%1\gamma \approx 3.2$
608.0 5	0.81 I2	/08.4	(1+)	101.35	$\frac{2}{(1+)}$				$\%1\gamma\approx0.4$
670 7 5	0.07 II 1 01 16	1040.1	(1^+)	982.88	(1°)				%1γ≈0.55 %Ioγ≈0.5
707.8.5	194	2090.7	(1)	0.0	1-				$\%1\gamma \approx 0.5$
726.8.5	0.98 15	2140.1	(1^{+})	1412.3	1				$\%$ I γ \approx 0.48
812.8 5	2.51 25	1289.1	(1^+)	476.83	(1^{+})				$\%$ I γ ≈ 1.2
881.6 [#] 3	10.8 12	982.88	(1^+)	101.35	2 ⁽⁻⁾				%Iy≈5.3
935.9 5	1.76 20	1412.3	(-)	476.83	(1^+)				%Iγ≈0.87
982.9 [#] 2	21.5 25	982.88	(1^{+})	0.0	1-				%Iy≈11
1124.0 5	0.95 11	1640.1	(1^+)	515.92	(1^{+})				%Iy≈0.47
1171.2 5	2.69 26	2140.1	(1^+)	968.9					%Iy≈1.3
1187.0 5	0.53 7	1289.1	(1^+)	101.35	$2^{(-)}$				%Iy≈0.26
1432.1 5	1.19 14	1948.1	(1^{+})	515.92	(1^{+})				%I <i>γ</i> ≈0.59
1471.3 5	0.64 8	1948.1	(1^+)	476.83	(1^+)				%Iy≈0.32
1546.0 5	2.7 3	2061.8	(1^{+})	515.92	(1^{+})				$\%$ l γ ≈1.3
[*] 1568.3-5 1584.9-5	0.56 <i>12</i> 1.19 <i>12</i>	2061.8	(1+)	476.83	(1+)				$\%1\gamma\approx0.28$ $\%1\gamma\approx0.59$

4

 $^{76}_{37}$ Rb₃₉-4

$\gamma(^{76}\text{Rb})$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{@a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
1592.7 5	0.73 7	2881.8	(1^+)	1289.1	(1^{+})	%Iγ≈0.36
1612.5 5	0.77 9	2090.7	(1^{+})	476.83	(1^{+})	$\%$ I γ \approx 0.38
1624.4 5	2.32 22	2140.1	(1^{+})	515.92	(1^{+})	$\%$ I γ \approx 1.1
1657.0 <i>5</i>	0.56 7	2172.7	(1^{+})	515.92	(1^{+})	$\%$ I γ \approx 0.28
1695.7 <i>5</i>	0.97 10	2172.7	(1^{+})	476.83	(1^{+})	$\%$ I γ \approx 0.48
1805.0 5	2.57 25	2281.9	(1^{+})	476.83	(1^{+})	$\%$ I γ \approx 1.3
2039.0 5	0.66 8	2140.1	(1^{+})	101.35	$2^{(-)}$	%Iy≈0.33
2140.5 5	0.34 5	2140.1	(1^+)	0.0	1-	$\%$ Iy \approx 0.17
2172.5 5	0.41 6	2172.7	(1^{+})	0.0	1-	%Iy≈0.2
^x 2248.9 5	0.72 16					%Iγ≈0.36
^x 2499.9 5	0.27 7					%Iy≈0.13
^x 2684.5 5	0.21 5					$\%$ I γ ≈0.1
^x 2719.1 5	0.74 17					%Iy≈0.37
^x 2934.6 5	0.77 18					%Iy≈0.38

[†] Additional information 2.

S

[‡] From 2004De24, unless otherwise stated. About 18 γ rays were reported by 1993Ad12, some with an uncertainty of 0.2 keV.

[#] Weighted averages of values from 1993Ad12 and 2004De24.

[@] From 2004De24. For γ energies above 400 keV, evaluators list values as photon intensities since conversion coefficients are negligible. 2004De24 also list branching ratios of I γ +ce values obtained from corresponding relative transition intensities.

[&] From the Adopted Gammas, unless otherwise stated. The assignments in square brackets are assumed based on ΔJ^{π} .

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 0.493 .

 $x \gamma$ ray not placed in level scheme.

⁷⁶Sr ε + β ⁺ decay (7.89 s) 2004De24

⁷⁶₃₇Rb₃₉