⁷⁶**Rb** ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

Parent: ⁷⁶Rb: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=36.5$ s 6; $Q(\varepsilon+\beta^+)=8535$ 4; $\%\varepsilon+\beta^+$ decay=100

⁷⁶Rb-J^{π},T_{1/2}: From ⁷⁶Rb Adopted Levels.

⁷⁶Rb-Q(ε+β⁺): From 2021Wa16. Measured Q(ε)=8250 150 (1993Al03), 8094 162 (1983Li11), 8063 44 (1982Mo10).

2005Gi17: ⁷⁶Rb isotope produced in spallation reaction on a Nb target with a 1 GeV proton beam at ISOLDE isotopic mass separator. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\beta\gamma\gamma$ coin, lifetimes by $\beta\gamma\gamma(t)$, ce. Deduced levels, J, π , conversion coefficients, multipolarities, γ branching ratios.

1984Mo22 (also 1982Mo10): measured E γ , I γ , $\gamma\gamma$ - and $\beta^+\gamma$ -coin, mass-separated source.

1985Pi08: measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin.

Others:

2013Pe13: Gamow-Teller strength distributions B(GT) deduced from total absorption spectrometer (TAS) system. ⁷⁶Rb nuclei produced from ε decay of ⁷⁶Sr and by spallation reaction Nb(p,X), E(p)=1.4 GeV proton beam from PS Booster on Nb target of 52 g/cm² at ISOLDE-CERN facility. The reaction products from the spallation were ionized in a surface ionization source, separated by HRS and GPS separators at ISOLDE, then implanted onto a 55 μ m thick aluminized mylar tape to be inserted into the spectrometer. Measured γ radiation in singles and coincidence modes using the total absorption spectrometer (TAS) Lucrecia consisting of a 38 cm x 38 cm cylindrical single NaI(Tl) crystal covering a solid angle of $\approx 4\pi$, with a transverse hole of 7.5 cm diameter for placement of additional detectors; a β scintillation counter, and a Ge telescope for detection of x rays and γ rays in coincidence modes. Deduced $\varepsilon + \beta^+$ feedings, pseudo-levels, Gamow-Teller strength distributions. Comparison with quasiparticle random-phase approximation calculations.

γ, γγ-coin: 1975Bo52, 1975We23.

 $\gamma\gamma(\theta)$: 1978LiZU.

 $\beta^+\gamma$ -coin: 1983Li11, 1976DaYR, 1975We23.

Q(ε): 1993Al03 (by total γ absorption), 1983Li11 ($\beta^+\gamma$ -coin), 1982Mo10 (β^+).

⁷⁶Rb production and T_{1/2}(⁷⁶Rb): 1993Al03, 1979No07, 1979Lu07, 1979De43, 1975Ra03, 1975Bo52, 1974DeXQ, 1972Ve02, 1969Ch18.

⁷⁶ Kr L	evels
--------------------	-------

E(level) [†]	J ^{π &}	T _{1/2} [@]	Comments
0.0 424.05 7	0+ 2+		
769.94 9 1034.75 9 1221 72 7	0^+ 4^+ 2^+	42 ps 6	J^{π} : from (346 γ)(424 γ)(θ) (1978LiZU).
1598.07 8 1687.32 8	$(0)^+$ 2 ⁺	<4.7 ps 0.326 ps 35	
1733.26 <i>10</i> 2091.49 <i>10</i>	$\frac{1}{3^{+}}$ (2) ⁺	<34 ps	
2104.33 <i>9</i> 2140.16 [‡] <i>16</i>	1^{-} (1.2 ⁺)	16 ps 5	
2192.50 [‡] <i>12</i> 2227.28.9	2-	25 ps 6	
2257.549	$\frac{2}{3^{-}}$	<5.7 ps	
2532.70° 10 2571.01 8 2581.11 [±] 10	$\begin{pmatrix} 1 \\ 1^{-} \\ (2^{+}) \end{pmatrix}$	16 ps 4	
2381.114 <i>10</i> 2700.16 [‡] <i>13</i>	(2^{+}) 2^{+}	<27 ps	
2742.27 [‡] 22 2774.94 <i>12</i> 2816.57 <i>18</i>	(4^{-}) $0^{+},1,2$ $(1,2^{+})$	22 ps <i>10</i> <13 ps	

		⁷⁶ Rb	ε + β^+ decay ((36.5 s)	2005Gi17,1985Pi08,1984Mo22 (conti
				⁷⁶ K	r Levels (continued)
E(level) [†]	Jπ&	T _{1/2} @	E(level) [†]	E(level)	ŕ
2926 59 12	$0^{-} 1^{-} 2^{-}$	21 ns 5	4700 [#] 20	6140 [#] 2	0
2920.3912	$(0^+, 1, 2)$	<39 ps 5	4740 [#] 20	$6180^{\#}2$	0
3024.42.9	$(2)^{-}$	18 ps 6	4780 [#] 20	$6220^{\#} 2$	0
3242.1^{\ddagger} 3	$(1,2^+)$	<23 ps	4820 [#] 20	$6260^{\#} 2$	0
3275.91 [‡] 21	$(1^+.2)$	F-	4860 [#] 20	7340 [#] 2	0
3421.6 [‡] 5	$(0^+, 1, 2)$	<24 ps	4900 [#] 20	7380 [#] 2	0
3456.1 [‡] 5	$(0^{-}, 1, 2)$	1	4940 [#] 20	7420 [#] 2	0
3602.81 [‡] <i>13</i>	1-	<9.7 ps	4980 [#] 20	7460 [#] 2	0
3636.3 [‡] 3	$1,2^{(+)}$		5020 [#] 20	7500 [#] 2	0
3672.24 [‡] 22	(0,1,2)		5060 [#] 20	7540 [#] 2	0
3700 [#] 20			5100 [#] 20	7580 [#] 2	0
3740 [#] 20			5140 [#] 20	7620 [#] 2	0
3780 [#] 20			5180 [#] 20	7660 [#] 2	0
3820 [#] 20			5220 [#] 20	7700 [#] 2	0
3860 [#] 20			5260 [#] 20	7740 [#] 2	0
3900 [#] 20			5300 [#] 20	7780 [#] 2	0
3940 [#] 20			5340 [#] 20	7820 [#] 2	0
3978.0 [‡] <i>3</i>	$1,2^{(+)}$	<17 ps	5380 [#] 20	7860 [#] 2	0
3986.6 [‡] 3	$1,2^{(+)}$	27 ps 18	5420 [#] 20	7900 [#] 2	0
4026.72 [‡] <i>17</i>	$1,2^{(+)}$	<17 ps	5460 [#] 20	7940 [#] 2	0
4060 [#] 20			5500 [#] 20	7980 [#] 2	0
4097.74 [‡] 20	$1,2^{(+)}$	<18 ps	5540 [#] 20	8020 [#] 2	0
4140 [#] 20			5580 [#] 20	8060 [#] 2	0
4180 [#] 20			5620 [#] 20	8100 [#] 2	0
4220 [#] 20			5660 [#] 20	8140# 2	0
4260 [#] 20			5700 [#] 20	8180# 2	0
4289.42 [‡] 22	$(0,1,2)^{-}$		5740 [#] 20	8220# 2	0
4340 [#] 20			5780 [#] 20	8260 2	0
4380 [#] 20			5820 [#] 20	8300# 2	0
4420 [#] 20			5860 [#] 20	8340 [#] 2	0
4460 [#] 20			5900 [#] 20	8380 [#] 2	0
4500# 20			5940 " 20	8420# 2	0
4540 [#] 20			5980 [#] 20	8460 [#] 2	0
4580 [#] 20			6020 [#] 20	8500" 2	0
4620# 20			6060 [#] 20		
4660 ^m 20			6100 " 20		

76 inued)

[†] From a least-squares fit to Eγ data.
[‡] New level reported by 2005Gi17.
[#] Pseudo level based on TAS results in 2013Pe13, a group at 8540 with ε feeding of 0.002% 11 is omitted here since it is above the $Q(\varepsilon)$ value. This group is not included in Adopted dataset.

^(a) From $\beta \gamma$ (t) (2005Gi17).

& From Adopted Levels.

⁷⁶Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)

ε, β^+ radiations

av E β : Additional information 1.

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(35 21)	8500		0.0012 9	3.1 +12-16	0.0012 9	εK=0.74 7; εL=0.21 6; εM+=0.050 13
(75 21)	8460		$6 \times 10^{-4} 4$	4.3 +7-6	$6 \times 10^{-4} 4$	εK=0.833 25; εL=0.136 19; εM+=0.031 5
(115 21)	8420		3.5×10 ⁻⁴ 17	4.9 +5-4	3.5×10 ⁻⁴ 17	εK=0.852 7; εL=0.121 6; εM+=0.0274 15
(155 21)	8380		2.6×10 ⁻⁴ 12	5.4 +4-3	2.6×10 ⁻⁴ 12	εK=0.860 4; εL=0.1146 28; εM+=0.0258 8
(195 21)	8340		2.7×10 ⁻⁴ 9	5.55 +28-24	2.7×10 ⁻⁴ 9	εK=0.8639 23; εL=0.1112 17; εM+=0.0249 5
(235 21)	8300		3.9×10 ⁻⁴ 4	5.56 +13-14	3.9×10 ⁻⁴ 4	εK=0.8667 16; εL=0.1090 11; εM+=0.0244 4
(275 21)	8260		7.0×10 ⁻⁴ 18	5.45 +20-18	7.0×10 ⁻⁴ 18	εK=0.8686 12; εL=0.1075 8; εM+=0.02397 32
(315 21)	8220		0.0013 5	5.31 +28-21	0.0013 5	εK=0.870 <i>1</i> ; εL=0.1064 7; εM+=0.02369 27
(355 21)	8180		0.0023 8	5.17 +25-19	0.0023 8	εK=0.8710 8; εL=0.1055 5; εM+=0.02347 25
(395 21)	8140		0.0038 6	5.05 +13-12	0.0038 6	εK=0.8718 7; εL=0.1048 5; εM+=0.02330 22
(435 21)	8100		0.00569 18	4.96 +6-7	0.00569 18	εK=0.8725 6; εL=0.1043 4; εM+=0.02317 21
(475 21)	8060		0.0077 4	4.90 7	0.0077 4	ε K=0.8731 6; ε L=0.1039 3; ε M+=0.02305 20
(515 21)	8020		0.0092 4	4.90 6	0.0092 4	εK=0.8735 5; εL=0.10350 31; εM+=0.02296 19
(555 21)	7980		0.0090 9	4.97 +9-8	0.0090 9	εK=0.8739 5; εL=0.10318 29; εM+=0.02288 18
(595 21)	7940		0.0067 8	5.16 9	0.0067 8	εK=0.8743 5; εL=0.10291 27; εM+=0.02281 18
(635 21)	7900		0.0038 4	5.47 +9-8	0.0038 4	εK=0.8746 5; εL=0.10267 25; εM+=0.02275 17
(675 21)	7860		0.00168 32	5.88 +13-11	0.00168 32	εK=0.8748 4; εL=0.10246 23; εM+=0.02270 17
(715 21)	7820		7.0×10 ⁻⁴ 22	6.31 +20-15	7.0×10 ⁻⁴ 22	εK=0.8751 4; εL=0.10228 22; εM+=0.02265 16
(755 21)	7780		3.1×10 ⁻⁴ 11	6.71 +22-17	3.1×10 ⁻⁴ 11	εK=0.8753 4; εL=0.10211 21; εM+=0.02260 16
(795 21)	7740		1.6×10 ⁻⁴ 7	7.04 +28-19	1.6×10 ⁻⁴ 7	εK=0.8755 4; εL=0.10196 20; εM+=0.02257 16
(835 21)	7700		1.1×10 ⁻⁴ 5	7.25 +29-19	1.1×10 ⁻⁴ 5	εK=0.8756 4; εL=0.10183 20; εM+=0.02254 16
(875 21)	7660		9×10 ⁻⁵ 4	7.38 +29-19	9×10 ⁻⁵ 4	εK=0.8758 4; εL=0.10171 19; εM+=0.02250 16
(915 21)	7620		$1.0 \times 10^{-4} 5$	7.37 +33-21	$1.0 \times 10^{-4} 5$	$\varepsilon K=0.8759$ 4; $\varepsilon L=0.10160$ 19; $\varepsilon M+=0.02248$ 16
(955 21)	7580		$1.4 \times 10^{-4} 5$	7.26 +22-16	$1.4 \times 10^{-4} 5$	$\varepsilon K = 0.8760 \ 4; \ \varepsilon L = 0.10150 \ 18;$ $\varepsilon M + = 0.02245 \ 15$
(995 21)	7540		2.1×10^{-4} 7	7.12 +20-15	2.1×10 ⁻⁴ 7	$\varepsilon K = 0.8762 4; \varepsilon L = 0.10141 18;$ $\varepsilon M = -0.02243 15$
(1035 21)	7500	6.59×10^{-13}	3.7×10 ⁻⁴ 6	25.5	3.7×10 ⁻⁴ 6	av E β =0.04; ε K=0.8763 4; ε L=0.10132 17: ε M+=0.02241 15
(1075 21)	7460	2.49×10 ⁻⁹	7.3×10 ⁻⁴ 9	6.65 8	7.3×10 ⁻⁴ 9	av E β =27 10; ε K=0.8764 4; ε L=0.10125 17; ε M+=0.02239 15

⁷⁶Rb ε+β⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)

E(decay)	E(level)	Ιβ ⁺ #	Ιε [#]	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(1115 21)	7420	7.62×10^{-8}	0.0015 6	6.37 +25-17	0.0015 6	av Eβ=45 9; εK=0.8764 4; εL=0.10117 17; εM+=0.02236 15
(1155 21)	7380	8.72×10^{-7}	0.0034 16	6.04 +30-19	0.0034 16	av Eβ=63 9; εK=0.8763 4; εL=0.10108 17; εM+=0.02234 15
(1195 21)	7340	6×10 ⁻⁶ 5	0.0073 31	5.74 +27-18	0.0073 31	av Eβ=81 9; εK=0.8759 6; εL=0.10096 17; εM+=0.02232 15
(2275 21)	6260	0.059 8	0.047 4	5.51 +7-6	0.106 9	av E β =547 9; ϵ K=0.389 13; ϵ L=0.0444 15; ϵ M+=0.0098 3
(2315 21)	6220	0.064 8	0.046 4	5.53 +7-6	0.110 9	av Eβ=564 9; εK=0.367 13; εL=0.0419 14; εM+=0.00926 28
(2355 21)	6180	0.067 5	0.0434 28	5.57 5	0.110 6	av E β =582 9; ε K=0.347 12; ε L=0.0396 14; ε M+=0.00873 27
(2395 21)	6140	0.067 6	0.0399 29	5.62 6	0.107 7	av Eβ=600 9; εK=0.327 11; εL=0.0373 13; εM+=0.00824 25
(2435 21)	6100	0.067 7	0.0365 31	5.68 6	0.104 8	av Eβ=618 9; εK=0.308 11; εL=0.0352 12; εM+=0.00777 24
(2475 21)	6060	0.068 9	0.034 4	5.72 7	0.102 10	av E β =636 9; ε K=0.291 10; ε L=0.0332 12; ε M+=0.00732 23
(2515 21)	6020	0.072 11	0.033 4	5.75 +8-7	0.105 12	av E β =654 9; ε K=0.274 10; ε L=0.0313 11; ε M+=0.00690 21
(2555 21)	5980	0.081 15	0.034 5	5.75 +9-8	0.115 16	av E β =672 9; ε K=0.259 9; ε L=0.0295 10; ε M+=0.00651 20
(2595 21)	5940	0.098 21	0.038 6	5.72 +10-9	0.136 22	av Eβ=690 9; εK=0.244 8; εL=0.0278 10; εM+=0.00615 19
(2635 21)	5900	0.121 17	0.043 5	5.68 +8-7	0.164 18	av Eβ=708 9; εK=0.231 8; εL=0.0263 9; εM+=0.00580 18
(2675 21)	5860	0.151 21	0.050 6	5.63 +8-7	0.201 22	av E β =726 9; ϵ K=0.218 7; ϵ L=0.0248 9; ϵ M+=0.00547 17
(2715 21)	5820	0.175 21	0.053 5	5.61 7	0.228 22	av Eβ=744 9; εK=0.206 7; εL=0.0234 8; εM+=0.00518 16
(2755 21)	5780	0.192 23	0.055 6	5.61 7	0.247 24	av E β =762 9; ϵ K=0.194 7; ϵ L=0.0222 8; ϵ M+=0.00489 15
(2795 21)	5740	0.206 23	0.054 5	5.63 +7-6	0.260 24	av $E\beta$ =780 9; ε K=0.184 6; ε L=0.0209 7; ε M+=0.00463 14
(2835 21)	5700	0.225 29	0.055 6	5.63 7	0.28 3	av Eβ=799 9; εK=0.174 6; εL=0.0198 7; εM+=0.00438 13
(2875 21)	5660	0.27 4	0.062 8	5.59 8	0.33 4	av $E\beta$ =817 9; ε K=0.165 5; ε L=0.0188 6; ε M+=0.00414 12
(2915 21)	5620	0.35 5	0.076 9	5.52 +8-7	0.43 5	av $E\beta$ =835 9; ε K=0.156 5; ε L=0.0178 6; ε M+=0.00392 12
(2955 21)	5580	0.50 7	0.101 12	5.41 +8-7	0.60 7	av $E\beta$ =853 9; ϵ K=0.148 5; ϵ L=0.0168 6; ϵ M+=0.00371 11
(2995 21)	5540	0.71 10	0.134 17	5.30 +8-7	0.84 10	av $E\beta$ =872 9; ϵ K=0.140 5; ϵ L=0.0160 5; ϵ M+=0.00353 10
(3035 21)	5500	0.92 16	0.165 25	5.22 +9-8	1.09 16	av $E\beta$ =890 9; ϵ K=0.133 4; ϵ L=0.0152 5; ϵ M+=0.00335 10
(3075 21)	5460	1.04 22	0.174 32	5.20 +11-10	1.21 22	av $E\beta$ =908 9; ε K=0.126 4; ε L=0.0144 5; ε M+=0.00318 9
(3115 21)	5420	0.98 17	0.155 24	5.27 9	1.13 17	av $E\beta$ =927 9; ε K=0.120 4; ε L=0.0137 4; ε M+=0.00302 9
(3155 21)	5380	0.83 9	0.124 12	5.38 +7-6	0.95 9	av Eβ=945 9; εK=0.114 4; εL=0.0130 4; εM+=0.00287 8
(3195 21)	5340	0.666 30	0.094 5	5.51 4	0.76 <i>3</i>	av E β =964 9; ε K=0.1088 34; ε L=0.0124 4; ε M+=0.00273 8
(3235 21)	5300	0.56 6	0.076 7	5.61 +7-6	0.64 6	av $E\beta$ =982 9; ε K=0.1036 32; ε L=0.0118 4; ε M+=0.00260 7
(3275 21)	5260	0.50 7	0.063 8	5.70 +8-7	0.56 7	av Eβ=1001 9; εK=0.0987 30; εL=0.01123 34;

ϵ, β^+ radiations (continued)

-

⁷⁶ Rb ε + β ⁺ decay (36.5 s)	2005Gi17,1985Pi08,1984Mo22 (continued)
r° KD ε + β° decay (30.5 s)	2005G117,1985P108,1984W1022 (continuea)

E(decay)	E(level)	$I\beta^+$ #	Ιε [#]	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments		
						$\varepsilon M += 0.00248 7$		
(3315 21)	5220	0.46 5	0.056 6	5.77 +7-6	0.52 5	av $E\beta$ =1019 9; εK =0.0941 28; εL =0.01071 32; εM +=0.00236 6		
(3355 21)	5180	0.441 24	0.0502 29	5.82 4	0.491 24	av $E\beta = 1038$ 9; $\varepsilon K = 0.0898$ 27; $\varepsilon L = 0.01021$ 30; $\varepsilon M + = 0.00225$ 6		
(3395 21)	5140	0.42 4	0.046 4	5.87 6	0.47 4	av $E\beta$ =1056 9; ϵ K=0.0857 25; ϵ L=0.00975 29; ϵ M=-0.00215 6		
(3435 21)	5100	0.41 6	0.042 6	5.92 8	0.45 6	av E β =1075 9; ϵ K=0.0818 24; ϵ L=0.00931 27;		
(3475 21)	5060	0.37 6	0.037 5	5.99 +9-8	0.41 6	av E β =1093 9; ε K=0.0782 23; ε L=0.00890 26;		
(3515 21)	5020	0.33 5	0.031 4	6.08 +9-8	0.36 5	av $E\beta$ =1112 9; ε K=0.0748 21; ε L=0.00851 24; ε M=-0.00187 5		
(3555 21)	4980	0.29 4	0.0261 33	6.16 +8-7	0.32 4	av E β =1130 9; ϵ K=0.0716 20; ϵ L=0.00814 23;		
(3595 21)	4940	0.277 30	0.0234 24	6.21 +7-6	0.30 3	av $E\beta = 1149 \ 9; \ \varepsilon K = 0.0685 \ 19; \ \varepsilon L = 0.00779 \ 22;$		
(3635 21)	4900	0.269 19	0.0218 15	6.26 5	0.291 19	av $\mathcal{E}\beta$ =1168 9; ε K=0.0656 18; ε L=0.00747 21;		
(3675 21)	4860	0.283 8	0.0219 8	6.264 33	0.305 8	av $E\beta = 1186 \ 9; \ \varepsilon K = 0.0629 \ 17; \ \varepsilon L = 0.00715 \ 20;$		
(3715 21)	4820	0.324 26	0.0239 19	6.23 5	0.348 26	av $E\beta$ =1205 9; ε K=0.0603 16; ε L=0.00686 19;		
(3755 21)	4780	0.38 6	0.027 4	6.19 +9-8	0.41 6	av $E\beta$ =1224 9; ε K=0.0579 16; ε L=0.00658 18;		
(3795 21)	4740	0.43 8	0.029 5	6.17 +10-9	0.46 8	av $E\beta$ =1242 9; ε K=0.0556 15; ε L=0.00632 17; ε M = -0.001304 34		
(3835 21)	4700	0.45 8	0.029 5	6.18 +10-9	0.48 8	av E β =1261 9; ϵ K=0.0534 14; ϵ L=0.00607 16; ϵ M = -0.001330 32		
(3875 21)	4660	0.42 8	0.026 5	6.23 +11-9	0.45 8	av $E\beta$ =1280 9; ε K=0.0513 13; ε L=0.00583 15; ε M = -0.001287 31		
(3915 21)	4620	0.36 6	0.0213 34	6.33 +9-8	0.38 6	av $E\beta$ =1298 9; ε K=0.0493 13; ε L=0.00561 15; ε M = -0.001236 20		
(3955 21)	4580	0.34 5	0.0194 27	6.38 8	0.36 5	av $E\beta$ =1317 9; ε K=0.0474 12; ε L=0.00539 14; ε M=-0.001100 28		
(3995 21)	4540	0.35 7	0.019 4	6.39 +11-10	0.37 7	av $E\beta$ =1336 9; ε K=0.0457 12; ε L=0.00519 13; ε M=-0.001145 26		
(4035 21)	4500	0.45 11	0.024 6	6.31 +14-11	0.47 11	av $E\beta$ =1355 9; ϵ K=0.0440 11; ϵ L=0.00500 13; ϵ M=-0.001103 25		
(4075 21)	4460	0.64 17	0.032 8	6.19 +15-12	0.67 17	av $E\beta$ =1373 9; ε K=0.0423 11; ε L=0.00481 12; ε M+-0.001062 24		
(4115 21)	4420	0.87 21	0.042 10	6.08 +13-11	0.91 21	av $E\beta$ =1392 9; ϵ L=0.0408 10; ϵ L=0.00464 11; sM+-0.001023 23		
(4155 21)	4380	1.01 26	0.047 12	6.04 +14-11	1.06 26	av E β =1411 9; ϵ K=0.0393 10; ϵ L=0.00447 11; ϵ M = -9.86×10 ⁻⁴ 22		
(4195 21)	4340	1.0 5	0.043 22	6.08 +32-20	1.0 5	av $E\beta = 1430 \ 9; \ \varepsilon K = 0.0379 \ 9; \ \varepsilon L = 0.00431 \ 10;$		
(4246 4)	4289.42	1.94 8	0.0834 <i>34</i>	5.810 27	2.02 8	$\varepsilon M^{+=9.51\times10}$ 21 av E β =1454.0 19; εK =0.03627 34; εL =0.00412 4; $\varepsilon M^{+=9.10\times10^{-4}}$ 9		
						I(ε+ β^{+}): 2.3 (2005Gi17), 0.782 <i>14</i> for a 4300 group (2013Pe13).		
(4275 21)	4260	0.59 11	0.025 4	6.35 +11-9	0.61 11	av E β =1468 9; ε K=0.0353 8; ε L=0.00402 10; ε M+=8.86×10 ⁻⁴ 19		
(4315 21)	4220	0.509 25	0.0206 11	6.43 4	0.530 25	av E β =1487 9; ε K=0.0341 8; ε L=0.00388 9; ε M+=8.56×10 ⁻⁴ 19		
(4355 21)	4180	0.52 2	0.0203 9	6.45 +4-3	0.54 2	av Eβ=1505 9; εK=0.0330 8; εL=0.00375 9;		

ϵ, β^+ radiations (continued)

⁷⁶Rb ε+β⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ #	$\mathrm{I}\varepsilon^{\#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(4395 21)	4140	0.588 25	0.0221 10	6.42 4	0.610 25	ε M+=8.26×10 ⁻⁴ <i>18</i> av E β =1524 <i>9</i> ; ε K=0.0319 <i>7</i> ; ε L=0.00362 <i>8</i> ;
(4437 4)	4097.74	1.48 <i>13</i>	0.054 5	6.04 +5-4	1.53 <i>13</i>	$εM+=7.99\times10^{-17}$ av Eβ=1544.1 19; εK=0.03075 28; εL=0.003493 32; εM+=7.70×10 ⁻⁴ 8 I(ε+β ⁺): 1.8 (2005Gi17), 0.74 2 for a 4100 group
(4475 21)	4060	0.80 6	0.0282 21	6.33 5	0.83 6	(2013Pe13). av E β =1562 9; ε K=0.0298 7; ε L=0.00339 8; ε M \pm -7.47×10 ⁻⁴ 16
(4508 4)	4026.72	1.54 21	0.052 7	6.06 +7-6	1.59 <i>21</i>	av E β =1577.7 <i>19</i> ; ε K=0.02899 <i>26</i> ; ε L=0.003293 <i>30</i> ; ε M+=7.27×10 ⁻⁴ <i>7</i> I(ε + β ⁺): 2.0 (2005Gi17), 0.85 <i>16</i> for a 4020 group
(4548 4)	3986.6	0.98 13	0.032 4	6.28 +7-6	1.01 13	(2013Pe13). av E β =1596.6 <i>19</i> ; ε K=0.02806 <i>25</i> ; ε L=0.003187 <i>29</i> ; ε M+=7.03×10 ⁻⁴ <i>7</i>
(4557 4)	3978.0	0.79 <i>19</i>	0.026 6	6.38 +12-10	0.82 19	av E β =1600.9 <i>19</i> ; ϵ K=0.02786 25; ϵ L=0.003165 29; ϵ M+=6.98×10 ⁻⁴ 7 I(ϵ + β ⁺): 0.5 (2005Gi17), 0.71 <i>14</i> for a 3980 group
(4595 21)	3940	0.47 9	0.0151 28	6.62 +11-9	0.49 9	(2013Pe13). av E β =1619 9; ε K=0.0270 6; ε L=0.00307 7;
(4635 21)	3900	0.284 10	0.0087 4	6.868 33	0.293 10	$\varepsilon M_{\pm} = 0.78 \times 10^{-4} I_4^{-4}$ av E $\beta = 1638 g$; $\varepsilon K = 0.0262 6$; $\varepsilon L = 0.00297 7$; $\varepsilon M_{\pm} = 6.56 \times 10^{-4} I_3^{-4}$
(4675 21)	3860	0.165 20	0.0049 6	7.13 7	0.17 2	av $E\beta$ =1657 9; ε K=0.0254 6; ε L=0.00288 6; ε M = 6.35×10 ⁻⁴ 13
(4715 21)	3820	0.117 25	0.0034 7	7.30 +12-10	0.120 25	av E β =1676 9; ε K=0.0246 5; ε L=0.00279 6; ε M+=6.16×10 ⁻⁴ /2
(4755 21)	3780	0.126 20	0.0035 5	7.28 +9-8	0.13 2	av E β =1695 9; ε K=0.0238 5; ε L=0.00271 6; ε M+=5.97×10 ⁻⁴ 12
(4795 21)	3740	0.243 25	0.0066 7	7.02 6	0.250 25	av $E\beta = 1714 \ 10$; $\varepsilon K = 0.0231 \ 5$; $\varepsilon L = 0.00262 \ 6$; $\varepsilon M + = 5 \ 79 \times 10^{-4} \ 12$
(4835 21)	3700	0.594 20	0.0156 6	6.654 32	0.61 2	av $E\beta$ =1733 10; ϵ K=0.0224 5; ϵ L=0.00255 5; ϵ M+=5 62×10 ⁻⁴ 11
(4863 4)	3672.24	0.42 5	0.0108 13	6.82 6	0.43 5	av E β =1746.1 <i>19</i> ; ε K=0.02196 <i>19</i> ; ε L=0.002494 22; ε H=5.50×10 ⁻⁴ 6
(4899 4)	3636.3	1.05 19	0.026 5	6.44 +9-8	1.08 19	$I(ε+β^+): 0.5 (2005G117), 9.7 II (2013Pe13).$ av Eβ=1763.2 I9; εK=0.02138 I9; εL=0.002428 22; εM+=5.36×10 ⁻⁴ 5
(4932 4)	3602.81	5.8 6	0.140 14	5.72 +6-5	5.9 6	av E β =1778.9 <i>19</i> ; ε K=0.02086 <i>18</i> ; ε L=0.002368 <i>21</i> ; ε M+=5.22×10 ⁻⁴ 5 I(ε + β ⁺): 7.0 (2005Gi17), 2.24 <i>38</i> (2013Pe13)
(5079 4)	3456.1	0.23 5	0.0049 11	7.20 +12-9	0.23 5	av E β =1848.9 <i>19</i> ; ϵ K=0.01876 <i>16</i> ; ϵ L=0.002130 <i>19</i> ; ϵ H=4.70×10 ⁻⁴ <i>5</i>
(5113 4)	3421.6	0.297 23	0.0063 5	7.09 4	0.303 23	$I(\varepsilon + \beta^{-}): 0.3 (2005G117), 1.20 II (2013Pe13).$ av $E\beta = 1865.1 I9; \varepsilon K = 0.01831 I6; \varepsilon L = 0.002079$ $I8; \varepsilon M + = 4.58 \times 10^{-4} 5$
(5259 4)	3275.91	0.58 4	0.0111 8	6.87 4	0.59 4	$I(\varepsilon + \beta^{-}): 0.4 (2005G117), 0.177 (2013Pe13).$ av $E\beta = 1934.8 \ 19; \ \varepsilon K = 0.01656 \ 14; \ \varepsilon L = 0.001880 \ 16; \ \varepsilon M + = 4.15 \times 10^{-4} \ 4$
(5293 4)	3242.1	1.37 30	0.026 6	6.51 +11-9	1.4 3	$I(ε + β^{-}): 0.7$ (2005G117), 0.46 13 (2013Pe13). av Eβ=1951.0 19; εK=0.01618 14; εL=0.001837

				ϵ, β^+ radiations	(continued)		
E(decay)	E(level)	Ιβ ⁺ #	Iε [#]	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments	
(5511 4)	3024.42	7.6 5	0.123 8	5.87 4	7.7 5	I6; εM+=4.06×10 ⁻⁴ 4 I(ε+β ⁺): 1.6 (2005Gi17), 1.29 <i>I</i> 2 (2013Pe13). av Eβ=2055.2 <i>I</i> 9; εK=0.01403 <i>I</i> 2; εL=0.001592 <i>I</i> 4; εM+=3.51×10 ⁻⁴ 3 I(ε+β ⁺): 6.8 (2005Gi17), 11.74 <i>30</i>	
(5565 4)	2970.1	0.49 4	0.0077 6	7.08 +5-4	0.50 4	(2013Pe13). av E β =2081.1 <i>19</i> ; ε K=0.01355 <i>11</i> ; ε L=0.001538 <i>13</i> ; ε M+=3.392×10 ⁻⁴ <i>34</i>	
(5608 4)	2926.59	91	0.137 15	5.84 +6-5	9.1 10	I(ε+β ⁺): 0.6 (2005Gi17), 3.94 24 (2013Pe13). av Eβ=2101.7 19; εK=0.01318 11; εL=0.001496 13; εM+=3.300×10 ⁻⁴ 33	
(5718 4)	2816.57	3.1 4	0.043 6	6.36 +7-6	3.1 4	I(ε + β ⁺): 12.3 (2005Gi17), 4.0 5 (2013Pe13). av Eβ=2154.4 19; εK=0.01231 10; εL=0.001397 12; εM+=3.083×10 ⁻⁴ 30 I(ε+β ⁺): 2.6 (2005Gi17), 0.788 18 (2012Pe12)	
(5760 4)	2774.94	2.66 30	0.037 4	6.43 +6-5	2.7 3	(2013Pe15). av E β =2174.5 <i>19</i> ; ε K=0.01201 <i>10</i> ; ε L=0.001362 <i>12</i> ; ε M+=3.005×10 ⁻⁴ <i>29</i>	
(5793 4)	2742.27	0.087 9	0.0047 5	$11.52^{2u} 4$	0.092 9		
(5835 4)	2700.16	0.32 4	0.0042 5	7.39 +7-6	0.32 4	I($\varepsilon + \beta^+$): 0.10 (2005Gi17), 2.1 5 (2013Pe13). av E β =2210.5 19; ε K=0.01148 10; ε L=0.001302 11; ε M+=2.873×10 ⁻⁴ 28	
(5954 4)	2581.11	0.45 8	0.0056 10	7.28 +9-8	0.46 8	av Eβ=2267.6 19; εK=0.01070 9; εL=0.001214 10; εM+=2.677×10 ⁻⁴ 26	
(5964 <i>4</i>)	2571.01	15.3 4	0.188 5	5.759 20	15.5 4	I(ε+β ⁺): 0.5 (2005Gi17), 6.0 9 (2013Pe13). av Eβ=2272.4 19; εK=0.01063 9; εL=0.001207 10; εM+=2.661×10 ⁻⁴ 26 I(ε+β ⁺): from 2013Pe13. The gamma intensity balance gives 43.4 14, 2005Gi17 list 34 (2005Gi17), 15.5 4 (2013Pe13).	
(6202 4)	2332.70	0.208 30	0.00222 32	7.72 +8-7	0.21 3	av E β =2386.9 <i>19</i> ; ε K=0.00929 <i>8</i> ; ε L=0.001054 <i>9</i> ; ε M+=2.324×10 ⁻⁴ <i>22</i> I($\varepsilon + \beta^+$): 0.2 (2005Gi17), 0.340 <i>25</i> (2013Pe13)	
(6278 [@] 4)	2257.54	<1.08	<0.02	>8.9	<1.1	av E β =2419.7 <i>19</i> ; ε K=0.01935 <i>16</i> ; ε L=0.002205 <i>18</i> ; ε M+=4.87×10 ⁻⁴ <i>5</i> I(ε + β ⁺): 0.7 (2005Gi17), 0.0150 <i>25</i> (2013Pe13). The feeding is considered as questionable since log <i>ft</i> is too low to be realistic for AL=2 A π =no β transition	
(6308 4)	2227.28	6.9 4	0.070 4	6.238 +34-33	7.0 4	av $E\beta$ =2437.9 <i>19</i> ; εK =0.00877 <i>7</i> ; εL =9.94×10 ⁻⁴ 8; εM +=2.194×10 ⁻⁴ 2 <i>1</i> ($\alpha \neq \beta^{\pm}$), 6.0 (2005Ci17) 0.012 2 (2012De12)	
(6343 4)	2192.50	0.228 30	0.00225 29	7.73 +7-6	0.23 3	av $E\beta$ =2454.8 19; εK =0.00860 7; εL =9.76×10 ⁻⁴ 8; εM +=2.153×10 ⁻⁴ 21	
(6395 4)	2140.16	0.49 18	0.0047 17	7.43 +21-14	0.49 18	I(ε+β ⁺): 0.3 (2005Gi17), 0.12 20 (2013Pe13). av Eβ=2479.8 19; εK=0.00836 7; εL=9.49×10 ⁻⁴ 8; εM+=2.092×10 ⁻⁴ 20 I(ε+β ⁺): 0.6 (2005Gi17), 0.000672 20	
(6431 4)	2104.33	5.6 5	0.053 5	6.37 5	5.7 5	(2013Pe13). av E β =2497.2 <i>19</i> ; ε K=0.00821 7;	

⁷⁶Rb ε+β⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)

ϵ, β^+ radiations (continued)										
E(decay)	E(level)	Ιβ ⁺ #	Iε [#]	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments				
(6444 <i>4</i>)	2091.49	0.49 12	0.0045 11	7.44 +13-10	0.49 12	$\begin{aligned} \varepsilon L = 9.31 \times 10^{-4} \ 8; \ \varepsilon M + = 2.053 \times 10^{-4} \ 20 \\ I(\varepsilon + \beta^+); \ 5.5 \ (2005Gi17), \ 0.0098 \ 3 \ (2013Pe13). \\ av \ E\beta = 2503.4 \ 19; \ \varepsilon K = 0.00815 \ 7; \\ \varepsilon L = 9.25 \times 10^{-4} \ 8; \ \varepsilon M + = 2.040 \times 10^{-4} \ 19 \\ I(\varepsilon + \beta^+); \ 0.8 \ (2005Gi17), \ 0.000743 \ 14 \\ (2013Pe13). \end{aligned}$				
(6802 4)	1733.26	0.82 19	0.0137 <i>31</i>	$9.26^{1u} + 12 - 10$	0.83 [‡] <i>19</i>	av E β =2668.9 <i>19</i> ; ε K=0.01452 <i>12</i> ; ε L=0.001653 <i>13</i> ; ε M+=3.65×10 ⁻⁴ <i>3</i> I(ε + β ⁺): 0.6 (2005Gi17).				
(6848 4)	1687.32	1.5 6	0.011 5	7.10 +23-15	1.5 [‡] 6	av E β =2698.4 <i>19</i> ; ε K=0.00663 <i>5</i> ; ε L=7.52×10 ⁻⁴ <i>6</i> ; ε M+=1.659×10 ⁻⁴ <i>16</i> I(ε + β ⁺): 1.7 (2005Gi17).				
(6937 4)	1598.07	0.35 22	0.0025 16	7.8 +4-2	0.35 [‡] 22	av $E\beta$ =2741.4 <i>19</i> ; ε K=0.00635 <i>5</i> ; ε L=7.20×10 ⁻⁴ <i>6</i> ; ε M+=1.588×10 ⁻⁴ <i>15</i> I(ε + β ⁺): 0.09 (2005Gi17).				
(7313 4)	1221.72	1.4 5	0.0085 30	7.29 +20-14	1.4 [‡] 5	av E β =2923.3 <i>19</i> ; ε K=0.00532 <i>4</i> ; ε L=6.03×10 ⁻⁴ <i>5</i> ; ε M+=1.330×10 ⁻⁴ <i>12</i> I(ε + β ⁺); 1.5 (2005Gi17).				
(7500 [@] 4)	1034.75	<0.98	<0.02	>11.6	<1‡	av E β =3008.8 <i>19</i> ; ε K=0.01758 <i>14</i> ; ε L=0.002007 <i>16</i> ; ε M+=4.43×10 ⁻⁴ <i>4</i> I(ε + β ⁺): 0.5 (2005Gi17). The feeding is considered as questionable since log <i>ft</i> is too low to be realistic for Δ J=3, $\Delta\pi$ =yes β transition.				
(7765 [@] 4)	769.94	<0.49752	<0.002483	>7.9	<0.5 [‡]	av E β =3142.5 <i>19</i> ; ε K=0.004363 <i>33</i> ; ε L=4.95×10 ⁻⁴ <i>4</i> ; ε M+=1.091×10 ⁻⁴ <i>10</i> I(ε + β ⁺): 0.7 (2005Gi17).				
(8111 [@] 4)	424.05				‡	I($\varepsilon + \beta^+$): 2005Gi17 give 0.8, evaluators obtain -4.2				

⁷⁶Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)

[†] Feedings for levels up to 3672.1 keV, and at 40-keV interval above this energy are deduced by 2013Pe13 using an iterative Expectation- Maximization (EM) method. Feedings below 0.0001% are set to zero. Total $\varepsilon + \beta^+$ feeding in Table IV of 2013Pe13 adds to 95.9% 21. Large range of uncertainties reported from (a) deformation assumptions for unknown level scheme calculations; (b) strength function parameterization; (c) assumptions of position of last (cutoff) level; (d) uncertainties in subtracting contaminants; and (e) statistical uncertainty in feeding distribution. Uncertainties listed here are deduced by evaluators as averages between upper and lower uncertainties quoted by 2013Pe13. Total feedings deduced by evaluators here for discreet energy levels are from γ intensity balances, the values given by 2005Gi17 are somewhat different and are listed under comments. Corresponding values from TAS spectral analysis in 2013Pe13 are not in agreement in many cases.

[±] TAS data in 2013Pe13 are consistent with zero $\beta^+ + \varepsilon$ feeding.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{76}\mathrm{Kr})$

Iy normalization: Summed transition intensity to g.s.=100, assuming no direct β +, ε feeding to g.s. This assumption is supported by systematics of log *ft* values in A=76 nuclides: log *ft*>6 for 0⁺ to 1⁻ β transition in ⁷⁶Kr to ⁷⁶Br decay and >8.9 for 1⁻ to 0⁺ β transition in ⁷⁶Se nuclei.

The following γ rays with energy (intensity) reported only by 1975We23 are discarded since these are not confirmed in any of the later studies: 64 (2.3), 244 (2.3), 254 (2.0), 869 (2.2), 937 (2.5). Also an unplaced 1120.8 γ with I γ =0.7 2 in 1984Mo22 is omitted here since it is not reported by 2005Gi17.

Experimental conversion coefficients given under comments are from 2005Gi17.

9

Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
324.3 [‡] 1	0.77 [‡] 4	3024.42	(2)-	2700.16	2+	[E1]		0.00299 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00265 \ 4; \ \alpha(\mathbf{L}) = 0.000283 \ 4; \ \alpha(\mathbf{M}) = 4.56 \times 10^{-5} \ 6 \\ &\alpha(\mathbf{N}) = 4.57 \times 10^{-6} \ 6 \\ &\%_{\mathbf{I}\gamma} = 0.337 \ 2I \\ &\mathbf{I}\gamma(324.3\gamma)/\mathbf{I}\gamma(453.5\gamma) = 14.5 \ 8/100 \ 4. \end{aligned}$
345.9 [#] 1	13.2 [#] 4	769.94	0+	424.05	2+	E2		0.01045 15	α (K)exp=0.0093 3 α (K)=0.00922 13; α (L)=0.001049 15; α (M)=0.0001696 24 α (N)=1.666×10 ⁻⁵ 23 %Iy=5.78 25
355.6 [#] 1	17.4 [#] 20	2926.59	0-,1-,2-	2571.01	1-	M1(+E2) ^{&}	<0.12 ^{&}	0.00484 8	α (K)exp=0.00422 <i>15</i> α (K)=0.00429 <i>7</i> ; α (L)=0.000464 <i>7</i> ; α (M)=7.52×10 ⁻⁵ <i>12</i> α (N)=7.58×10 ⁻⁶ <i>12</i> %I γ =7.6 <i>9</i>
376.4 [#] 1	0.5 [#] 1	1598.07	(0)+	1221.72	2+	E2		0.00788 11	$\alpha(K) \exp = 0.0050 \ 14$ $\alpha(K) = 0.00696 \ 10; \ \alpha(L) = 0.000786 \ 11;$ $\alpha(M) = 0.0001271 \ 18$ $\alpha(N) = 1.252 \times 10^{-5} \ 18$ $\% I\gamma = 0.22 \ 5$ $\beta(2766 \ 4x) (1174 \ 0x) = 8 \ 1 \ 4/100 \ 3 \ (20056; 17)$
378.5 [‡] 1	0.54 [‡] 2	2571.01	1-	2192.50		M1+E2&	0.9 ^{&} +8-5	0.0057 11	$\alpha(K) = 0.005 I$ $\alpha(K) = 0.005 I I0; \ \alpha(L) = 0.00056 I2; \ \alpha(M) = 9.1 \times 10^{-5} I9$ $\alpha(N) = 9.1 \times 10^{-6} I8$ $\% Iy = 0.237 I2$ $Iy(378.5y)/Iy(2571.1y) = 0.70 3/100 4.$
403.9 [#] 3	0.3 [#] 1	2091.49	$(2)^{+}$	1687.32	2+				$\% I\gamma = 0.13 5$ $I\gamma (403.9\gamma)/I\gamma (1321.6\gamma) = 20.7 11/100 3.$
417.1 [‡] <i>1</i>	0.22 [‡] 2	2104.33	1-	1687.32	2+	[E1]		1.53×10 ⁻³ 2	α (K)=0.001362 <i>19</i> ; α (L)=0.0001447 <i>20</i> ; α (M)=2.338×10 ⁻⁵ <i>33</i>

				⁷⁶ Rb ε+	β^+ decay	v (36.5 s)	2005Gi17	,1985Pi08,1984M	Mo22 (continued)	
γ ⁽⁷⁶ Kr) (continued)										
E_{γ}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments	
424.0 [#] 1	100 [#] 4	424.05	2+	0.0	0+	E2 ^{&}		0.00535 8	$\begin{aligned} &\alpha(\mathbf{N}) = 2.349 \times 10^{-6} \ 33 \\ &\% \mathbf{I} \gamma = 0.096 \ 9 \\ &\mathbf{I} \gamma (417.1 \gamma) / \mathbf{I} \gamma (1680.3 \gamma) = 2.0 \ 2/100 \ 3. \\ &\alpha(\mathbf{K}) = 0.00473 \ 7; \ \alpha(\mathbf{L}) = 0.000529 \ 7; \ \alpha(\mathbf{M}) = 8.55 \times 10^{-5} \\ & 12 \\ &\alpha(\mathbf{N}) = 8.46 \times 10^{-6} \ 12 \end{aligned}$	
431.7 [‡] 5	0.52 [‡] 11	3456.1	(0 ⁻ ,1,2)	3024.42	(2)-				$\%_{1\gamma} = 43.8 \ I3$ $\%_{1\gamma} = 0.23 \ 5$	
432.0 [‡] 9	0.13 [‡] 8	3672.24	(0,1,2)	3242.1	(1,2 ⁺)				E_{γ} =431.3 2, I_{γ} =0.6 2; unplaced (1984Mo22). % I_{γ} =0.06 4 E_{γ} : level-energy difference=430.1. I_{γ} (432.0 γ)/ I_{γ} (1567.8 γ)=19 10/100 6.	
443.3 [‡] 1	0.27 [‡] <i>3</i>	3024.42	(2)-	2581.11	(2+)	[E1]		1.31×10 ⁻³ 2	$\alpha(K)=0.001166 \ 16; \ \alpha(L)=0.0001238 \ 17; \alpha(M)=2.000\times10^{-5} \ 28 \alpha(N)=2.010\times10^{-6} \ 28 \%I\gamma=0.118 \ 14 Ix(443 \ 3x)/Ix(453 \ 5x)=5 \ 0.5/100 \ 4$	
453.5 [#] 2	5.8 [#] 3	3024.42	(2)-	2571.01	1-	M1(+E2)	0.3 3	0.00282 <i>30</i>	$\alpha(K) = 0.0025 \ 3$ $\alpha(K) = 0.00251 \ 26; \ \alpha(L) = 0.000270 \ 31; \ \alpha(M) = 4.4 \times 10^{-5} \ 5$ $\alpha(N) = 4.4 \times 10^{-6} \ 5$	
466.0 [#] 3	0.5 [#] 2	1687.32	2+	1221.72	2+				$\%_{1\gamma}=2.54$ 15 $\%_{1\gamma}=0.22$ 9 $1_{2\gamma}(466 0_{2\gamma})/1_{2\gamma}(917 4_{2\gamma})=4.6$ 16/100 6	
466.9 [‡] <i>13</i>	0.24 [‡] 10	2571.01	1-	2104.33	1-				%Iy=0.11 5 Iy(466.9y)/Iy(2571.1y)=0.3 1/100.4	
479.5 [#] 1	1.8 [#] 1	2571.01	1-	2091.49	(2)+	E1(+M2)	<0.17	0.00117 <i>10</i>	$\alpha(K) \exp[= 0.00091 \ 20] \\ \alpha(K) = 0.00104 \ 9; \ \alpha(L) = 0.000111 \ 10; \ \alpha(M) = 1.80 \times 10^{-5} \\ 16 \\ \alpha(N) = 1.81 \times 10^{-6} \ 16 \\ \% I\gamma = 0.79 \ 5 \\ I\gamma(479.5\gamma)/I\gamma(2571.1\gamma) = 2.25 \ 8/100 \ 4.$	
493.4 [‡] 1	0.21 [‡] 7	2091.49	(2) ⁺	1598.07	$(0)^{+}$				$\%$ I γ =0.092 31 I γ (493.4 γ)/I γ (1321.6 γ)=14 5/100 3.	
493.8 [‡] 7	0.7‡ 2	2227.28	2-	1733.26	3+	[E1]		1.00×10 ⁻³ I	$\alpha(K)=0.000890 \ 13; \ \alpha(L)=9.44\times10^{-5} \ 14; \alpha(M)=1.526\times10^{-5} \ 22 \alpha(N)=1.535\times10^{-6} \ 22 \%I\gamma=0.31 \ 9 I\gamma(493.8\gamma)/I\gamma(1803.2\gamma)=6.4 \ 18/100 \ 3.$	

				⁷⁶ Rb	ε + β ⁺	decay (36.5	5 s) 2005Gi17	,1985Pi08	3,1984Mo22 (continued)		
	γ ⁽⁷⁶ Kr) (continued)										
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$lpha^\dagger$	$I_{(\gamma+ce)}^{a}$	Comments		
506.0 [‡] 9	0.8 [‡] 3	2104.33	1-	1598.07	(0)+	[E1]	0.000944 14		$\alpha(K)=0.000839 \ 12; \ \alpha(L)=8.89\times10^{-5} \ 13; \\ \alpha(M)=1.437\times10^{-5} \ 21 \\ \alpha(N)=1.446\times10^{-6} \ 21 \\ \%_{I}\gamma=0.35 \ 13 \\ I_{\gamma}(506.0\gamma)/I_{\gamma}(1680.3\gamma)=7 \ 3/100 \ 3.$		
511.6 [‡] 2	0.5 [‡] 3	1733.26	3+	1221.72	2+				$\%$ I γ =0.22 <i>13</i> I γ (511.6 γ)/I γ (1309.3 γ)=20 <i>12</i> /100 <i>4</i> .		
540.0 [‡] 1	0.24 [‡] 2	2227.28	2-	1687.32	2+	[E1]	0.000806 11		$\alpha(K) = 0.000717 \ 10; \ \alpha(L) = 7.59 \times 10^{-5} \ 11; \alpha(M) = 1.227 \times 10^{-5} \ 17 \alpha(N) = 1.235 \times 10^{-6} \ 17 \% I\gamma = 0.105 \ 10 10 10 10 10 10 10 10 10 10 $		
610.6 [#] 1	4.0 [#] 2	1034.75	4+	424.05	2+	E2	1.77×10 ⁻³ 3		$\frac{1\gamma(540.0\gamma)}{1\gamma(1803.2\gamma)=2.2} \frac{2}{100} \frac{3}{3}.$ $\alpha(K)=0.001570 \frac{22}{2}; \alpha(L)=0.0001716 \frac{24}{2}; \alpha(M)=2.78\times10^{-5} \frac{4}{3}$ $\alpha(N)=2.77\times10^{-6} \frac{4}{3}$		
652.6 [#] 1	0.5 [#] 1	1687.32	2+	1034.75	4+	[E2]	1.47×10 ⁻³ 2		%I γ =1.75 10 α (K)=0.001303 18; α (L)=0.0001419 20; α (M)=2.296×10 ⁻⁵ 32 α (N)=2.297×10 ⁻⁶ 32 %I γ =0.22 5		
686.5 [‡] 4	0.39 [‡] 3	4289.42	(0,1,2) ⁻	3602.81	1-	M1,E2 ^{&}	0.00116 <i>12</i>		Iγ(652.6γ)/Iγ(917.4γ)=9.2 3/100 6. α (K)exp=0.0010 3 α (K)=0.00103 10; α (L)=0.000111 12; α (M)=1.80×10 ⁻⁵ 20 α (N)=1.81×10 ⁻⁶ 19 %Iγ=0.171 14 Ix(686 5x)/Ix(1718 6x)=14.4 11/100 4		
698.4 [‡] 1	0.21 [‡] 2	1733.26	3+	1034.75	4+	M1,E2 ^{&}	0.00111 11		$\alpha(K) = 0.0014 \ 6$ $\alpha(K) = 0.00099 \ 10; \ \alpha(L) = 0.000106 \ 11; \ \alpha(M) = 1.72 \times 10^{-5} \ 18$ $\alpha(N) = 1.73 \times 10^{-6} \ 18$ $\% I\gamma = 0.092 \ 9$ $I\gamma(698 \ 4\gamma)/I\gamma(1309 \ 3\gamma) = 8.7 \ 8/100 \ 4$		
766.7 [#] 1	3.1 [#] 2	3024.42	(2)-	2257.54	3-	M1,E2 ^{&}	0.00089 7		$\alpha(K) \exp[= 0.00089 \ 17]$ $\alpha(K) = 0.00079 \ 6; \ \alpha(L) = 8.4 \times 10^{-5} \ 7; \ \alpha(M) = 1.36 \times 10^{-5} \ 12$ $\alpha(N) = 1.37 \times 10^{-6} \ 11$ $\% I\gamma = 1.36 \ 10$ $I\gamma(766, 7\gamma)/I\gamma(453, 5\gamma) = 56.6 \ 17/100 \ 4.$		
770		769.94	0^{+}	0.0	0+	(E0)		0.035	$\rho^{2}(\text{E0},0^{+} \text{ to } 0^{+})=0.079 \ 11; \text{ X}(\text{E0/E2})=0.020 \ 1 \ (2005\text{Gi17}).$ I _($\gamma+ce$) : Ice(K)=0.029 relative to I γ (424 γ)=100		

	⁷⁶ Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)										
γ ⁽⁷⁶ Kr) (continued)											
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	E _f J	\int_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments	
797.6 [#] 1	9.9 [#] 3	1221.72	2+	424.05 2	2+ N	/1+E2	+0.2 1	0.000755 12		(2005Gi17). Evaluators have added 20% to this value to account for intensity from L, M and higher shells. %I γ =4.34 <i>19</i> α (K)exp=0.00073 <i>5</i> α (K)=0.000671 <i>10</i> ; α (L)=7.12×10 ⁻⁵ <i>11</i> ; α (M)=1.153×10 ⁻⁵ <i>18</i>	
822.2 [#] 2	3.2 [#] 3	2926.59	0 ⁻ ,1 ⁻ ,2 ⁻	2104.33 1	N	И1 ^{&}		0.000703 10		α (N)=1.168×10 ⁻⁶ <i>18</i> Mult.: M1, E2 from ce data; Δ J=1, D+Q in (¹² C,2n γ). α (K)exp=0.00058 <i>6</i> α (K)=0.000625 <i>9</i> ; α (L)=6.63×10 ⁻⁵ <i>9</i> ; α (M)=1.073×10 ⁻⁵ <i>15</i> α (N)=1.086×10 ⁻⁶ <i>15</i>	
828		1598.07	(0)+	769.94 0)+ (]	E0)			0.00024	 %Iγ=1.40 14 Iγ(822.2γ)/Iγ(355.6γ)=14 4/100 3. E_γ: possible 813.9 3 K-conversion line in electron spectrum which may be E0 transition to 770, 0⁺ level. ρ²(E0,0⁺ to 0⁺)>0.007; X(E0/E2)=0.15 3 for 376γ, 0.009 3 for 1174γ (2005Gi17). I_(v+c0): Ice(K)=0.0002 relative to Iγ(424γ)=100 	
870 ^b		2091.49	(2)+	1221.72 2	2+ N	⁄11,Е2 ^{&}		0.00066 4		(2005Gi17). Evaluators have added 20% to this value to account for intensity from L, M and higher shells. $\alpha(K)\exp=0.0009\ 2$ $\alpha(K)=0.000584\ 32;\ \alpha(L)=6.2\times10^{-5}\ 4;\ \alpha(M)=1.01\times10^{-5}\ 6$ $\alpha(N)=1.02\times10^{-6}\ 6$ E_{γ} : from 2005Gi17 only, listed only in authors' table III, intensity or branching ratio is not available. Transition also not shown in authors' level scheme figure. The	
882.4 [‡] 2	2.4 [‡] 5	2104.33	1-	1221.72 2	2+ []	E1]		0.000273 4		also not shown in authors rever scheme righte. The evaluators treat this transition as uncertain. $\alpha(K)=0.0002430\ 34;\ \alpha(L)=2.56\times10^{-5}\ 4;$ $\alpha(M)=4.13\times10^{-6}\ 6$ $\alpha(N)=4.17\times10^{-7}\ 6$ $\%I\gamma=1.05\ 22$ $E_{\gamma}:\ 882.4\ 5$ with no I γ value in 1985Pi08.	
883.6 [#] 1	10.3 [#] 6	2571.01	1-	1687.32 2	2+ E	81 &		0.000272 4		$\alpha(K) = 0.000213 \ 18$ $\alpha(K) = 0.0002423 \ 34; \ \alpha(L) = 2.55 \times 10^{-5} \ 4;$ $\alpha(M) = 4.12 \times 10^{-6} \ 6$ $\alpha(N) = 4.16 \times 10^{-7} \ 6$	

 $^{76}_{36}\mathrm{Kr}_{40}$ -12

Т

	⁷⁶ Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)										
	γ ⁽⁷⁶ Kr) (continued)										
E_{γ}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [@]	α^{\dagger}	Comments			
917.4 [#] 1	8.2 [#] 10	1687.32	2+	769.94	0+	[E2]	0.000608 9	% $I\gamma$ =4.51 30 $I\gamma$ (883.6 γ)/ $I\gamma$ (2571.1 γ)=12.5 4/100 4. α (K)=0.000540 8; α (L)=5.79×10 ⁻⁵ 8; α (M)=9.37×10 ⁻⁶ 13 α (N)=9.42×10 ⁻⁷ 13 % $I\gamma$ =3.6 5			
918.5 [‡] 7	1.2 [‡] 4	2140.16	$(1,2^{+})$	1221.72	2^{+}			%Iγ=0.53 <i>18</i>			
920.2 [‡] 1	0.89 [‡] 4	3024.42	(2)-	2104.33	1-	M1,E2 ^{&}	0.000578 27	α (K)exp=0.00048 8 α (K)=0.000513 24; α (L)=5.47×10 ⁻⁵ 28; α (M)=8.9×10 ⁻⁶ 5 α (N)=8.9×10 ⁻⁷ 4 %1 γ =0.390 21 1γ (920.2 γ)/ 1γ (453.5 γ)=16.8 8/100 4.			
973.0 [#] 1	4.8 [#] 3	2571.01	1-	1598.07	(0)+	E1 ^{&}	0.0002251 32	α (K)exp=0.00021 3 α (K)=0.0002004 28; α (L)=2.105×10 ⁻⁵ 29; α (M)=3.40×10 ⁻⁶ 5 α (N)=3.44×10 ⁻⁷ 5 %I γ =2.10 15 I γ (973.0 γ)/I γ (2571.1 γ)=6.1 2/100 4.			
1005.5 [#] 1	2.4 [#] 2	2227.28	2-	1221.72	2+	[E1]	0.0002113 30	$\alpha(K)=0.0001881\ 26;\ \alpha(L)=1.975\times10^{-5}\ 28;\ \alpha(M)=3.19\times10^{-6}\ 4$ $\alpha(N)=3.23\times10^{-7}\ 5$ %I $\gamma=1.05\ 10$ I $\gamma(1005.5\gamma)/I\gamma(1803.2\gamma)=19.1\ 6/100\ 3.$			
1009.0 [‡] 2	0.21 [‡] 2	2742.27	(4 ⁻)	1733.26	3+			%Iy=0.092 9			
1035.5 [#] 1	0.5 [#] 1	2257.54	3-	1221.72	2+	[E1]	0.0001998 28	$\alpha(K)=0.0001778\ 25;\ \alpha(L)=1.867\times10^{-5}\ 26;\ \alpha(M)=3.02\times10^{-6}\ 4$ $\alpha(N)=3.05\times10^{-7}\ 4$ %1 $\gamma=0.22\ 5$ E _{γ} : level-energy difference=1035.8. E _{γ} (1035.5 γ)/[γ (1833.6 γ)=11.8 9/100 3.			
1174.0 [#] 1	6.1 [#] 2	1598.07	(0)+	424.05	2+	E2 ^{&}	0.000350 5	$\alpha(K)\exp=0.000311 \ 19$ $\alpha(K)=0.000306 \ 4; \ \alpha(L)=3.25\times10^{-5} \ 5; \ \alpha(M)=5.26\times10^{-6} \ 7$ $\alpha(N)=5.31\times10^{-7} \ 7; \ \alpha(IPF)=5.02\times10^{-6} \ 7$ $\%_{I}\gamma=2.67 \ 12$			
1221.6 [#] 1	7.6 [#] 5	1221.72	2+	0.0	0^+			%Iγ=3.33 23 Iγ(1221.6γ)/Iγ(797.6γ)=69 4/100 3 (2005Gi17).			
1222.6 [‡] 6	0.9 [‡] 5	2257.54	3-	1034.75	4+	[E1]	0.0002066 29	α (K)=0.0001311 <i>18</i> ; α (L)=1.373×10 ⁻⁵ <i>19</i> ; α (M)=2.220×10 ⁻⁶ <i>31</i> α (N)=2.246×10 ⁻⁷ <i>32</i> ; α (IPF)=5.94×10 ⁻⁵ <i>9</i> %I γ =0.39 <i>22</i> I γ (1222.6 γ)/I γ (1833.6 γ)=26 <i>15</i> /100 <i>3</i> .			
1263.2 [#] 2	2.1 [#] 1	1687.32	2+	424.05	2+	M1,E2 ^{&}	0.000308 7	α (K)exp=0.00028 <i>3</i> α (K)=0.000258 <i>5</i> ; α (L)=2.73×10 ⁻⁵ <i>6</i> ; α (M)=4.42×10 ⁻⁶ <i>9</i>			

Т

⁷⁶ Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22 (continued)										
							γ (⁷⁶ Kr)	(continued)		
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	$lpha^{\dagger}$	$I_{(\gamma+ce)}^{a}$	Comments
1270.1 [‡] 2	0.37 [‡] 3	3602.81	1-	2332.70	(1 ⁻)	M1,E2 ^{&}		0.000306 7		$\begin{aligned} &\alpha(\mathrm{N}) = 4.47 \times 10^{-7} \ 9; \ \alpha(\mathrm{IPF}) = 1.73 \times 10^{-5} \ 23 \\ &\% \mathrm{I}\gamma = 0.92 \ 5 \\ &\mathrm{I}\gamma(1263.2\gamma)/\mathrm{I}\gamma(917.4\gamma) = 21.2 \ 7/100 \ 6. \\ &\alpha(\mathrm{K}) \exp = 0.00026 \ 9 \\ &\alpha(\mathrm{K}) = 0.000255 \ 5; \ \alpha(\mathrm{L}) = 2.70 \times 10^{-5} \ 6; \\ &\alpha(\mathrm{M}) = 4.37 \times 10^{-6} \ 9 \end{aligned}$
1291.3 [‡] <i>3</i>	0.45 [‡] 7	3024.42	(2)-	1733.26	3+	[E1]		0.0002397 <i>34</i>		$\alpha(N)=4.42\times10^{-7} \ 8; \ \alpha(IPF)=1.86\times10^{-5} \ 25 \\ \%_{I}\gamma=0.162 \ 14 \\ I\gamma(1270.1\gamma)/I\gamma(3178.3\gamma)=4.0 \ 3/100 \ 12. \\ \alpha(K)=0.0001190 \ 17; \ \alpha(L)=1.246\times10^{-5} \ 17; \\ \alpha(M)=2.014\times10^{-6} \ 28 \\ \alpha(N)=2.039\times10^{-7} \ 29; \ \alpha(IPF)=0.0001060 \ 15 \\ \%_{I}\gamma=0.197 \ 31 $
1309.3 [#] 1	2.9 [#] 2	1733.26	3+	424.05	2+	M1+E2&	+0.38 4	0.000296 7		$I_{\gamma}(1291.3\gamma)/I_{\gamma}(453.5\gamma) = 8.5 \ 13/100 \ 4.$ $\alpha(K) \exp = 0.00022 \ 4$ $\alpha(K) = 0.000240 \ 4; \ \alpha(L) = 2.53 \times 10^{-5} \ 5;$ $\alpha(M) = 4.10 \times 10^{-6} \ 8$ $\alpha(N) = 4.15 \times 10^{-7} \ 7; \ \alpha(IPF) = 2.64 \times 10^{-5} \ 34$
1321.6 [#] 3	1.6 [#] 1	2091.49	(2)+	769.94	0+	(E2)		0.000300 4		%Iγ=1.27 10 α (K)exp=0.00024 5 α (K)=0.0002376 33; α (L)=2.515×10 ⁻⁵ 35; α (M)=4.07×10 ⁻⁶ 6 α (N)=4.11×10 ⁻⁷ 6; α (IPF)=3.27×10 ⁻⁵ 5 %Iγ=0.70 5 Mult.: α (K)exp from 2005Gi17 gives M1,E2; ΔJ^{π}
1334.4 [#] 3	0.8 [#] 3	2104.33	1-	769.94	0+	[E1]		0.000261 4		requires E2. $\alpha(K)=0.0001124 \ 16; \ \alpha(L)=1.177\times10^{-5} \ 16; \ \alpha(M)=1.902\times10^{-6} \ 27 \ \alpha(N)=1.926\times10^{-7} \ 27; \ \alpha(IPF)=0.0001343 \ 19 \ \%I\gamma=0.35 \ 13 \ I\gamma=0.35 \ I\gamma=0.35$
1349.3 [#] 1	2.0 [#] 1	2571.01	1-	1221.72	2+	[E1]		0.000268 4		$\begin{aligned} &\alpha(K) = 0.0001103 \ I5; \ \alpha(L) = 1.154 \times 10^{-5} \ I6; \\ &\alpha(M) = 1.866 \times 10^{-6} \ 26 \\ &\alpha(N) = 1.889 \times 10^{-7} \ 26; \ \alpha(IPF) = 0.0001437 \ 20 \\ &\%I\gamma = 0.88 \ 5 \end{aligned}$
1359.4 [‡] <i>1</i> 1463.0 [‡] 2	$0.90^{\ddagger} 4$ $0.39^{\ddagger} 8$	2581.11 3602.81	(2 ⁺) 1 ⁻	1221.72 2140.16	2+ (1,2+)					$\begin{split} & i\gamma(1349.3\gamma)/i\gamma(25/1.1\gamma) = 2.22 \ 7/100 \ 4. \\ & \% I\gamma = 0.394 \ 22 \\ & \% I\gamma = 0.17 \ 4 \\ & I\gamma(1463.0\gamma)/I\gamma(3178.3\gamma) = 4.2 \ 9/100 \ 12. \end{split}$

From ENSDF

 $^{76}_{36}\mathrm{Kr}_{40}$ -14

 $^{76}_{36}\mathrm{Kr}_{40}$ -14

		⁷⁶ Rb ε + β ⁺ decay (36.5 s)) 2005Gi17,1 9	2005Gi17,1985Pi08,1984Mo22 (continued)					
	γ ⁽⁷⁶ Kr) (continued)											
Eγ	I_{γ}^{a}	E _i (level)	J_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@}$	α^{\dagger}	Comments				
1498.4 [‡] 3	0.32 [‡] 4	3602.81	1-	2104.33 1-				$\sqrt[\infty]{\kappa}$ I γ =0.140 <i>18</i> I γ (1498.4 γ)/I γ (3178.3 γ)=3.4 4/100 <i>12</i> .				
1542.6 [‡] 2	0.35 [‡] 4	3275.91	(1+,2)	1733.26 3+				$\%$ I γ =0.153 18 I γ (1542.6 γ)/I γ (2054.3 γ)=35 4/100 5.				
1546.1 [‡] 3	0.42 [‡] <i>17</i>	2581.11	(2 ⁺)	1034.75 4+				$\%$ I γ =0.18 8 I γ (1546.1 γ)/I γ (1359.4 γ)=47 <i>19</i> /100 <i>4</i> .				
1553.2 [#] 1	1.7 [#] 1	2774.94	0+,1,2	1221.72 2+				$\%$ I γ =0.74 5 I γ (1553.2 γ)/I γ (2350.9 γ)=56 3/100 4.				
1567.8 [‡] 2	0.84 [‡] 5	3672.24	(0,1,2)	2104.33 1-				%Iy=0.368 25				
1665.6 [‡] 5	0.30 [‡] 5	2700.16	2+	1034.75 4+	[E2]		0.000321 5	$\alpha(K)=0.0001491\ 21;\ \alpha(L)=1.570\times10^{-5}\ 22;\ \alpha(M)=2.54\times10^{-6}\ 4$ $\alpha(N)=2.57\times10^{-7}\ 4;\ \alpha(IPF)=0.0001539\ 22$ $\%I\gamma=0.131\ 22$ $I\gamma(1665\ 6\gamma)/I\gamma(2276\ 6\gamma)=25\ 4/100\ 5$				
1667.6 [#] 3	0.8 [#] 2	2091.49	(2)+	424.05 2+				$\%$ I γ =0.35 9 I γ (1667.6 γ)/I γ (1321.6 γ)=78.7 6/100 3.				
1680.3 [#] 2	12.8 [#] 6	2104.33	1-	424.05 2+	E1&		0.000478 7	$\alpha(K)\exp=0.000056\ 13$ $\alpha(K)=7.68\times10^{-5}\ 11;\ \alpha(L)=8.01\times10^{-6}\ 11;$ $\alpha(M)=1.295\times10^{-6}\ 18$ $\alpha(N)=1.312\times10^{-7}\ 18;\ \alpha(IPF)=0.000391\ 5$ %Iy=5.61\ 32				
1687.1 ^{#} 2	3.2 [#] 2	1687.32	2+	0.0 0+	[E2]		0.000327 5	$\alpha(K)=0.0001454\ 20;\ \alpha(L)=1.531\times10^{-5}\ 21;\alpha(M)=2.476\times10^{-6}\ 35\alpha(N)=2.506\times10^{-7}\ 35;\ \alpha(IPF)=0.0001633\ 23\%I\gamma=1.40\ 10I\gamma(1687.1\gamma)/I\gamma(917.4\gamma)=28.8\ 10/100\ 6.$				
1718.6 [‡] 4	2.7 [‡] 1	4289.42	(0,1,2) ⁻	2571.01 1-	M1,E2&		0.000319 16	% $I_{\gamma=1.18} \delta$ $\alpha(K) \exp = 0.00016 \delta$ $\alpha(K) = 0.0001401 \ 20; \ \alpha(L) = 1.472 \times 10^{-5} \ 21;$ $\alpha(M) = 2.381 \times 10^{-6} \ 34$ $\alpha(N) = 2.413 \times 10^{-7} \ 34; \ \alpha(IPF) = 0.000162 \ 15$ $E_{\gamma} = 1718.3 \ 3, \ I_{\gamma} = 3.1 \ 6; \ unplaced \ (1984Mo22).$				
1803.2 [#] 1	12.7 [#] 8	2192.50	2-	424.05 2+	E1(+M2)	0.33 +18-33	0.000540 23	$\alpha(K) = 0.000088 \ I8$ $\alpha(K) = 8.6 \times 10^{-5} \ I9; \ \alpha(L) = 9.0 \times 10^{-6} \ 20; \ \alpha(M) = 1.45 \times 10^{-6} \ 32$ $\alpha(N) = 1.47 \times 10^{-7} \ 33; \ \alpha(IPF) = 0.00044 \ 4 \ \% I\gamma = 5.6 \ 4$				

From ENSDF

Т

$\frac{^{76}\text{Rb }\varepsilon\text{+}\beta^{+} \text{ decay }(36)}{^{76}\text{Rb }\varepsilon\text{+}\beta^{+} \text{ decay }(36)}$				lecay (36.5 s)	s) 2005Gi17,1985Pi08,1984Mo22 (continued)					
						γ (⁷⁶ Kr) (contin	ued)			
E_{γ}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments		
1833.6 [#] 1	3.5 [#] 3	2257.54	3-	424.05 2+	E1(+M2)	0.12 +28-12	0.000577 29	$\alpha(K)\exp=0.000071 \ 21$ $\alpha(K)=6.9\times10^{-5} \ 21; \ \alpha(L)=7.2\times10^{-6} \ 22;$ $\alpha(M)=1.17\times10^{-6} \ 35$ $\alpha(N)=1.2\times10^{-7} \ 4; \ \alpha(IPF)=0.00050 \ 5$		
	+ .							%Iγ=1.53 <i>14</i>		
1908.5 2	0.65+ 3	2332.70	(1 ⁻)	424.05 2+				%1 <i>γ</i> =0.285 <i>16</i>		
2046.5+ 2	0.81+ 6	2816.57	(1,2+)	769.94 0+				$\%$ I γ =0.355 29 I γ (2046.5 γ)/I γ (2392.8 γ)=30 2/100 3.		
2054.3 [‡] 5	$1.00^{+}5$	3275.91	$(1^+, 2)$	$1221.72 \ 2^+$				%Iγ=0.438 26		
2104.3# 5	2.9# 3	2104.33	1-	0.0 0+	[E1]		0.000761 11	$\begin{aligned} &\alpha(\mathbf{K}) = 5.43 \times 10^{-5} \ 8; \ \alpha(\mathbf{L}) = 5.66 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{M}) = 9.14 \times 10^{-7} \ 13 \\ &\alpha(\mathbf{N}) = 9.27 \times 10^{-8} \ 13; \ \alpha(\mathbf{IPF}) = 0.000700 \ 10 \\ &\%\mathbf{I}\gamma = 1.27 \ 14 \end{aligned}$		
								$I\gamma(2104.3\gamma)/I\gamma(1680.3\gamma)=16.0\ 5/100\ 3.$		
2140.5 [‡] 2	0.31 [‡] 3	2140.16	(1,2 ⁺)	0.0 0+				%Iγ=0.136 <i>14</i> Iγ(2140.5γ)/Iγ(918.5γ)=26 <i>3</i> /100 <i>33</i> .		
2147.2 [#] 3	1.0 [#] 1	2571.01	1-	424.05 2+	[E1]		0.000788 11	$\alpha(K) = 5.27 \times 10^{-5} 7; \ \alpha(L) = 5.49 \times 10^{-6} 8; \alpha(M) = 8.87 \times 10^{-7} 12 \alpha(N) = 8.99 \times 10^{-8} 13; \ \alpha(IPF) = 0.000729 10 \% I\gamma = 0.44 5 I\gamma(2147.2\gamma)/I\gamma(2571.1\gamma) = 1.39 7/100 4.$		
2185.0 [‡] 3	1.5 [‡] 1	4289.42	(0,1,2)-	2104.33 1-				%Iγ=0.66 5 Iγ(2185.0γ)/Iγ(1718.6γ)=55 3/100 4.		
2276.6 [‡] 4	1.20 [‡] 6	2700.16	2+	424.05 2+				%Iγ=0.526 <i>31</i>		
2333.2 [‡] 4	0.20 [‡] 5	2332.70	(1 ⁻)	$0.0 0^+$				% $I_{\gamma}=0.088 22$ $I_{\gamma}(2333.2\gamma)/I_{\gamma}(1908.5\gamma)=31 8/100 5.$		
2350.9 [#] 4	4.4 [#] 6	2774.94	0+,1,2	424.05 2+				%Iγ=1.93 27		
2392.8 [#] 4	4.8 [#] 6	2816.57	$(1,2^+)$	424.05 2+				%Iγ=2.10 27		
2546.0 [‡] 3	1.13 [‡] 7	2970.1	$(0^+, 1, 2)$	424.05 2+				%Iy=0.495 <i>34</i>		
2571.1 [#] 2	104 [#] 4	2571.01	1-	$0.0 0^+$	[E1]		$1.04 \times 10^{-3} 2$	α (K)=4.07×10 ⁻⁵ 6; α (L)=4.23×10 ⁻⁶ 6; α (M)=6.83×10 ⁻⁷ 10		
								α (N)=6.93×10 ⁻⁸ <i>10</i> ; α (IPF)=0.000999 <i>14</i> %I γ =45.5 <i>13</i>		
2600.2 [#] 4	6.8 [#] 8	3024.42	(2)-	424.05 2+	[E1]		1.06×10 ⁻³ 2	$\begin{aligned} &\alpha(\mathrm{K}) = 4.00 \times 10^{-5} \ 6; \ \alpha(\mathrm{L}) = 4.16 \times 10^{-6} \ 6; \\ &\alpha(\mathrm{M}) = 6.72 \times 10^{-7} \ 9 \\ &\alpha(\mathrm{N}) = 6.82 \times 10^{-8} \ 10; \ \alpha(\mathrm{IPF}) = 0.001016 \ 14 \\ &\% \mathrm{I}\gamma = 3.0 \ 4 \\ &\mathrm{I}\gamma(2600.2\gamma)/\mathrm{I}\gamma(453.5\gamma) = 61 \ 2/100 \ 4. \end{aligned}$		

 $_{36}^{76}\mathrm{Kr}_{40}$ -16

н

				⁷⁶ Rb ε+,	β^+ de	ecay (36.5 s)) 2005Gi17,1	985Pi08,1984Mo22 (continued)
							$\gamma(^{76}\mathrm{Kr})$ (contin	nued)
E_{γ}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
2805.5 [‡] 3	0.60 [‡] 5	4026.72	$1,2^{(+)}$	1221.72	2+			%Iy=0.263 24 Ix(2805 5x)/Ix(2602 2x)=32 3/100 24
2816.6 4	<2.7	2816.57	(1,2+)	0.0	0+			%Iy=0.6 6 I _y : from branching ratio in 2005Gi17. Other: 8.1 9 in Adopted Levels, Gammas dataset. Iy(2816.6y)/Iy(2392.8y)=<56/100 3.
2817.3 [‡] 9	2.1 [‡] 6	3242.1	$(1,2^+)$	424.05	2^{+}			%Iγ=0.92 27
2997.5 [‡] 5	0.69 [‡] 5	3421.6	$(0^+, 1, 2)$	424.05	2^{+}			%Iγ=0.302 24
3178.3 [‡] 2	9.4 [‡] 11	3602.81	1-	424.05	2+	[E1]	1.35×10 ⁻³ 2	$\alpha(K)=3.04\times10^{-5}$ 4; $\alpha(L)=3.16\times10^{-6}$ 4; $\alpha(M)=5.10\times10^{-7}$ 7 $\alpha(N)=5.18\times10^{-8}$ 7; $\alpha(IPF)=0.001313$ 18 %I $\gamma=4.1$ 5
3214.2 [‡] <i>14</i>	1.7 [‡] 4	3636.3	$1,2^{(+)}$	424.05	2^{+}			%Iγ=0.74 <i>18</i>
3216.3 [‡] 4	$1.2^{\ddagger} 2$	3986.6	$1,2^{(+)}$	769.94	0^+			%Iγ=0.53 <i>9</i>
3242.3 [‡] 3	1.2 [‡] 2	3242.1	(1,2 ⁺)	0.0	0^+			% $I\gamma = 0.53 \ 9$ $I\gamma(3242.3\gamma)/I\gamma(2817.3\gamma) = 57 \ 9/100 \ 29.$
3257.4 [‡] 5	0.46 [‡] 15	4026.72	1,2 ⁽⁺⁾	769.94	0^{+}			% $I\gamma=0.20$ 7 $I\gamma(3257.4\gamma)/I\gamma(3602.2\gamma)=27$ 9/100 24.
3327.6 [‡] 5	0.29 [‡] 8	4097.74	$1,2^{(+)}$	769.94	0^{+}			$\%$ I γ =0.13 4 I γ (3327.6 γ)/I γ (3673.6 γ)=13 4/100 11.
3553.6 [‡] 4	0.97 [‡] 16	3978.0	$1,2^{(+)}$	424.05	2^{+}			%Iy=0.43 7
3562.7 [‡] 4	1.1 [‡] 2	3986.6	$1,2^{(+)}$	424.05	2+			% $I\gamma=0.48 \ 9$ $I\gamma(3562.7\gamma)/I\gamma(3216.3\gamma)=93 \ 14/100 \ 16.$
3602.2 [‡] 2	1.7 [‡] 4	4026.72	$1,2^{(+)}$	424.05	2^{+}			%Iy=0.74 <i>18</i>
3602.8 [‡] <i>10</i>	3.4 [‡] 7	3602.81	1-	0.0	0+	E1	1.54×10 ⁻³ 2	$\begin{aligned} &\alpha(\mathbf{K}) = 2.58 \times 10^{-5} \ 4; \ \alpha(\mathbf{L}) = 2.67 \times 10^{-6} \ 4; \ \alpha(\mathbf{M}) = 4.32 \times 10^{-7} \ 6 \\ &\alpha(\mathbf{N}) = 4.38 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 0.001512 \ 21 \\ &\% \mathbf{I}\gamma = 1.49 \ 31 \\ &\mathbf{I}\gamma(3602.8\gamma)/\mathbf{I}\gamma(3178.3\gamma) = 36 \ 7/100 \ 12. \end{aligned}$
3636.1 [‡] 3	0.75 [‡] 14	3636.3	$1,2^{(+)}$	0.0	0^{+}			% $I\gamma = 0.33 6$ $I\gamma (3636.1\gamma)/I\gamma (3214.2\gamma) = 44 8/100 23.$
3673.6 [‡] 2	2.2 [‡] 2	4097.74	$1,2^{(+)}$	424.05	2^{+}			%Iy=0.96 9
3978.2 [‡] 4	0.9 [‡] 4	3978.0	1,2 ⁽⁺⁾	0.0	0^+			%Iγ=0.39 <i>18</i> Iγ(3978.2γ)/Iγ(3553.6γ)=93 <i>14</i> /100 <i>17</i> .
4026.8 [‡] 6	0.86 [‡] 16	4026.72	1,2 ⁽⁺⁾	0.0	0^+			% $I\gamma = 0.38$ 7 $I\gamma (4026.8\gamma)/I\gamma (3602.2\gamma) = 51$ 9/100 24.
4098.8 [‡] 17	1.00 [‡] 17	4097.74	$1,2^{(+)}$	0.0	0^+			%Iγ=0.44 8 Iγ(4098.8γ)/Iγ(3673.6γ)=46 8/100 11.

From ENSDF

 $^{76}_{36}\mathrm{Kr}_{40}$ -17

γ (⁷⁶Kr) (continued)

[†] Additional information 2.

[‡] From 2005Gi17, new transition reported.

[#] From weighted average of values from 1984Mo22 and 1985Pi08, except that 2350.9, 2392.8, 2816.6 and 2600.2 γ rays were reported only by 1984Mo22. These are confirmed in 2005Gi17. 2005Gi17 quote E γ values listed without uncertainties from 1995-NDS (1995Si03). The I γ values have been adjusted here to 100 for 424.0 γ . Branching ratios, determined independently by 2005Gi17 from $\gamma\gamma$ data, are listed under comments, and used in Adopted dataset.

[@] From Adopted Gammas, unless otherwise stated. The ce data in this decay are also used to assign multipolarities and mixing ratios.

[&] Assigned by evaluators from $\alpha(K)$ exp value of 2005Gi17.

^{*a*} For absolute intensity per 100 decays, multiply by 0.438 14.

^b Placement of transition in the level scheme is uncertain.

From ENSDF

Legend

⁷⁶Rb ε+ $β^+$ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

$ I_{\gamma} < 2\% \times I_{\gamma}^{max} $ $I_{\gamma} < 10\% \times I_{\gamma}^{max} $		- (0.0 36.5 s 6	
$I_{\gamma} > 10\% \times I_{\gamma}^{max}$	$\%\varepsilon + \%\beta^+ = 100$	$Q_{\varepsilon} = 85354$		
		$^{76}_{37}$ Rb ₃₉		
	/	$I\beta^+$	<u>I</u> £	Log ft
	8500		0.0012	3.1
	8460		0.000006	4.3
	8420		0.00035	4.9
	8380		0.00026	5.4
	8340		0.00027	5.55
	8300		0.00039	5.56
	8200		0.00070	5.45
	8180		0.0013	5.31
	8140		0.0038	5.05
	8100		0.00569	4.96
	8060		0.0077	4.90
	8020		0.0092	4.90
	7980		0.0090	4.97
/	7940		0.0067	5.16
/	7860		0.0038	5.47
			0.00070	6.31
	7780		0.00031	6.71
	7740		0.00016	7.04
	7700		0.00011	7.25
/			0.0000009	7.38
	7620		0.00010	7.37
			0.00014	7.26
//	7500	$6.59 \times 10^{\circ}$	$^{-13}0.00021$	25.5
	7460	2.49×10^{-10}	$^{-9}$ 0.00073	6.65
	7420	7.62×10	⁻⁸ 0.0015	6.37
	7380	8.72×10	$^{-7}$ 0.0034	6.04
	7340	6×10^{-6}	0.0073	5.74
		0.059	0.047	5.51
	$\frac{6220}{6180}$	0.064	0.046	5.53
	6140	0.067	0.0434	5.57
	6100	0.067	0.0399	5.62
	6060	0.068	0.034	5.72
		0.072	0.033	5.75
		0.081	0.034	5.75
		0.098	0.038	5.72
/	/5900 //	0.121	0.043	5.68
/\		0.151	0.050	5.63
		0.175	0.053	5.61
	5740	0.206	0.053	5.63
	5700	0.225	0.055	5.63
		0.27	0.062	5.59
		0.35	0.076	5.52
	//	0.50	0.101	5.41
	5540	0.71	0.134	5.30
	5500 //	0.92	0.165	5.22
	<u> </u>	1.04	0.174	5.20
	J+20 J	0.98	0.155	5.27
0^+	0.0			

 $^{76}_{36}{
m Kr}_{40}$

⁷⁶Rb ε+β⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{76}_{36}{
m Kr}_{40}$

⁷⁶Rb ε+β⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22

⁷⁶**Rb** ε + β ⁺ decay (36.5 s) 2005Gi17,1985Pi08,1984Mo22