1 H(76 Kr, 76 Kr' γ) **2023Sp02**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024				

2023Sp02,2022Sp04: ⁷⁶Kr secondary beam of 79% purity and E(c.m.)=100 MeV was produced from the fragmentation of 150 MeV/nucleon ⁷⁸Kr beam incident on ⁹Be target, followed by separation of fragments by A1900 separator at the NSCL-MSU facility. Target was NSCL/Ursinus liquid hydrogen (LH₂) located at the target position of the S800 spectrograph. The secondary beams were identified from other fragments in the cocktail beam via the time-of-flight (tof) difference measured between two plastic scintillators located at the exit of the A1900 magnetic separator. Projectile-like reaction residues were analyzed event-by-event based on energy loss (ΔE) and time of flight (tof). Measured Eγ, Iγ, lifetimes by recoil-distance Doppler shift (RDDS) using the S800 spectrograph. The γ rays emitted by the reaction residues in flight were detected using the GRETINA γ-ray array, with eight GRETINA modules, each containing four, 36-fold segmented HPGe detectors. Measured Doppler-corrected Eγ, Iγ, (particle)γ-coin, angular distribution of γ rays at 58°, 90° and 122°. Deduced γ-ray yields, inelastic scattering cross sections, β₂ and β₄ deformation parameters, and B(E4). Reaction calculations were performed using the Skyrme SkM*, UNEDF1, covariant NL3*, and DD-PC1 energy density functionals.

⁷⁶Kr Levels

E(level) [†]	$J^{\pi \dagger}$	Comments		
0.0	0^{+}			
424.1	2+	Deduced $\beta_2 = +0.40 \ 2(\text{stat}) \ 3(\text{syst}) \ (2023\text{Sp02}).$		
1034.8	4+	Measured scattering σ =5.1 mb 5 (2023Sp02) for one step process. Estimated ≈0.8 mb for the two-step process.		
		 Deduced β₄=+0.201 9(stat) 16(syst) (2023Sp02) for constructive interference, and β₄=-0.127 9(stat) 22(syst) for destructive interference between the one-step and the two-step processes. Authors preferred positive deformation parameter, based on a geometric idea of the polar-gap model of β₄ deformations, where positive deformations are expected at the beginning of a shell and negative hexadecapole deformations are expected at the end of a shell. B(E4)(W.u.)(4⁺ to 0⁺)=22.7 10(stat) 18(syst) (2023Sp02) for positive β₄; 9.1 6 for negative β₄, the latter numerical value from e-mail reply of May 05, 2023 from M. Spieker. 		
1221.7	2+			
1957.4	4+	Deduced β_4 =+0.151 <i>11</i> (stat) <i>12</i> (syst) (2023Sp02) for assumed single-step mechanism.		
		$B(E4)(4^+ \text{ to } 0^+)=12.9 \ 9(\text{stat}) \ 20(\text{syst}) \ (2023\text{Sp}02).$		
		$B(E4)(W.u.)(4^+ to 0^+)=36 2(stat) 4(syst) (2023Sp02).$		
2257.6	3-			

[†] From Adopted Levels. Energies are rounded values.

γ(⁷⁶Kr)

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
424.0	424.1	2^{+}	0.0	0^{+}
610.6	1034.8	4+	424.1	2+
736.0	1957.4	4^{+}	1221.7	2^{+}
922.6	1957.4	4+	1034.8	4+
1833.6	2257.6	3-	424.1	2^{+}

[†] Rounded values from Adopted Gammas.

$\frac{{}^{1}\text{H}({}^{76}\text{Kr}, {}^{76}\text{Kr}'\gamma) \qquad 2023\text{Sp02}}{2023\text{Sp02}}$

Level Scheme

 $^{76}_{36}{
m Kr}_{40}$