Histor	y
--------	---

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

 $Q(\beta^{-}) = -921.5 \ 9; \ S(n) = 9427.24 \ 5; \ S(p) = 12041.2 \ 7; \ Q(\alpha) = -7492.3 \ 21 \ 2021Wa16$

 $Q(2\beta^{-})=2039.06 \ I, \ S(2n)=15933.08 \ 2, \ S(2p)=22034.1 \ 25 \ (2021Wa16).$

⁷⁶Ge $2\beta^-$ decay (to ⁷⁶Se) by $0\nu\beta\beta$ or $2\nu\beta\beta$ decay modes:

⁷⁶Ge 2β⁻ decay (experimental): 2013Ag11 (also 2013Ag02), 2013Ac01, 2008Me06, 2008Ra09, 2006Gr17, 2005Ba60, 2004Kl03 (also 2005Kl02,2003Do12,2002Kl12,2001Kl11), 2003Aa01 (also 2000Aa01,1999Aa01, 1999Aa02,1996Aa02), 2001Kl12 (also 2002Kl10,2001Va29,2000Va23), 2000Go25, 1999Bb30, 1997Ba70, 1997Gu13, 1996He31, 1995Ba44, 1995Ba84 (also 1994Ba15), 1994Ma70, 1993Br22, 1993Be14, 1992Re03 (also 1991Tr07, 1987Fi05,1984Fo06), 1992Be20 (also 1992Ba25), 1991Mo28 (also 1991Mo27, 1991Mo23,1988Mo35,1985Hu01,1983Le27), 1991Ca34 (also 1987Ca21, 1986Ca07), 1991Av04 (also 1991Av01,1990Mi23,1987Av05,1987Av01,1986Av03, 1985Av02,1983Av01,1979Av01,1978Pi07), 1991Hy01 (also 1993Hy02, 1984El01), 1990Bu15, 1990Va18, 1988Ok01 (also 1987Ej01,1986Ka33, 1986Ej01), 1986Zd01 (also 1985Zd01), 1984Si08, 1984Fi16 (also 1984Be48, 1983Be65, 1982Be20,1973Fi01,1970Fi09,1967Fi14), 1952Fr23.

Additional information 1.

 $\frac{\mathrm{E(level)}^{\dagger}}{0.0^{b}}$

⁷⁶Ge(e,e),E=225 MeV: 1990Kh03.

⁷⁶Ge(γ, α) E=18-25 MeV: 1990An13, measured emission of α particles in GDR region.

Giant dipole resonances in (γ, xn) : 1976Ca06.

Mass measurement: 2010Mo03, 2008Ra09, 2001Do08, 2001Fr25, 1977De20, 197 1964Ba03, 1963Ri07. Measurement of mass difference (⁷⁶Ge-⁷⁶Se): 1991Hy01 (also 1993Hy02, 1985El01, 1984El01, 1984ElZY).

⁷⁶Ge Levels

Cross Reference (XREF) Flags

A B C D E F	⁷⁶ Ga β ⁻ decay ⁷⁶ As ε decay ⁷⁴ Ge(t,p) ⁷⁴ Ge(^{18}O , ^{16}O ⁷⁶ Ge(γ,γ') ⁷⁶ Ge(n,n')	y (30.5 s) (26.254 h)	G H J K L	⁷⁶ Ge(n,n'γ) ⁷⁶ Ge(p,p'),(pol p,p') ⁷⁶ Ge(pol d,d') ⁷⁶ Ge($^{\alpha}\alpha'$) ⁷⁶ Ge(16 O, 16 O'),(18 O, 18 O') Coulomb excitation	M N O P	⁸⁰ Se(d, ⁶ Li) ¹⁹² Os(⁸² Se,X γ) Pb(⁷⁶ Ge, ⁷⁶ Ge' γ):inelastic ²³⁸ U(⁷⁶ Ge, ⁷⁶ Ge' γ)
Т	$_{1/2}$ or $\Gamma^{\#}$	XREF	7			Comments
1.926	5×10 ²¹ y <i>94</i>	ABCDEFGHIJ	KLMNO	P $\%2\beta^-=100$ XREF: B(?). RMS charge radius (<r<sup>2: Spin 0 is consistent with (1949To09). T_{1/2}: for $2\nu\beta\beta$ decay, from</r<sup>	>) ^{1/2} = micr om Gl	=4.0811 fm <i>12</i> (2013An02 evaluation). owave absorption measurement ERDA collaboration (2015Ag06, see

 $I_{1/2}$: for 2*vpp* decay, from GERDA contaboration (2015Ag06, see also 2015Ag10, 2015Ag01,2013Ag02). Others: 1.5×10^{21} y *I* (as recommended in evaluation by 2010Ba07 and 2011Ba28; see values and references therein for input data), 1.43×10^{21} y 53 in ββ decay database at NNDC-BNL, 1.88×10^{21} y 8 in 2021Ko07; > 7.5×10^{23} y (2021Ar01); > 2.022×10^{21} y (2023Ag05).

$$\begin{split} & T_{1/2} \text{ for } 0\nu\beta\beta \text{ decay mode: } > 8.3\times10^{25} \text{ y } (2023\text{ArO2}); > 5.62\times10^{22} \\ & \text{y } (2022\text{Da13}); > 9.0\times10^{25} \text{ y } (2020\text{Da08}); > 1.8\times10^{26} (2020\text{Ag05}); \\ > 4.8\times10^{25} \text{ y } (2019\text{Al24}); > 1.9\times10^{25} \text{ y } (2018\text{Aa02}); > 8.0\times10^{25} \text{ y} \\ & (2018\text{Ag03}, 2017\text{Ag04}); > 2.1\times10^{25} \text{ y } (2013\text{Ag11}, \text{GERDA}) \text{ at } \\ & 90\% \text{ confidence level, authors give } T_{1/2} > 3.0\times10^{25} \text{ y by} \\ & \text{combining results from measurements by } 2001\text{K111} \text{ and } 2002\text{Aa01}. \\ & 2012\text{Zu07 compilation lists } T_{1/2} > 1.9\times10^{25} \text{ or } 2.23\times10^{25} \text{ +}44-31, \\ & \text{both at } 90\% \text{ confidence level. First value is also quoted in article} \end{split}$$

⁷⁶Ge Levels (continued)

E(level) [†]	J ^{π‡}	$T_{1/2}$ or $\Gamma^{\#}$	XREF	Comments
				by 2013Ac01. The source reference for the second value needs to be confirmed. $T_{1/2}$ for one Majoron emission $0\nu\beta\beta$ decay mode, measured $T_{1/2} > 4.2 \times 10^{23}$ v (2015He19, GERDA collaboration)
				See also 2011Ba28 for a review of experimental half-life measurements for different 2β decay modes. Consult NSR database at www.nndc.bnl.gov for an extensive list of experimental and theoretical articles on 2β decay of ⁷⁶ Ge. Additional information 2.
L				2009Ka06: deduced occupancy of valence neutron and proton orbitals from single-particle transfer reaction studies using ⁷⁶ Ge target.
562.917 ⁰ 23	2+	18.14 ps <i>13</i>	ABCDEFGHI JKLMNOP	μ =+0.53 8 (2013Gu23,2020StZV) Q=-0.19 6 (2001To13,2021StZZ) XREF: B(?).
				J^{π} : L(t,p)=2 from 0 ⁺ .
				μ: transient-field technique in Coulomb excitation (2019Mc05), measured g ⁷⁶ Ge/g ⁷⁴ Ge=0.88 5 for the first 2 ⁺ states. Other: +0.64 2 (transient-field technique in Coulomb excitation, 2013Gu23); +0.838 46 from $γ(θ,H)$ in Coul. ex. (1984Pa20), +0.67 8 ($γ(θ,H)$
				in Coul. ex.,1987La20); +0.56 <i>12</i> (IMPAC,1969He11,1974Hu01,1977Fa07). Weighted average (NRM method) of all the four values is 0.67.5
				Q: reorientation effect in Coul. ex. (2001To13, previous value from authors was -0.19 2 in 2000To12). Other: -0.19 6 for constructive interference and -0.03 6 for destructive interference (1980Le16), 1972Gr37, 1969Si15. 2016St14 give -0.19 6 from 1980Le16 and 2000To12.
				$\beta_2(\text{pol p,p'})=0.25 \ l \ (1993Mo05)$. See also other values in (p,p'). $\beta_2(\text{pol d,d'})=0.197 \ l0 \ (1985Se05)$.
				$\beta_2(\alpha, \alpha') = 0.265 \ (1988Ba70), \text{ deduced from } \beta_2 R = 1.313.$ $\beta_2(({}^{16}O, {}^{16}O'), ({}^{18}O, {}^{18}O')) = 0.26 \ (Coulomb), \ 0.23 \ (nuclear)$
				$\beta_2(\text{Coul.ex.}) = 0.267 (1980\text{Le}24).$
				$T_{1/2}$: from B(E2) \uparrow =0.276 2, weighted average of 0.277 2 (2023Ay02), 0.278 3 (1980Le16), 0.27 2 (1972Sa27), 0.260 5 (1969Si15), 0.263 +32-24 (1962St02), 0.29 3 (1960Wi18), 0.230
				35 (1956Te26) from various Coulomb excitation measurements. Other Coulomb excitation measurements with beam energies above the Coulomb barrier: $B(E2)\uparrow=0.299$ 27 (2006Pe13), 0.292 35
				(2005Di05), 0.280 42 (1962Er05). Lifetime measurements $T_{1/2}=18.4$ ps 21 (2013L004,RDM), and 18.2 ps 21 (1988DoZU, $\gamma\gamma$ (t)) are in a good agreement.
1108.416 ^c 27	2+	9.9 ps 9	A C E GH J LM OP	2008StZT: measured attenuation parameters G_2 and G_4 . μ =+0.64 <i>10</i> (2013Gu23,2020StZV) O_{-10} 28.6 (2001To12)
				J^{π} : L(t,p)=2.
				T _{1/2} : from B(E2) in Coul. ex. and adopted γ branching ratios. β_2 (pol p,p')=0.058 (1993Mo05,1986MoZR). See (p,p') for other values.
				$\beta_2(\alpha, \alpha') = -0.057 (1988Ba70).$ $\beta_2(coul.ex.) = 0.047 (1980Le24).$
				μ : transient-field method in Coul. ex. (2013Gu23), measured value of +0.78 <i>10</i> is re–evaluated to +0.64 <i>10</i> in 2020StZV. Q: reorientation effect in Coul. ex. (2001To13).
1409.982 ^b 34	4+	1.86 ps 4	A C GH J LMNOP	μ =+0.8 6 (2013Gu23,2020StZV)

⁷⁶Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XREF	7		Comments
							Q=-0.01 5 (2001To13) J^{π} : L(t,p)=4. $T_{1/2}$: from B(E2) in Coul. ex. β_4 (pol p,p')=0.064 11, 0.024 6, 0.020 20, 0.001 (1993M005,1986MoZR), 0.02 ((p,p'),1983Ra32). μ : transient-field method in Coul. ex. (2013Gu23), measured value of +1.0 7 is re-evaluated to +0.8 6 in 2020StZV. Q: reorientation effect in Coul. ex. (2001To13).
1539.383 ^d 33	3+	35 ps 7	A	GH	L	Р	J^{π} : spin from 976 $\gamma(\theta)$ in (n,n' γ); M1+E2 gammas to 2 ⁺ .
1911.12 6	0+	1.77 ps 8	A C	GH J	L		J^{π} : L(t,p)=0. $T_{1/2}$: from B(E2) in Coul. ex. Other: 1.25 ps +62–35 from DSAM in (n,n' γ). Intruder spherical state based on very small value of expectation value of $< Q^2 >= 0.01 2$ deduced by 2001To13 in their Coul. ex. experiment.
2021.68 ^C 4	4+	1.6 ps 4	A C	GH	LM	Ρ	XREF: M(1970). J^{π} : $\gamma\gamma(\theta)$ (⁷⁶ Ge, ⁷⁶ Ge' γ); E2 γ to 2 ⁺ . $T_{1/2}$: from B(E2) in Coul. ex. Other: 1.5 ps +10-4 from DSAM in (n, n' γ).
2203.84 5	$(1,2^+)$	0.010 ps 4		G			J^{π} : γ to 0^+ .
$2284.22\ 24$ $2453\ 74^{b}\ 6$	(3) 6 ⁺	$0.47 \text{ ps} \pm 10 - 16$	A	н	ΙN	D	J [*] : L(p,p')=3. I^{π} : E2 or to I^{\pm} : as band member
2433.74 0	0	0.47 ps +19-10		GII	LN	r	T _{1/2} : weighted average of 0.59 ps +19–12 from B(E2) in Coul. ex. and 0.26 ps +29–10 from DSAM in $(n,n'\gamma)$.
2478.2 5	$(1,2^+)$	1.0.4 55 20		G	_	_	J^{n} : γ to 0^{+} .
2487.074°9 2504.10 4	$\frac{5}{2^{+}}$	1.04 ps +55–28 0.7 ps 5	CE	G GH	L L	Р	J^{π} : E2 γ to 3'; M1+E2 γ to 4'. J^{π} : L(t,p)=2.
25542 5				ц			$T_{1/2}$: other: 0.15 ps 2 from B(E2) \downarrow of 2504 γ in Coul. ex.
2591.04 <i>16</i> 26242 5	(1+,2+)		A	G н			J^{π} : γ rays to 0^+ and 3^+ .
2654.51 20	$(0^+, 1^+)$		A	G			J ^{π} : γ to 2 ⁺ suggests 0 ⁺ ,1,2,3,4 ⁺ . J ^{π} =0 ⁺ ,1 ⁺ suggested (1984KoZN) from (n,n' γ) excitation functions.
2655.15 30	(1) 2+ 4+	$10 m_{0} + 11.6$	E			Б	J^{π} : from $\gamma\gamma(\theta)$ in (γ,γ') .
2692.347 33	3°,4° 3 ⁻	1.9 ps + 14 - 6 0.162 ps 14	AC	G GH J	L	Р	$J^{\pi}: M1+E2 \gamma s \text{ to } s^{\pi} \text{ and } 4^{\pi}.$ $J^{\pi}: L(t,p)=L(\alpha, \alpha')=3.$
		Ĩ					T _{1/2} : other: values from B(E1) \downarrow in Coul. ex. are about 3 fs, which are discrepant. β_3 (pol p,p')=0.15 <i>I</i> (1993Mo05,1986MoZR). See also other values in (p,p'). $\beta_3(\alpha, \alpha')=0.11$ (1988Ba70).
2697.20 <i>4</i> 2733.23 <i>5</i>	$(0)^+$ 4 ⁺	0.70 ps +36–18 0.33 ps 8	С	G GH j	L	Р	J^{π} : proposed in $(n,n'\gamma)$; E2 γ to 2 ⁺ . J^{π} : L(t,p)=L(p,p')=4.
2747.75 5	(2)+	0.182 ps 21	A	GH j			$T_{1/2}$ from DSAM in $(n,n'\gamma)$ (1987Do14,1990DoZU). J ^{π} : M1+E2 γ s to 2 ⁺ and 3 ⁺ . Excitation function analysis in
2766.68 5	2+	14.6 fs 21	с	Gh j	1		(i,ii) γ) supports 2, 4. XREF: c(2766)h(2768)j(2769)l(2767). I^{π} . I (t p)=I ($\alpha \alpha'$)=2
2768.73 14	2+		Ас	h j	1		XREF: $c(2766)h(2768)j(2769)l(2767)$. E(level): 2766.7 and 2768.8 levels could be the same level. J^{π} : $L(t,p)=L(\alpha,\alpha')=2$.
2841.61 <i>10</i> 2856.79 <i>10</i>	2+ 4+	0.0277 ps 28 97 fs 8	A C	GH G	L		$J^{\pi}: L(t,p)=L(p,p')=2.$ $J^{\pi}: M1(+E2) \gamma \text{ to } 4^+; 4^+ \text{ proposed in } (n,n'\gamma) \text{ based on excitation function.}$

⁷⁶Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XREF		Comments
2897.55.9	0^{+}	0.310 ps + 56 - 44	C	GH L		$I^{\pi}: L(t, p) = 0$
2919 74 8	1 ⁺	0.154 ps 14	A F	G		I^{π} : M1y to 0^+ : $yy(\theta)$ in (y, y')
2010.010	1	0.151 ps 17		, C		T ₁ = $0.0015 \text{ eV} 6$
						$f_{1/2}$. other. 0.50 ps +20 γ from 1 = 0.0015 eV 0
2021 5	2-					$\prod_{i=1}^{n} \prod_{j=1}^{n} (i,j) = 1$
2921 5	3			ΗJ		$J^{n}: L(\alpha, \alpha') = L(p, p') = 3.$
						2921 level is treated as different from 2920 level
						since an intense g.s. transition from 2920 level is
						inconsistent with $L(\alpha, \alpha')=3$ for a 2921 group.
2958.06 ^e 16	5-		С	GH J	Р	J^{π} : E2 γ to 3 ⁻ , E1 γ to 4 ⁺ . Also supported by
						$L(t,p)=5$ and $L(\alpha,\alpha')=(5)$. But $L(p,p')=3$ suggests
						3 ⁻ .
2986.08 7	$(2^+, 3^+)$	99.8 fs 62		G		J^{π} : proposed in $(n,n'\gamma)$ based on excitation
	(_ ,_)					functions
2088 00 21					D	I^{π} : α s to 5^+ and 6^+
2900.09 21	A+	0.50 pc + 13.8	C	CU 1	1	$J : \gamma s to J and 0 :$ $I^{\pi} : I (t p) = I (\alpha, \alpha') = A$
2993.09 4	$(0)^{+}$	$0.30 \text{ ps} \pm 13 - 6$	C	C GIL J		J. $L(t,p) - L(t,\alpha) - 4$.
2007 16 6	(0)	0.214 ps + 30 - 20		G		J [*] : proposed in (ii, ii γ); E2 γ to 2.
3007.10 0	1 · •-	19 18 /	E	G		$J^{\prime\prime}$: MI γ to 0^{\prime} .
3014.2 4	1 x	0.0016 eV 2	E			
3021.14 7	$(2^+,3^+)^a$	0.340 ps +47-36		G		
3033.75 [°] 18	(6^{+})			L	Р	J^{π} : γ to 4 ⁺ ; γ s to 6 ⁺ and 5 ⁺ ; band member.
3041.37 8	2+	0.0638 ps 42	С	GH		J^{π} : L(t,p)=2.
3052.55 10	$2^+.3^+.4^+$	0.035 ps 5		GH		J^{π} : M1+E2 γ to 3 ⁺ .
3062 13 9	$(4^+ 5^+)^a$	0.122 ps 22		G		
3066.86.10	$(2^+, 3^+, 4^+)^a$	$0.90 \text{ ps} \pm 56 - 28$		G		
3070 41 11	$(2^{,3^{,7^{+}}})$	0.76 ps + 40 21		CU		I^{π} . M1 + E2 $\approx to A^+$
3070.41 11	+ . &	0.70 ps +49-21	_	GI		$J : M1 + L2 \ y \ t0 \ 4 \ .$
3088.4 7	100	0.0017 eV 5	E			
3092.10 10	$(3^+,5^+)^{u}$	0.268 ps +42-32		GH		XREF: H(3090?).
3129.86 8	2+	0.245 ps +26-24		GH L		J^{π} : E2 γ to 0 ⁺ .
						$T_{1/2}$: other: 0.26 ps +36-11 from B(E2) \downarrow of
2141 20 6	1+	110 6 . 14 10		<u> </u>		5129.87 III Coul. ex.
5141.59 0	1	119 18 +14-10	ACE	G		J^{*} : $\gamma\gamma(\theta)$ in (γ, γ) ; $L(\iota, p) = L(p, p) = 2$ with
						assumed S=1.
						$T_{1/2}$ from DSAM in (n,n' γ) (2015Cr06). Other:
						0.06 ps + 7 - 4 (1990 DoZU).
3147.54 10	$(2)^{+}$	118 fs <i>13</i>		GH		J^{π} : L(p,p')=2.
3162.65 6	$(4)^{+a}$	14.6 fs 21		GH L		J^{π} : E2+M1 γ to 4 ⁺ .
3181.95 6	$(2^+,3^+)^a$	0.59 ps +42-18		G		
3182.19 6	(2^{+})	0.25 ps +35-11	Α	G	0	J^{π} : L(p,p')=2+5 for a 3195 group; L(p,t)=(2,3).
3191.05 4	2+	0.128 ps 14	С	Gh		XREF: h(3195).
						J^{π} : E2 γ to 0^+ .
3195 5	$(4^{-}, 5^{-}, 6^{-})$			h		J^{π} : L(p,p')=2+5 for a 3195 5 level.
3200.01 13	$(3)^{+a}$	0.7 ps + 16 - 3		G		J^{π} : M1+E2 γ to 2 ⁺ .
3200 07 20	(12^+)	•••• P•••••	E			I^{π} : γ to 0^+
3224 5	(1,2)			н		5.7000.
3231 8 4	\mathcal{A}^+		AC			XREF: $A(2)H(3240)$
5251.0 7			nc			$I^{\pi}: I(t, \mathbf{n}) - I(\alpha, \alpha') - 4$
3236 02 0	$(5)^{+a}$	$30.5 \text{ fs} \pm 35 - 28$		C	D	$I^{\pi}: M_{1+F_{2}} \to I^{\pi} \to I^{+}$ $X \to 6^{+}$ Other: (6^{+}) in
5250.02 9	(\mathbf{J})	50.5 18 +55-20		G	1	$76C_{2}76C_{2}$
2242 70 7	1+	40.0 6 . 25 . 20		<i>c</i>		
3243.797	1'	40.9 fs +35-28		G		J^{λ} : M1 γ to 0 ⁺ .
5268 5	(4')			НĴ		J': $L(\alpha, \alpha') = (4)$. But $L(p, p') = (5)$ suggests $4^-, 5^-, 6^-$.
3312.29 11	3-		Ас	hJ		J ^{<i>n</i>} : L(α, α')=3. Also L(p,p')=0+3 for a doublet.
						L(t,p)=0,1 and 3,4 also indicates a doublet with
						$J^{\pi}=0^+$ or 1^- and 3^- or 4^+ .
3317 5	(0^{+})		С	h		J^{π} : L(p,p')=0+3 for a doublet and L(t,p)=0,1 and

⁷⁶Ge Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XREF		Comments
						3,4 for a doublet. L=3 component is associated with
3322.80 6	(2+)	0.16 ps +14-6	A	G		the 3312 level. J^{π} : γ s to 2 ⁺ and 4 ⁺ . Excitation function analysis in (n,n' γ) suggests 2 ⁺ .
3349 <i>5</i> 3391 <i>5</i>	(4 ⁺ ,5 ⁻)		с	H H J		J^{π} : L(p,p')=5 but L(t,p)=(4).
3409.19 18	(1,2,3) [@]		Α	Н		XREF: H(3402).
3419.47 <i>31</i>	1+		E	G	_	J^{π} : γ to 0^+ ; $\gamma\gamma(\theta)$ in (pol γ,γ').
3436.9 4	$(4)^+$			н н	Р	$I^{\pi} \cdot I(n n') = 4$
3477.62 17	$(2^+,3)^{@}$		A C			E(level),J ^{π} : L(t,p)=1 or 0 (and L>1); γ from 4 ⁺ . Probably a doublet with 1 ⁻ or 0 ⁺ for one of the
3484.0 7 3506 5	3-			GH J H		J^{π} : $L(\alpha, \alpha')=3.$
3532.81 ^{<i>d</i>} 30 3536.0 4	(7+)			h h	P P	J^{π} : γ to 5 ⁺ ; member of γ band.
3543.27 ^b 34 3545 5	8 ⁺ 2 ⁺		С	L N H J	IP	J ^{π} : γ to 6 ⁺ ; g.s. band member. J ^{π} : L(α , α')=2. But L(t,p)=0,1 and 3,4 suggests 0 ⁺ or 1 ⁻ and 3 ⁻ or 4 ⁺ for a doublet.
3576.96 26	(a) +	30 fs +6-5		G		
3585 5	$(2)^+$		-	НЈ		J^{n} : L(α, α')=(2) and L(p,p')=2.
3606 5	2.00		E	н		
3632.92 10	(2+)		Α		Р	J^{π} : γ rays to 0^+ and (4^+) .
3640 5	(4 ⁻ ,5 ⁻ ,6 ⁻)		С	Нj		XREF: $c(3648)$.
3658.5			с	Нi		J^{*} : L(p,p) = 5. But L(t,p)=(2) for 5648 suggests 2 [*] . XREF: c(3648).
3680.70 10	1 ^{-&}		Е	5		
3691 5				Н		
3721 5 3727 83 ^e 26	$(5)^{-}$ (7^{-})		С	НЈ	D	J^{n} : L(α, α')=(5) and L(p,p')=5.
3748 5	2^{+}			НЈ	1	J^{π} : $L(\alpha, \alpha')=2$.
3763.40 18	1 ^{+&}		E			
3783.57 28	$(4^+, 5, 6, 7^-)$			Н	Р	J^{π} : γ rays to (5 ⁻) and 6 ⁺ .
3805 5			C	Н Н		
3848 5				Н		
3868 5				Н		
3883 5	(3^{-})		C A C	H J H I		XREF: J(3871). XREF: H(3904)J(3893)
5666.97 19	(5)		n c	11 5		J^{π} : L(α, α')=L(p,p')=3.
3951.88 7	1-	28 fs 5	A E	G		J^{π} : from (pol γ, γ') data at HIGS-TUNL facility (priv. comm. of Feb 20, 2016 from W. Tornow); also γ s to 0^+ , 2^+ and 3^- .
3972 5	(4 ⁺)			НJ		$T_{1/2}$ from DSAM in (n,n' γ) (2015Cr06). XREF: J(3952). $I^{\pi}: I(\alpha \alpha') = (4)$
3997 5	4+			НЈ		XREF: J(3978). J^{π} : L(α, α')=L(p,p')=4.
4024.11 20	1(-)&	0.0055 eV 11	E	Н		XREF: H(?).
4035.12 20	1 &	0.0053 eV 20	E			
4057? 5				H		YDEE : I(4052)
40/3 3				лЈ		AREF. $J(4032)$.

E(level) [†]	J ^{π‡}	$T_{1/2}$ or $\Gamma^{\#}$		2	XREF		Comments
4099 5	5-				НЈ		XREF: J(4073).
4116.02 20	1&			Е			
4122.28? 31	$(1,2^{+})$		Α		Н		J^{π} : γ to 0^+ .
4129.8 [°] 5	8+				L	Ρ	J^{π} : γ to 6^+ ; member of γ band.
4130.6 4						Р	VDEE, 1(4196)
4155 5					НJ		AKEF: J(4120). I^{π} : J (n n')-A suggests $3^{+} A^{+} 5^{+}$ but J ($\alpha \alpha'$)-(1) suggests 1^{-}
4192.80? 12	$(2^+.3)$		Α		н		J^{π} : γ rays to 4 ⁺ and 1.
4209 5	3-				НЈ		XREF: J(4180).
							$J^{\pi}: L(\alpha, \alpha') = L(p, p') = 3.$
4239.36 14	$(1,2,3)^{(a)}$		Α		Н		
4249 5	4+				НJ		XREF: J(4220).
	P-						J^{n} : $L(\alpha, \alpha') = 4$.
4250.93 30	1			E			
4272 5					н	D	
4311.1 4	$(1,2,2)^{@}$				п	г	
4320.45 10	$(1,2,3)^{-1}$	0.050 aV 10	A	F	п		
4351.5 12	1 4+	0.050 ev 10	۵	E	ні		XREE: I(4332)
1505.17 17	·				11 5		J^{π} : L(α, α')=L(p,p')=4.
4399 5	$(3^+, 4^+, 5^+)$				НJ		XREF: J(4367).
							J^{π} : L(p,p')=4.
4426 10	(2 + 4 + 5 +)				НJ		XREF: $J(4402)$.
4444 10	$(3^{+},4^{+},5^{+})$		۵		н н		$J^{*}: L(p,p) = (4).$ XREE: $H(4468)$
1170.07.21	(21)						J^{π} : γ to 2 ⁺ suggests 0 ⁺ , 1, 2, 3, 4 ⁺ .
4488 10	3-				НJ		XREF: J(4453).
							$J^{\pi}: L(\alpha, \alpha') = 3.$
4536 10	$(3^+, 4^+, 5^+)$				НЈ		XREF: $J(4500)$.
							J [*] : L(p,p)=4. L(α, α)=(3,4) suggests a doublet with 3 and α^+
4546.8 <mark>d</mark> 5	Q ⁺					P	I^{π} : γ to 7^+ : member of γ hand
4570 10)				нј		XREF: J(4530).
							J^{π} : L(α, α')=(3,5) suggests a doublet with 3 ⁻ and 5 ⁻ .
4611 10	(3 ⁻)		Α		ΗJ		XREF: J(4570).
L							$J^{\pi}: L(\alpha, \alpha') = (3).$
4613.0 ⁰ 5	10+					Р	J^{π} : γ to 8^+ ; band member.
4623.7 11	$1^{+\infty}$			E			
4659 10	(5)				ΗJ		XREF: J(4015). I^{π} : J($\alpha \alpha'$)=(5)
1661 2 1	1&			F			J : L(u, u) = (S).
4001.2 4	1			E			
$4678.20\ 10$ $4686\ 8^{e}\ 4$	(9^{-})			E		Р	I^{π} : γ rays to 8^+ and (7^-) : possible hand member
4698 10	())				Н	•	
4719.88 18	$(2^+, 3, 4^+)$		Α				J^{π} : γ rays to (2 ⁺) and (4 ⁺).
4720.5 4	0					Р	
4722.36 20	(1) ^{&}			Ε			
4736 10				-	Н		
4/41.16 20				E	ц		
4784 042 26	$(1,2,3)^{@}$		۵				
4789.06 30	(1,2,3)		**	Е			

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XR	EF	Comments
4812.47? 18	(2+,3)		A	h		J^{π} : γ rays to 4 ⁺ and 1.
4814.92? 27	(1,2,3) [@]		Α	h		
4837.2 <i>4</i> 4839 <i>10</i>	$(1)^{\&}$ $(3^+, 4^+, 5^+)$			E H		J^{π} : L(p,p')=(4).
4846.07 <i>30</i> 4874.67 <i>20</i>	1&			E E H		
4917.2 6	1&			Е		
4936.07 20	1&		Α	ЕН		
5116.59 20	1&			Е		
5122.47 14	$(1,2,3)^{@}$		Α			
5166.89 20	(1)&			Е		
5185.99 10	(1) ^{&}			Е		
5202.49 20	1&			Е		
5222.19 30				Е		
5267.00 30	1			Eh		XREF: h(5276).
5273.8 6	(1) ^{x}			Е Н		
5285.10 20	1			Eh		XREF: h(5276).
5304.30 30	12			E		
5365.80 30	12		Α	E		XREF: A(5350).
5379.7 4	1~			E		
5390.8 <i>5</i>	(1) ^{A}			E		
5418.8 <i>4</i>	(1) ^{x}			E		
5434.51 30	1~			E		-
5450.0? 0 7	(12 ⁺)				P	J^{π} : possible band member.
5522.58 20	(1,2,3)		Α			
5540.42 20		0.103 eV 18		Е		
5567.62 20	(1) ^{cc}			Е		
5579.0 5				E		
5626.7 8	(2^+)	0.133 eV 20	٨	Е		I^{π} , α rate to 0^+ and 4^+
5665 43 30	(2)		A	F		J. Y Tays to O and 4.
5677 83 30	1 1&			E		
5699.03.20	1 1-&	0.256 eV 22		F		
5708.6.6	(1)&	0.230 CV 22		F		
5748 53 10	1^{-8}	0.166 eV 24		F		
5749 902 32	$(1 2 3)^{@}$	0.100 01 27	Δ	-		
5785 24 20	1 <mark>&</mark>			F		
5794 34 20	1&			F		
5821.0 6	1			Ē		
5825.5 8	1 &			Е		
5843.2 ^e 6	(11 ⁻)				Р	J^{π} : γ to (9 ⁻); possible band member.
5846.7 7				E		
5805.U 0	(1,2,2)		,	E		
5882.92? 24 5909.05 30	(1,2,3)		A	E		
5955 9 8	1&	0 194 eV 23		E		
2722.70	-	5.171 07 25		-		

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$		XREF
5983.25 20	1- &	0.150 eV 20	Е	
6021.13? 28	$(1,2,3)^{@}$		A	
6048.7 <i>4</i>	1 &		E	
6065.1? 4	$(1,2,3)^{@}$		A	
6081.7 4	(1) ^{&}		E	
6102.3 9			E	
6113.86 <i>30</i>	1 ^{&}		E	
6130.57 20	1&		E	
6145.87 20 6162.7 9	1 &		E E	
6191.57 20 6223.7 7	1 &		E E	
6228.5 <i>4</i> 6235.1 <i>9</i>	1 &		E E	
6240.98 <i>30</i>	1&		E	
6272.98 30	1 &		E	
6285.58 20	1 &		E	
6315.7 4	1 &		E	
6330.48 <i>20</i> 6366.5 <i>11</i>	1 &		E E	
6393.5 5	1 &		E	
6408.4 5	1 &		Е	
6436.4 9			Ε	
6448.6 11	0_		E	
6472.50 30	100		E	
6498.20 <i>30</i>	100		E	
6513.6 <i>4</i> 6572.3 <i>6</i>	1.00		E E	
6601.51 20	1 &		E	
6611.4 6	8-		E	
6629.31 30	100		E	
6661 7 9			E	
6670 91 30	1&		Ē	
6741.9.6	(1) ^{&}		E	
6765.1 4	1&		E	
6787.03 20	1&		E	
6816.83 30	1&		E	
6835.83 20	1&		E	
6846.53 30	1&		E	
6880.6 4	1&		E	
6884.5 10			E	
6899.2 5	1 &		E	
6908.3 18	0_		E	
6938.9 7	100		E	
6960.24 <i>30</i>	1 ^{<i>a</i>}		E	

E(level) [†]	J ^{π‡}	$T_{1/2}$ or $\Gamma^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF
6985.4 <i>5</i>	1 &		Е	8018.0 14	(1) ^{&}		E
6999.05 30	1- &	0.28 eV 4	Е	8027.0 8	(1) ^{&}		E
7011.4 9	1		Е	8049.8 6	(1) ^{&}		E
7026.35 30	1 ⁽⁻⁾ &	0.39 eV 4	Е	8063.9 8	1		Е
7048.3 9	1 &		Е	8094.7 8			Е
7081.6 9	1 &		Е	8103.3 5			Е
7091.8 4	1 &		Е	8110.0 8			E
7102.8 6	1 &		Е	8135.0 11			Е
7121.66 30	1 &		Е	8152.3 5	1 ⁽⁻⁾ &	0.71 eV 7	Е
7130.46 30	1 &		Е	8160.7 9			E
7147.7 4	1 &		Е	8178.3 4	1 &		E
7172.0 9			Е	8188.3 5	1 &		E
7250.9 7	1- &		Е	8236.9 4	(1) ^{&}		E
7290.1 4	0		E	8253.4 9	0		E
7301.08 30	1-&		E	8260.1 6	(1)		E
7407.09 30	1&		E	8284.99 30	(1)		E
7416.0 4			E	8294.8 12	1.87		E
7452.6 5			E	8304.0 5	100		E
7479.0 5	. &		E	8318.29 30	100		E
7485.40 30	1&		E	8329.4 7	1.		E
7521.6 5			E	8348.2 9	(1) &		E
7537.0 4	(1)		E	8357.97	(1)•		E
/549.2 /	(1) ~		E	8397.8 5			E
7585.0 4	1&		E	8418.5 15	18	0.00 14 5	E
7643.0 4	1&		E	8425.70.30	1 (1)&	0.29 eV 5	E
7651.2 4	1& 1&		E	8446.6 /	(1)•		E
7678.14	1&	0.20 11 5	E	8462.4 9	18		E
7694.6 11	(1)	0.30 eV 5	E	8500.51 30	1		E
7723.14	$(1)^{\circ}$		E	8521.2 0	1&		E
7784.2.0	(1)		E	8555.0 5	1-&	076 aV 0	E
7707.0.4	1&		E	8540.0 5	1 %	0.76 ev 9	E
797.04	1&		E	0332.0 0	1 &		E
7804.1 0	1&		E	8307.42 30	1		E
7014.7 7	1		E	8626.2.7	1&		E
7836.7.6			E	8649.6.8	1		E
7849.7.5	(1) ^{&}		E	8662.5 4	(1) <mark>&</mark>		E
7861.6 4	1&		Е	8696.7 7			Е
7883.7 10	1 &		Е	8741.2 <i>4</i>	(1) ^{&}		Е
7894.0 12			Е	8753.2 6	1-&		E
7916.2 24	1-&	0.72 eV 17	Е	8768.9 9	1 &		E
7950.35 20	1 &		Е	8806.8 5			E
7976.1 7	(1) ^{&}		Е	8844.3 <i>4</i>	1&		E
7996.3 4	(1) ^{&}		E	8889.1 9			Е

				⁷⁶ Ge Level	s (continu	ied)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{\#}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
9014.2 14	1- &	0.71 eV 8	Е	9305.6 4		Е
9020.1 10	(1) ^{&}		E	9316.4 <i>4</i>		Е
9033.7 9			E	9338.4 6		E
9052.3 12	(1) &		E	9355.1 8	(1) <mark>&</mark>	E
9059.1 11			Е	9366.5 5	1 &	Е
9163.9 9	1&		Е	9378.5 4	(1) &	E
9176.1 8	1 &		E	9400.0 6	1 &	E
9188.0 4	1 &		E	9410.5 <i>4</i>	1&	E
9255.2 7			Е	9418.2 5	1 &	Е
9264.7 6			E	9557.2 5	1 &	Е

[†] For levels populated in γ -ray studies, E(level) values are from least-squares fit to E γ data, assuming 0.5 keV uncertainty when stated. Normalized χ^2 =1.1. In other cases values are averages from different reaction studies. In (p,p') and (α , α'), values for similar levels differ systematically (higher by 12 keV to 45 keV in the 3700-4600 range). Values from (p,p') are adopted here (since many more levels are reported in (p,p') than in (α , α')), although, it is difficult to know as to which dataset is more accurate.

[‡] Log *ft* values from ⁷⁶Ga decay have not been used in assigning J^{π} values since $J^{\pi}({}^{76}\text{Ga g.s.})=(3^{-})$ is only tentative. Moreover, several γ -ray placements remain uncertain. For levels above ≈ 3000 , values are given in parentheses when available only from L(p,p') and/or L(t,p) due to following reasons: 1. The agreement of $\sigma(\theta)$ fits to DWBA is not good over the whole angular range. 2. The correspondence between levels in different reactions is not unique due to large level density and large uncertainties in E(level) from particle reactions.

[#] From DSA in $(n,n'\gamma)$ (1990DoZU,1984KoZN,2015Cr06) for levels above 2.1 MeV, unless otherwise stated. Below this energy, values are deduced by the evaluators from B(E2) values in Coul. ex. Level widths are from ⁷⁶Ge(γ,γ'),(pol γ,γ').

- [@] Possible β^- feeding from 2⁽⁻⁾ (see ⁷⁶Ga β^- decay). Since the level scheme is not well established, the J^{π} assignment is considered as tentative.
- [&] From $\gamma\gamma(\theta)$ in (γ, γ') , parity from (pol γ, γ').
- a Proposed in (n,n' $\gamma)$ based on excitation functions and γ decay pattern.
- ^b Band(A): The g.s. band.
- ^{*c*} Band(B): γ band, even spin.
- ^{*d*} Band(b): γ band, odd spin.
- ^{*e*} Band(C): Band based on 5^- .

$\gamma(^{76}\text{Ge})$

Additional information 3.

11

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	$lpha^\dagger$	Comments
562.917	2+	562.93 3	100	0.0 0+	E2		1.64×10 ⁻³ 2	B(E2)(W.u.)=28.81 21 α (K)=0.001463 20; α (L)=0.0001529 21; α (M)=2.279×10 ⁻⁵ 32
1108.416	2+	545.51 <i>3</i>	100 3	562.917 2+	E2+M1	+2.4 2	1.70×10 ⁻³ 3	$\alpha(N)=1.460\times10^{-6}\ 20$ B(M1)(W.u.)=0.00119 +24-18; B(E2)(W.u.)=31.0 +34-29 $\alpha(K)=0.001520\ 25;\ \alpha(L)=0.0001588\ 27;\ \alpha(M)=2.37\times10^{-5}\ 4$ $\alpha(N)=1.519\times10^{-6}\ 25$ δ : weighted average of +2.5 2 from $\gamma(\theta)$ in (n,n' γ) and
		1108.41 8	70 4	0.0 0+	E2		0.000280 4	+2.1 4 from $\gamma\gamma(\theta)$ in (*Ge, *Ge*). B(E2)(W.u.)=0.74 +8-7 α (K)=0.0002491 35; α (L)=2.55×10 ⁻⁵ 4; α (M)=3.80×10 ⁻⁶ 5
1409.982	4+	847.11 5	100	562.917 2+	E2		0.000531 7	$\alpha(N)=2.487\times10^{-5}$ 35; $\alpha(DPF)=1.013\times10^{-5}$ 74 B(E2)(W.u.)=36.5 8 $\alpha(K)=0.000475$ 7; $\alpha(L)=4.89\times10^{-5}$ 7; $\alpha(M)=7.29\times10^{-6}$ 10 $\alpha(N)=4.74\times10^{-7}$ 7
1539.383	3+	430.95 5	69 <i>5</i>	1108.416 2+	M1+E2	+1.86 +17-11	0.00336 7	$\alpha(N)=4.74\times10^{-7} \ \gamma$ $\alpha(K)=0.00300 \ 6; \ \alpha(L)=0.000316 \ 7; \ \alpha(M)=4.71\times10^{-5} \ 10$ $\alpha(N)=2.99\times10^{-6} \ 6$ $B(M1)(W.u.)=7.2\times10^{-4} +19-15; \ B(E2)(W.u.)=18.0 +46-31$ $I_{\gamma}: \ from \ ^{238}U(^{76}Ge, ^{76}Ge'\gamma) \ (2013To05). \ Value \ of \ 75$ $from \ (n,n'\gamma) \ is \ in \ agreement, \ but \ 200 \ 15 \ in \ \beta^{-} \ decay$ $(1971Ca39) \ is \ in \ severe \ disagreement. \ Value \ from \ 2013To05 \ is \ preferred \ here \ as \ the \ branching \ ratio \ in \ this \ work \ is \ supported \ by \ \gamma\gamma$ -coin data, whereas no coincidence data were obtained in 1971Ca39. Moreover, there \ are \ many \ contaminants \ present \ in \ \gamma-ray spectrum from $^{76}Ga \ decay \ obtained \ by \ 1971Ca39.$ $\delta: \ weighted \ average \ of \ +1.8 \ 4 \ from \ (^{76}Ge, ^{76}Ge'\gamma) \ and \ +1.87 \ +17-11 \ from \ (n,n'\gamma). \ The \ smaller \ values \ in \ those \ datasets \ are \ less \ likely.$
		976.48 5	100 3	562.917 2+	M1+E2	+2.61 20	0.000368 5	$\alpha(K)=0.000329 \ 5; \ \alpha(L)=3.37\times10^{-5} \ 5; \ \alpha(M)=5.03\times10^{-6} \ 7$ $\alpha(N)=3.29\times10^{-7} \ 5$ B(M1)(W.u.)=5.1×10 ⁻⁵ +16-10; B(E2)(W.u.)=0.49 +12-8 δ : weighted average of +2.5 2 from (⁷⁶ Ge, ⁷⁶ Ge' γ) and +2.72 20 from (n.n' γ).
1911.12	0^{+}	1348.19 6	100	562.917 2+	E2		0.0002213 <i>31</i>	B(E2)(W.u.)= $3.75 + 18 - 16$ α (K)= $0.0001625 23; \alpha$ (L)= $1.654 \times 10^{-5} 23;$

Adopted Levels, Gammas (continued)												
		(continued)	$\gamma(^{76}\text{Ge})$									
	Comments	$lpha^{\dagger}$	δ#	Mult. [#]	$E_f \qquad J_f^{\pi}$	I_{γ}^{\ddagger}	E_{γ}^{\ddagger}	\mathbf{J}_i^{π}	E_i (level)			
<i>0–13</i> if	$\begin{array}{c} \hline \alpha(\mathrm{M}) = 2.469 \times 10^{-6} \ 35 \\ \alpha(\mathrm{N}) = 1.621 \times 10^{-7} \ 23; \ \alpha(\mathrm{IPF}) = 3.96 \times 10^{-5} \ 6 \\ \alpha(\mathrm{K}) = 0.0018 \ 5; \ \alpha(\mathrm{L}) = 1.9 \times 10^{-4} \ 5; \ \alpha(\mathrm{M}) = 2.9 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 1.9 \times 10^{-6} \ 5 \\ \delta: \ +0.48 \ +9-7 \ \mathrm{or} \ +2.9 \ 1 \ \mathrm{from} \ (\mathrm{n},\mathrm{n}'\gamma) \ (2017\mathrm{Mu03}). \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0096 \ +34 - 22 \ \mathrm{if} \ \mathrm{M1}, \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 55 \ +20 - 1 \\ \end{array}$	0.0021 6		M1+E2	1539.383 3+	14.2 15	482.33 5	4+	2021.68			
-5 35	E2. $\alpha(K)=0.000862\ 22;\ \alpha(L)=8.88\times10^{-5}\ 23;\ \alpha(M)=1.326\times10^{-5}\ 33;\ \alpha(M)=1.326\times10^{-5}\ 33;\ \alpha(M)=8.68\times10^{-7}\ 22;\ B(M1)(W.u.)=0.018\ +6-4;\ B(E2)(W.u.)=16\ +7-5;\ \alpha(M)=1.326\times10^{-5}\ 33;\ \alpha(M)=1.326\times10^{-5}\ 33$	0.000965 25	+0.50 8	M1+E2	1409.982 4+	67.9 <i>33</i>	611.72 4					
8 11.40	δ: from $\gamma\gamma(\theta)$ in (⁷⁶ Ge, ⁷⁶ Ge'). B(E2)(W.u.)=16 +6-3 α (K)=0.000394 6; α (L)=4.04×10 ⁻⁵ 6; α (M)=6.03×10 ⁻⁶ 8 α (N)=3.93×10 ⁻⁷ 6 E _γ : from (⁷⁶ Ge, ⁷⁶ Ge'γ). Other: 913.2 5 in (n,n'γ). Eγ=911.4	0.000440 <i>6</i>		E2	1108.416 2+	100 4	913.2 4					
	11 from β decay is inconsistent.				$\begin{array}{ccc} 1108.416 & 2^+ \\ 0.0 & 0^+ \end{array}$		1097.4 <i>5</i> 2203.79	(1,2 ⁺)	2203.84			
5	B(E2)(W.u.)=51 +26-15 α (K)=0.000286 4; α (L)=2.93×10 ⁻⁵ 4; α (M)=4.37×10 ⁻⁶ 6 α (N)=2.86×10 ⁻⁷ 4	0.000320 4		E2	1108.416 2 ⁺ 1409.982 4 ⁺	100 100	1175.7 <i>5</i> 1043.75 <i>5</i>	$(3)^{-}$ 6 ⁺	2284.22 2453.74			
					$\begin{array}{ccc} 562.917 & 2^+ \\ 0.0 & 0^+ \end{array}$		1915 <i>1</i> 2478.2 <i>5</i>	(1,2 ⁺)	2478.2			
42 :f E2	$\alpha(K)=0.0020 \ 6; \ \alpha(L)=2.1\times10^{-4} \ 6; \ \alpha(M)=3.2\times10^{-5} \ 9$ $\alpha(N)=2.1\times10^{-6} \ 6$ $\delta: +0.65 + 93 - 18 \ or +1.4 \ 10 \ (2017Mu03) \ in \ (n,n'\gamma).$ $P(M1)(Wn)=0.220 + 8 \ 7 \ if \ M1 \ P(T2)(Wn)=122 + 46 \ 42 \ i$	0.0023 7		M1+E2	2021.68 4+	10.9 <i>10</i>	465.33 10	5+	2487.07			
42 11 E2. §	B(M1)(w.u.)=0.020 +8-7 fr M1, B(E2)(w.u.)=123 +40-42 fr $\alpha(K)=0.000359 5; \alpha(L)=3.69\times10^{-5} 5; \alpha(M)=5.51\times10^{-6} 8$ $\alpha(N)=3.59\times10^{-7} 5$ B(E2)(W.u.)=32 +12-11	0.000402 6		E2	1539.383 3+	100.0 33	947.77 <i>17</i>					
⁶ 23	α (K)=0.000252 <i>14</i> ; α (L)=2.57×10 ⁻⁵ <i>15</i> ; α (M)=3.84×10 ⁻⁶ 25 α (N)=2.52×10 ⁻⁷ <i>14</i> B(M1)(W µ)<0.002 if M1 B(E2)(W µ)<2.3 if F2	0.000282 16		[M1,E2]	1409.982 4+	55	1077.2 ^{<i>d</i>} 4					
4	$\alpha(K)=0.000322\ 23;\ \alpha(L)=3.29\times10^{-5}\ 25;\ \alpha(M)=4.9\times10^{-6}\ 4$ $\alpha(N)=3.22\times10^{-7}\ 23$ $\delta:\ +2.8\ +11-8\ or\ +0.57\ +18-12\ (2017Mu03)\ in\ (n.n'\nu).$	0.000360 26		E2+M1	1539.383 3+	16.0 <i>14</i>	964.68 5	2+	2504.10			
2 if E2. 5	B(M1)(W.u.)=0.0033 +40-15 if M1, B(E2)(W.u.)=5 +6-2 if α (K)=0.000257 4; α (L)=2.62×10 ⁻⁵ 4; α (M)=3.92×10 ⁻⁶ 5	0.000287 4		E2	1409.982 4+	20.2 14	1094.22 12					
	B(E2)(W.u.)=51 +26-15 $\alpha(K)=0.000286 4; \alpha(L)=2.93\times10^{-5} 4; \alpha(M)=4.37\times10^{-6} \alpha(N)=2.86\times10^{-7} 4$ $\alpha(K)=0.0020 6; \alpha(L)=2.1\times10^{-4} 6; \alpha(M)=3.2\times10^{-5} 9$ $\alpha(N)=2.1\times10^{-6} 6$ $\delta: +0.65 +93-18 \text{ or } +1.4 10 (2017Mu03) \text{ in } (n,n'\gamma).$ B(M1)(W.u.)=0.020 +8-7 if M1, B(E2)(W.u.)=123 +46- $\alpha(K)=0.000359 5; \alpha(L)=3.69\times10^{-5} 5; \alpha(M)=5.51\times10^{-6} \alpha(N)=3.59\times10^{-7} 5$ B(E2)(W.u.)=32 +12-11 $\alpha(K)=0.000252 14; \alpha(L)=2.57\times10^{-5} 15; \alpha(M)=3.84\times10^{-7} \alpha(N)=2.52\times10^{-7} 14$ B(M1)(W.u.)<0.002 if M1, B(E2)(W.u.)<2.3 if E2. $\alpha(K)=0.000322 23; \alpha(L)=3.29\times10^{-5} 25; \alpha(M)=4.9\times10^{-6} \alpha(N)=3.22\times10^{-7} 23$ $\delta: +2.8 +11-8 \text{ or } +0.57 +18-12 (2017Mu03) \text{ in } (n,n'\gamma).$ B(M1)(W.u.)=0.0033 +40-15 if M1, B(E2)(W.u.)=5 +6- $\alpha(K)=0.000257 4; \alpha(L)=2.62\times10^{-5} 4; \alpha(M)=3.92\times10^{-6}$	0.000320 <i>4</i> 0.0023 <i>7</i> 0.000402 <i>6</i> 0.000282 <i>16</i> 0.000360 <i>26</i> 0.000287 <i>4</i>		E2 M1+E2 E2 [M1,E2] E2+M1 E2	$\begin{array}{c} 0.0 & 0^{+} \\ 1108.416 & 2^{+} \\ 1409.982 & 4^{+} \\ \hline \\ 562.917 & 2^{+} \\ 0.0 & 0^{+} \\ 2021.68 & 4^{+} \\ 1539.383 & 3^{+} \\ 1409.982 & 4^{+} \\ 1539.383 & 3^{+} \\ 1409.982 & 4^{+} \\ \end{array}$	100 100 10.9 <i>10</i> 100.0 <i>33</i> 5 5 16.0 <i>14</i> 20.2 <i>14</i>	2203.79 1175.7 5 1043.75 5 1915 1 2478.2 5 465.33 10 947.77 17 1077.2 ^d 4 964.68 5 1094.22 12	$(3)^{-}$ 6^{+} $(1,2^{+})$ 5^{+} 2^{+}	2284.22 2453.74 2478.2 2487.07 2504.10			

 $_{32}^{76} Ge_{44}$ -12

From ENSDF

 $^{76}_{32}{
m Ge}_{44}$ -12

					Adopted	Levels, Ga	mmas (continued	<u>d)</u>
						$\gamma(^{76}\text{Ge})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ [#]	$lpha^\dagger$	Comments
2504.10	2+	1395.66 5	100 5	1108.416 2+	E2+M1		0.000210 11	$\begin{aligned} \alpha(N) &= 2.56 \times 10^{-7} \ 4 \\ B(E2)(W.u.) &= 3.2 \ +38 - 14 \\ \alpha(K) &= 0.000147 \ 5; \ \alpha(L) &= 1.49 \times 10^{-5} \ 5; \ \alpha(M) &= 2.23 \times 10^{-6} \ 7 \\ \alpha(N) &= 1.47 \times 10^{-7} \ 4; \ \alpha(IPF) &= 4.6 \times 10^{-5} \ 6 \\ \delta: \ +1.9 \ 2 \ \text{or} \ +0.08 \ 4 \ (2017\text{Mu03}) \ \text{in} \ (n,n'\gamma). \end{aligned}$
		2504.08 6	35.3 17	0.0 0+	E2		0.000611 9	B(M1)(W.u.)=0.007 +8-3 if M1, B(E2)(W.u.)=5 +6-2 if E2. B(E2)(W.u.)=0.09 +11-4 α (K)=5.04×10 ⁻⁵ 7; α (L)=5.09×10 ⁻⁶ 7; α (M)=7.59×10 ⁻⁷ 11 α (N)=5.02×10 ⁻⁸ 7; α (IPE)=0.000555 8
2591.04	(1+,2+)	1051.7 2 1482.5 3 2591.0 4	95 <i>14</i> 100 <i>15</i> 55 <i>10</i>	$\begin{array}{c} 1539.383 & 3^{+} \\ 1108.416 & 2^{+} \\ 0.0 & 0^{+} \end{array}$				u(1)_5.52×10 7, u(11)_6.666555 6
2654.51	$(0^+, 1^+)$	1546.0 <i>4</i> 2091.9 <i>4</i>	100 <i>20</i> 42 <i>10</i>	$\begin{array}{c} 1108.416 2^+ \\ 562.917 2^+ \end{array}$				
2655.15	(1)	2655.1 3		0.0 0+				
2669.12	3+,4+	647.44 <i>4</i>	25.6 20	2021.68 4+	M1+E2		0.00094 16	$\alpha(K)=0.00084 \ 14; \ \alpha(L)=8.6\times10^{-5} \ 15; \ \alpha(M)=1.29\times10^{-5} \ 22$ $\alpha(N)=8.4\times10^{-7} \ 14$ $\delta: -0.01 \ 10 \ or \ +1.1 \ 2 \ (2017Mu03) \ in \ (n,n'\gamma).$ B(M1)(W.u.)=0.0059 \ +28-24 \ if M1, B(E2)(W.u.)=19 \ +9-8 \ if E2.
		1129.79 <i>10</i>	100 6	1539.383 3+	M1(+E2)	+0.01 2	0.0002434 <i>34</i>	$\alpha(K)=0.0002166 \ 30; \ \alpha(L)=2.200\times10^{-5} \ 31; \ \alpha(M)=3.29\times10^{-6}$
		1259.12 5	59.7 22	1409.982 4+	M1+E2		0.000219 <i>10</i>	$\begin{aligned} &\alpha(N) = 2.171 \times 10^{-7} 30; \ \alpha(IPF) = 1.330 \times 10^{-5} 19 \\ &B(M1)(W.u.) = 0.0043 + 23 - 20; \ B(E2)(W.u.) < 0.0063 \\ &\alpha(K) = 0.000181 7; \ \alpha(L) = 1.84 \times 10^{-5} 8; \ \alpha(M) = 2.75 \times 10^{-6} 11 \\ &\alpha(N) = 1.81 \times 10^{-7} 7; \ \alpha(IPF) = 1.66 \times 10^{-5} 25 \\ &\delta: \ -0.002 \ 63 \ or \ +1.09 \ 2 \ (2017Mu03) \ in \ (n,n'\gamma). \\ &B(M1)(W.u.) = 0.0019 + 9 - 8 \ if \ M1, \ B(E2)(W.u.) = 1.6 + 8 - 6 \ if \\ &E2. \end{aligned}$
2692.347	3-	1282.36 ^{<i>c</i>} 4	<14 ^C	1409.982 4+	E1		0.0002001 28	B(E1)(W.u.)<1.4×10 ⁻⁴ α (K)=8.68×10 ⁻⁵ <i>12</i> ; α (L)=8.77×10 ⁻⁶ <i>12</i> ; α (M)=1.308×10 ⁻⁶ <i>18</i> α (N)=8.60×10 ⁻⁸ <i>12</i> ; α (IPE)=0.0001032 <i>14</i>
		1583.93 <i>3</i>	6.5 7	1108.416 2+	E1		0.000388 5	$B(E1)(W.u.)=3.16\times10^{-5} +48-43$ $\alpha(K)=6.09\times10^{-5} 9; \alpha(L)=6.14\times10^{-6} 9; \alpha(M)=9.16\times10^{-7} 13$ $\alpha(K)=6.03\times10^{-8} 8; \alpha(RE)=0.000320 4$
		2129.38 6	100 3	562.917 2+	E1		0.000765 11	$B(E1)(W.u.)=2.00\times10^{-4} + 21 - 18$ $\alpha(K)=3.86\times10^{-5} 5; \alpha(L)=3.88\times10^{-6} 5; \alpha(M)=5.80\times10^{-7} 8$ $\alpha(N)=3.82\times10^{-8} 5; \alpha(IPF)=0.000722 10$
		2691.6 ^d 4	6.9 18	0.0 0+	[E3]		0.000501 7	$\alpha(K) = 6.77 \times 10^{-5} \ 9; \ \alpha(L) = 6.86 \times 10^{-6} \ 10; \ \alpha(M) = 1.024 \times 10^{-6}$

 $_{32}^{76}\text{Ge}_{44}$ -13

	Adopted Levels, Gammas (continued)											
						$\gamma(^{76}\text{Ge})$ ((continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
	<u> </u>			<u> </u>				14 $\alpha(N)=6.77\times10^{-8}$ 9; $\alpha(IPF)=0.000425$ 6 Tentative B(E3)(W.u.)=700 350. I _{\gamma} : this value is questionable since reduced transition probability is 9.4 W.u. in (p,p'); and 11.7 W.u. in (α, α'), which suggest I _{\gamma} \approx 0.1. This γ ray was reported in ⁷⁶ Ga β^- decay only, where it may have been contributed mainly by a sum line.				
2697.20	(0)+	1588.76 4	26.7 13	1108.416 2+	E2		0.0002517 35	B(E3)(W.u.)= 1.22×10^3 32 exceeds RUL=100. α (K)= 0.0001163 16; α (L)= 1.181×10^{-5} 17; α (M)= 1.762×10^{-6} 25				
		2134.25 5	100 4	562.917 2+	E2		0.000451 6	$\begin{aligned} &\alpha(\text{N}) = 1.160 \times 10^{-7} \ 16; \ \alpha(\text{IPF}) = 0.0001217 \ 17 \\ &\text{B(E2)(W.u.)} = 0.88 \ + 32 - 29 \\ &\alpha(\text{K}) = 6.67 \times 10^{-5} \ 9; \ \alpha(\text{L}) = 6.75 \times 10^{-6} \ 9; \ \alpha(\text{M}) = 1.007 \times 10^{-6} \ 14 \\ &\alpha(\text{N}) = 6.65 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 0.000376 \ 5 \\ &\text{D(IP)(W.u.)} = 0.55 \ 20 \ 25 \ 25$				
2733.23	4+	1193.92 <i>12</i>	63 27	1539.383 3+	E2+M1		0.000233 11	B(E2)(W.u.)=0.75 +27-25 α (K)=0.000202 9; α (L)=2.06×10 ⁻⁵ 10; α (M)=3.08×10 ⁻⁶ 14 α (N)=2.02×10 ⁻⁷ 9; α (IPF)=6.7×10 ⁻⁶ 11 α (L)=2.02×10 ⁻⁷ 9; α (IPF)=6.7×10 ⁻⁶ 11				
		1624.78 5	100 4	1108.416 2+	E2		0.000262 4					
2747.75	(2)+	1208.19 <i>17</i>	32 5	1539.383 3+	M1+E2	+0.09 5	0.0002191 <i>31</i>	$\alpha(N)=1.110\times10^{-7} \ 16; \ \alpha(IPF)=0.0001372 \ 19$ B(E2)(W.u.)=4.9 +20-11 $\alpha(K)=0.0001896 \ 27; \ \alpha(L)=1.924\times10^{-5} \ 27; \ \alpha(M)=2.87\times10^{-6} \ 4$ $\alpha(N)=1.899\times10^{-7} \ 27; \ \alpha(IPF)=7.17\times10^{-6} \ 11$ D(M)(W.u.)=0.0157 \ \alpha(Q)(Q)(M)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)(Q)				
		1639.31 5	100.0 24	1108.416 2+	M1(+E2)	-0.002 29	0.0002321 32	B(M1)(w.u.)=0.0155 +28-26; B(E2)(w.u.)=0.12 +76-9 α (K)=0.0001053 15; α (L)=1.065×10 ⁻⁵ 15; α (M)=1.590×10 ⁻⁶ 22				
		2185.02 <i>19</i>	8.5 7	562.917 2+	M1+E2		0.000442 <i>31</i>	$\alpha(N)=1.052\times10^{-7}$ 15; $\alpha(IPF)=0.0001145$ 16 B(M1)(W.u.)=0.0195 +36-29; B(E2)(W.u.)<0.011 $\alpha(K)=6.32\times10^{-5}$ 12; $\alpha(L)=6.38\times10^{-6}$ 12; $\alpha(M)=9.53\times10^{-7}$ 18 $\alpha(N)=6.30\times10^{-8}$ 11; $\alpha(IPF)=0.000371$ 30 δ : +2.9 +23-11 or -0.07 +15-6 (2017Mu03) in (n,n' γ). B(M1)(W.u.)=7.0×10^{-4} +11-9 if M1, B(E2)(W.u.)=0.198 +32-26 if E2.				
2766.68	2+	2203.71 6	100 4	562.917 2+	E2+M1	-0.09 2	0.000419 6	$\alpha(K)=6.15\times10^{-5}$ 9; $\alpha(L)=6.21\times10^{-6}$ 9; $\alpha(M)=9.27\times10^{-7}$ 13 $\alpha(N)=6.14\times10^{-8}$ 9; $\alpha(IPF)=0.000350$ 5				

 $^{76}_{32}{
m Ge}_{44}$ -14

	Adopted Levels, Gammas (continued)											
						$\gamma(^{76}\text{Ge})$ (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
2766.68	2+	2766.65 8	2.7 8	0.0 0+	E2		0.000724 10	B(M1)(W.u.)=0.136 +23-17; B(E2)(W.u.)=0.31 +17-13 E_{γ},I_{γ} : from (n,n' γ). δ : from (n,n' γ). α (K)=4.26×10 ⁻⁵ 6; α (L)=4.30×10 ⁻⁶ 6; α (M)=6.41×10 ⁻⁷ 9 α (N)=4.24×10 ⁻⁸ 6; α (IPF)=0.000676 9 B(E2)(W.u.)=0.33 +12-10 E. L: from (n,n' α).				
2768.73	2+	1358.9 <i>6</i> 1660.30 <i>14</i>	24 8 100 7	$\begin{array}{rrrr} 1409.982 & 4^+ \\ 1108.416 & 2^+ \end{array}$				$L_{\gamma,1\gamma}$. Hom (ii,ii γ).				
2841.61	2+	1732.97 16	100 4	1108.416 2+	E2+M1	+0.01 +3-2	0.000255 4	$\alpha(K)=9.49\times10^{-5}$ 13; $\alpha(L)=9.60\times10^{-6}$ 13; $\alpha(M)=1.433\times10^{-6}$ 20				
		2278.82 14	52 9	562.917 2+	E2+M1		0.000480 <i>33</i>	$\begin{array}{l} \alpha(\mathrm{N}) = 9.48 \times 10^{-8} \ 13; \ \alpha(\mathrm{IPF}) = 0.0001494 \ 21 \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.100 \ +20 - 16; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) < 0.086 \\ \alpha(\mathrm{K}) = 5.87 \times 10^{-5} \ 11; \ \alpha(\mathrm{L}) = 5.93 \times 10^{-6} \ 11; \ \alpha(\mathrm{M}) = 8.84 \times 10^{-7} \ 17 \\ \alpha(\mathrm{N}) = 5.85 \times 10^{-8} \ 10; \ \alpha(\mathrm{IPF}) = 0.000415 \ 32 \\ \delta: \ +3.0 \ +9 - 5 \ \mathrm{or} \ -0.08 \ 6 \ (2017\mathrm{Mu03}) \ \mathrm{in} \ (\mathrm{n},\mathrm{n}'\gamma). \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0230 \ +37 - 35 \ \mathrm{if} \ \mathrm{M1}, \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 6.0 \ +10 - 9 \ \mathrm{if} \\ \mathrm{E2}. \end{array}$				
2856.79	4+	1446.79 9	100	1409.982 4+	M1(+E2)	-0.08 8	0.0002012 28	$\alpha(K)=0.0001334 \ 19; \ \alpha(L)=1.351\times10^{-5} \ 19; \ \alpha(M)=2.017\times10^{-6}$ 28				
2897.55	0+	1789.23 <i>13</i>	38.1 <i>19</i>	1108.416 2+	E2		0.000314 4	$\begin{aligned} &\alpha(\text{N}) = 1.334 \times 10^{-7} \ 19; \ \alpha(\text{IPF}) = 5.22 \times 10^{-5} \ 8 \\ &\text{B}(\text{M1})(\text{W.u.}) = 0.075 \ 7; \ \text{B}(\text{E2})(\text{W.u.}) < 1.3 \\ &\alpha(\text{K}) = 9.24 \times 10^{-5} \ 13; \ \alpha(\text{L}) = 9.36 \times 10^{-6} \ 13; \ \alpha(\text{M}) = 1.397 \times 10^{-6} \\ &20 \\ &\alpha(\text{N}) = 9.21 \times 10^{-8} \ 13; \ \alpha(\text{IPF}) = 0.0002105 \ 29 \end{aligned}$				
		2334.51 11	100 4	562.917 2+	E2		0.000537 8	B(E2)(W.u.)=1.44 +25-23 α (K)=5.69×10 ⁻⁵ 8; α (L)=5.75×10 ⁻⁶ 8; α (M)=8.58×10 ⁻⁷ 12 α (N)=5.67×10 ⁻⁸ 8; α (IPF)=0.000474 7 B(E2)(Wu)=1.00 16				
2919.74	1^{+}	1811.22 18	14 5	1108.416 2+	M1+E2	-0.8 +63-6	0.000295 26	$\alpha(\text{K})=8.86\times10^{-5}\ 20;\ \alpha(\text{L})=8.96\times10^{-6}\ 22;\ \alpha(\text{M})=1.338\times10^{-6}$				
		2356.81 <i>13</i> 2919.72 <i>13</i>	27.4 <i>12</i> 100 <i>4</i>	562.917 2 ⁺ 0.0 0 ⁺	M1+E2 M1	+1.3 +50-9	0.000522 <i>34</i> 0.000705 <i>10</i>	$\begin{aligned} \alpha(N) &= 8.84 \times 10^{-8} \ 19; \ \alpha(IPF) = 0.000196 \ 24 \\ B(M1)(W.u.) &= 0.0015 \ + 21 - 14; \ B(E2)(W.u.) < 1.4 \\ \alpha(K) &= 5.55 \times 10^{-5} \ 10; \ \alpha(L) = 5.60 \times 10^{-6} \ 10; \ \alpha(M) = 8.36 \times 10^{-7} \ 15 \\ \alpha(N) &= 5.53 \times 10^{-8} \ 10; \ \alpha(IPF) = 0.000460 \ 33 \\ B(M1)(W.u.) &= 8 \times 10^{-4} \ + 11 - 6; \ B(E2)(W.u.) = 0.32 \ + 15 - 26 \\ \alpha(K) &= 3.81 \times 10^{-5} \ 5; \ \alpha(L) = 3.83 \times 10^{-6} \ 5; \ \alpha(M) = 5.72 \times 10^{-7} \ 8 \\ \alpha(N) &= 3.79 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.000662 \ 9 \\ D(M1)(W.u.) &= 0.000662 \ 9 \\ D(M1)(W.$				

	Adopted Levels, Gammas (continued)												
						<u>γ(</u>	⁷⁶ Ge) (continue	d)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
2958.06	5-	265.3 5	3.6 6	2692.347	3-	E2		0.01991 31	$\alpha(K)=0.01768\ 27;\ \alpha(L)=0.001930\ 30;\ \alpha(M)=0.000287\ 4$ $\alpha(N)=1.745\times10^{-5}\ 27$				
		1548.02 <i>18</i>	100 4	1409.982	4+	E1		0.000362 5	$\begin{array}{l} \alpha(\mathbf{K}) = 6.32 \times 10^{-5} \ 9; \ \alpha(\mathbf{L}) = 6.37 \times 10^{-6} \ 9; \\ \alpha(\mathbf{M}) = 9.51 \times 10^{-7} \ 13 \\ \alpha(\mathbf{M}) = 6.25 \times 10^{-8} \ 0; \ \alpha(\mathbf{M}) = 0.000201 \ 4 \end{array}$				
2986.08	(2+,3+)	1576.02 8	23.2 14	1409.982	4+	[E2]		0.0002484 35	$\begin{array}{l} \alpha(\mathbf{N}) = 0.20 \times 10^{-6} \ 9, \ \alpha(\mathbf{IFF}) = 0.0002914 \\ \alpha(\mathbf{K}) = 0.0001182 \ 17; \ \alpha(\mathbf{L}) = 1.200 \times 10^{-5} \ 17; \\ \alpha(\mathbf{M}) = 1.791 \times 10^{-6} \ 25 \end{array}$				
									$\alpha(N)=1.179\times10^{-7}$ 16; $\alpha(IPF)=0.0001163$ 16 B(E2)(W.u.)=5.7 +6-5				
		1877.76 12	100 4	1108.416	2+	[M1,E2]		0.000323 24	$\alpha(K) = 8.32 \times 10^{-5} \ 17; \ \alpha(L) = 8.41 \times 10^{-6} \ 18; \ \alpha(M) = 1.255 \times 10^{-6} \ 26$				
									α (N)=8.29×10 ⁻⁸ 16; α (IPF)=0.000230 22 B(M1)(W.u.)=0.0270 +18-16 if M1, B(E2)(W.u.)=10.4 7 if E2.				
2988.09		319.0 ^a 3 500.9 ^a 4 534 4 ^a 4	100 8 <i>3</i> 25 10	2669.12 2487.07 2453.74	3 ⁺ ,4 ⁺ 5 ⁺ 6 ⁺								
2993.89	4+	972.30 6	86.3 <i>34</i>	2021.68	4 ⁺	M1+E2	-0.61 +7-5	0.000342 5	$\alpha(K)=0.000306\ 5;\ \alpha(L)=3.12\times10^{-5}\ 5;\ \alpha(M)=4.66\times10^{-6}$				
									α (N)=3.07×10 ⁻⁷ 5 B(M1)(W.u.)=0.0149 +32-30; B(E2)(W.u.)=7.9 +18-22 δ : -5.2 +75-36 or -0.08 +13-59 (2017Mu03) in (n,n' γ).				
		1454.37 9	15.8 <i>16</i>	1539.383	3+	M1+E2		0.000213 12	$\alpha(K)=0.000135 \ 4; \ \alpha(L)=1.37\times 10^{-5} \ 4; \ \alpha(M)=2.05\times 10^{-6} \ 6$				
									α (N)=1.35×10 ⁻⁷ 4; α (IPF)=6.2×10 ⁻⁵ 8 B(M1)(W.u.)=0.00111 25 if M1, B(E2)(W.u.)=0.71 16 if E2.				
		2430.91 5	100 5	562.917	2+	E2		0.000579 8	$\alpha(K)=5.31\times10^{-5}$ 7; $\alpha(L)=5.36\times10^{-6}$ 7; $\alpha(M)=7.99\times10^{-7}$ 11				
									α (N)=5.28×10 ⁻⁸ 7; α (IPF)=0.000520 7 B(E2)(W.u.)=0.35 7				
3004.73	$(0)^{+}$	2441.77 7	100	562.917	2+	E2		0.000584 8	$\alpha(K) = 5.27 \times 10^{-5} 7; \ \alpha(L) = 5.32 \times 10^{-6} 7; \ \alpha(M) = 7.93 \times 10^{-7} 11$				
									α (N)=5.24×10 ⁻⁸ 7; α (IPF)=0.000525 7 B(E2)(W.u.)=1.59 24				
3007.16	1+	1898.73 6	100 4	1108.416	2+	M1(+E2)	-0.8 +18-7	0.000325 15	$\alpha(K)=8.12\times10^{-5} \ 13; \ \alpha(L)=8.21\times10^{-6} \ 14; \ \alpha(M)=1.226\times10^{-6} \ 21$				
									α (N)=8.10×10 ⁻⁸ <i>13</i> ; α (IPF)=0.000234 <i>14</i> B(M1)(W.u.)=0.07 + <i>11</i> -4; B(E2)(W.u.)<45				

				ued)								
	$\gamma(^{76}\text{Ge})$ (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\mathbf{z}}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments				
3007.16	1+	3007.02 13	57.7 29	0.0 0-	M1		0.000739 10	$\alpha(K)=3.63\times10^{-5} 5; \ \alpha(L)=3.65\times10^{-6} 5; \ \alpha(M)=5.45\times10^{-7} 8$ $\alpha(N)=3.61\times10^{-8} 5; \ \alpha(IPF)=0.000699 \ 10$ B(M1)(W.u.)=0.016 +10-4				
3014.2 3021.14	1 (2 ⁺ ,3 ⁺)	3014.1 <i>4</i> 1481.73 <i>9</i>	100 78 <i>4</i>	0.0 0 ⁻ 1539.383 3 ⁻	[M1,E2]		0.000216 13	$\alpha(K)=0.000131 \ 4; \ \alpha(L)=1.32\times10^{-5} \ 4; \ \alpha(M)=1.98\times10^{-6} \ 6$ $\alpha(N)=1.304\times10^{-7} \ 35; \ \alpha(IPF)=7.1\times10^{-5} \ 9$ B(M1)(W n)=0.0073 9 if M1 B(F2)(W n)=4.5.6 if F2				
		1611.36 <i>16</i>	33.5 19	1409.982 4	[E2]		0.000258 4	$\alpha(\text{K})=0.0001131 \ 16; \ \alpha(\text{L})=1.148\times10^{-5} \ 16; \ \alpha(\text{M})=1.713\times10^{-6}$ 24				
								α (N)=1.128×10 ⁻⁷ <i>16</i> ; α (IPF)=0.0001314 <i>18</i> B(E2)(W.u.)=1.27 <i>17</i>				
		1912.59 <i>13</i>	100 4	1108.416 2	[M1,E2]		0.000335 25	$\alpha(K) = 8.04 \times 10^{-5}$ 16; $\alpha(L) = 8.13 \times 10^{-6}$ 17; $\alpha(M) = 1.213 \times 10^{-6}$ 25				
								α (N)=8.02×10 ⁻⁸ 15; α (IPF)=0.000245 23 B(M1)(W.u.)=0.0044 6 if M1, B(E2)(W.u.)=1.60 20 if E2.				
3033.75	(6 ⁺)	546.6 ^{<i>a</i>} 4 580.1 ^{<i>a</i>} 4	20 <i>20</i> 60 <i>15</i>	2487.07 5 ⁻ 2453.74 6 ⁻	(M1+E2)	+1 4	0.00125 23	α (K)=0.00111 21; α (L)=0.000116 22; α (M)=1.72×10 ⁻⁵ 33 α (N)=1.12×10 ⁻⁶ 20				
3041.37	2+	1012.2 ^{<i>a</i>} 4 1623.8 ^{<i>a</i>} 4 1130.24	100 40 <i>15</i>	2021.68 4 ⁻ 1409.982 4 ⁻ 1911.12 0 ⁻	- - -							
		2478.8 11	100	562.917 2	[M1,E2]		0.00056 4	$\alpha(K)=5.07\times10^{-5}$ 9; $\alpha(L)=5.12\times10^{-6}$ 9; $\alpha(M)=7.64\times10^{-7}$ 14 $\alpha(N)=5.05\times10^{-8}$ 9; $\alpha(IPF)=0.00051$ 4 B(M1)(W.u.)=0.0227 +16-14 if M1, B(E2)(W.u.)=4.95 +35-31 if F2				
3052.55	2+,3+,4+	1513.15 9	100	1539.383 3	M1+E2		0.000221 14	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0001253 \ 34; \ \alpha(\mathbf{L}) = 1.27 \times 10^{-5} \ 4; \ \alpha(\mathbf{M}) = 1.90 \times 10^{-6} \ 5 \\ \alpha(\mathbf{N}) &= 1.251 \times 10^{-7} \ 32; \ \alpha(\mathbf{IPF}) = 8.1 \times 10^{-5} \ 10 \\ \delta: \ -0.05 \ +6-5 \ \text{or} \ +1.64 \ 2 \ (2017 \text{Mu03}) \ \text{in} \ (n,n'\gamma). \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) &= 0.182 \ +31-23 \ \text{if} \ \mathbf{M}1, \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 107 \ +18-14 \ \text{if} \end{aligned}$				
3062.13	(4+,5+)	1652.13 8	100	1409.982 4	[M1,E2]		0.000252 18	E2. $\alpha(K)=0.0001057\ 25;\ \alpha(L)=1.071\times10^{-5}\ 26;\ \alpha(M)=1.60\times10^{-6}\ 4$ $\alpha(N)=1.055\times10^{-7}\ 24;\ \alpha(IPF)=0.000134\ 15$ B(M1)(W.u.)=0.040 +9-6 if M1, B(E2)(W.u.)=19.7 +44-31 if E2				
3066.86	(2+,3+,4+)	1527.46 9	100	1539.383 3	[M1,E2]		0.000224 14	$\alpha(K)=0.0001230 \ 33; \ \alpha(L)=1.248\times10^{-5} \ 35; \ \alpha(M)=1.86\times10^{-6} \ 5 \ \alpha(N)=1.228\times10^{-7} \ 31; \ \alpha(IPF)=8.6\times10^{-5} \ 10 \ B(M1)(W.u.)=0.0069 \ +31-26 \ if \ M1, \ B(E2)(W.u.)=4.0 \ +18-15 \ if \ F2$				
3070.41	4+	1660.41 <i>10</i>	100	1409.982 4	M1+E2		0.000254 18	$\alpha(K)=0.0001047\ 24;\ \alpha(L)=1.061\times10^{-5}\ 26;\ \alpha(M)=1.58\times10^{-6}\ 4$ $\alpha(N)=1.045\times10^{-7}\ 23;\ \alpha(IPF)=0.000137\ 15$				

					Adopted	l Levels, Gamm	as (continued)
						γ ⁽⁷⁶ Ge) (contin	nued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Ι _γ ‡	$\mathbf{E}_f = \mathbf{J}_j^r$. Mult. [#]	α^{\dagger}	Comments
3088.4 3092.10	1 (3 ⁺ ,5 ⁺)	3088.3 7 1682.10 9	100 100	$0.0 0^{-1}$	+ [M1,E2]	0.000260 18	δ: -0.13 8 or +1.5 3 (2017Mu03) in (n,n'γ). B(M1)(W.u.)=0.0063 +25-23 if M1, B(E2)(W.u.)=3.1 +12-11 if E2. $ α(K)=0.0001022 23; α(L)=1.035 \times 10^{-5} 25; α(M)=1.54 \times 10^{-6} 4 $
3129.86	2+	2022.4 9	100 4	1108.416 2	H M1+E2	0.000377 27	$\alpha(N)=1.020\times10^{-7} 22; \ \alpha(IPF)=0.000146 \ 16$ B(M1)(W.u.)=0.0173 24 if M1, B(E2)(W.u.)=8.2 11 if E2. $\alpha(K)=7.26\times10^{-5} \ 14; \ \alpha(L)=7.34\times10^{-6} \ 15; \ \alpha(M)=1.095\times10^{-6} \ 22$ $\alpha(N)=7.24\times10^{-8} \ 13; \ \alpha(IPF)=0.000296 \ 26$ $\delta: \ -0.31 \ +5-6 \ or \ +10 \ +11-3 \ (2017Mu03) \ in \ (n,n'\gamma).$
		3129.78 8	17.8 <i>11</i>	0.0 0	⁺ E2	0.000874 12	B(M1)(W.u.)=0.0092 +10-9 if M1, B(E2)(W.u.)=3.03 +34-29 if E2. $\alpha(K)=3.48\times10^{-5} 5; \alpha(L)=3.51\times10^{-6} 5; \alpha(M)=5.23\times10^{-7} 7$ $\alpha(N)=3.46\times10^{-8} 5; \alpha(IPF)=0.000835 12$ B(E2)(W.u.)=0.061 +8-7
3141.39	1+	1230.2 ^{@d} 5 2578.48 8	58 6	1911.12 0 ⁻ 562.917 2 ⁻	+ + M1+E2	0.00061 4	$\alpha(K)=4.74\times10^{-5} 9; \ \alpha(L)=4.78\times10^{-6} 9; \ \alpha(M)=7.14\times10^{-7} 13$ $\alpha(N)=4.72\times10^{-8} 8; \ \alpha(IPF)=0.00055 4$ $\delta: +0.7 +150-10 \text{ or } +3 +13-3 \ (2017Mu03) \text{ in } (n,n'\gamma).$
		3141.24 8	100.0 <i>18</i>	0.0 0	⁺ M1	0.000791 11	B(M1)(W.u.)=0.00396 +44-51 if M1, B(E2)(W.u.)=0.80 +9-10 if E2. B(M1)(W.u.)=0.00378 +39-43 α (K)=3.38×10 ⁻⁵ 5; α (L)=3.40×10 ⁻⁶ 5; α (M)=5.07×10 ⁻⁷ 7
3147.54	(2) ⁺	1608.29 <i>13</i>	100.0 <i>21</i>	1539.383 3	[M1,E2]	0.000241 16	$\alpha(N)=3.36\times10^{-6} 5; \ \alpha(IPF)=0.000754 77$ $\alpha(K)=0.0001113 27; \ \alpha(L)=1.128\times10^{-5} 29; \ \alpha(M)=1.68\times10^{-6} 4$ $\alpha(N)=1.111\times10^{-7} 26; \ \alpha(IPF)=0.000117 73$ $B(M1)(W_{11})=0.0284 \pm 35 - 29 \text{ if } M1 - B(E2)(W_{11})=14.8 \pm 18 \pm 15 \text{ if } E2$
		2038.2 7	13.3 16	1108.416 2	[M1,E2]	0.000383 28	B(M1)(W.u.)=0.0264 +35-29 fr M1, B(E2)(W.u.)=14.8 +78-75 fr E2. $\alpha(K)=7.16\times10^{-5}$ 14; $\alpha(L)=7.24\times10^{-6}$ 14; $\alpha(M)=1.080\times10^{-6}$ 21 $\alpha(N)=7.14\times10^{-8}$ 13; $\alpha(IPF)=0.000303$ 26 B(M1)(W.u.)=0.00186 +31-27 if M1 B(F2)(W.u.)=0.60 +10-9 if F2
		2584.41 15	44.7 19	562.917 2	- [M1,E2]	0.00061 4	$\alpha(K)=4.72\times10^{-5} \ 9; \ \alpha(L)=4.76\times10^{-6} \ 9; \ \alpha(M)=7.11\times10^{-7} \ 13$ $\alpha(N)=4.70\times10^{-8} \ 8; \ \alpha(IPF)=0.00056 \ 4$ $B(M1)(Wu)=0.00306 \ +39-33 \ \text{if } M1, \ B(E2)(Wu)=0.62 \ +8-7 \ \text{if } E2.$
3162.65	(4)+	1752.65 5	100	1409.982 4	E2+M1	0.000281 21	$\alpha(K) = 9.45 \times 10^{-5} 21; \ \alpha(L) = 9.57 \times 10^{-6} 22; \ \alpha(M) = 1.428 \times 10^{-6} 32$ $\alpha(N) = 9.43 \times 10^{-8} 20; \ \alpha(IPF) = 0.000175 19$ $\delta: -0.09 \ 9 \ or + 1.4 \ 3 \ (2017Mu03) \ in \ (n,n'\gamma).$ $B(M1)(Wu) = 0.280 + 47 - 35 \ if \ M1, \ B(E2)(Wu) = 123 + 21 - 15 \ if \ E2.$
3181.95	(2+,3+)	489.73 9	33.5 26	2692.347 3	- [E1]	0.000741 10	$\alpha(\text{K})=0.000662 \ 9; \ \alpha(\text{L})=6.76\times10^{-5} \ 9; \ \alpha(\text{M})=1.007\times10^{-5} \ 14$ $\alpha(\text{N})=6.54\times10^{-7} \ 9$ B(E1)(W.u.)=0.0014 +6-5
		2618.93 6	100 5	562.917 2	⊢ [M1,E2]	0.00062 4	$\alpha(K)=4.62\times10^{-5} 8$; $\alpha(L)=4.66\times10^{-6} 9$; $\alpha(M)=6.95\times10^{-7} 13$ $\alpha(N)=4.60\times10^{-8} 8$; $\alpha(IPF)=0.00057 4$ B(M1)(W.u.)=0.0016 +7-6 if M1, B(E2)(W.u.)=0.31 +13-12 if E2.

Adopted Levels, Gammas (continued)												
γ ⁽⁷⁶ Ge) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I _γ ‡	$E_f = \frac{J_f^{\pi}}{J_f}$	Mult. [#]	δ #	α^{\dagger}	Comments				
3182.19	(2+)	1642.80 <i>15</i>	22 2	1539.383 3+	[M1,E2]		0.000250 17	$\alpha(K)=0.0001069\ 25;\ \alpha(L)=1.083\times10^{-5}\ 27;\ \alpha(M)=1.62\times10^{-6}\ 4$ $\alpha(N)=1.067\times10^{-7}\ 24;\ \alpha(IPF)=0.000130\ 15$ B(M1)(W,u,)=0.0025 +21-13 if M1, B(E2)(W,u,)=1.2 +11-6 if E2.				
		2073.75 7	100 3	1108.416 2+	[M1,E2]		0.000397 28	$\alpha(K) = 6.94 \times 10^{-5} I3; \ \alpha(L) = 7.01 \times 10^{-6} I4; \ \alpha(M) = 1.047 \times 10^{-6} 20$ $\alpha(N) = 6.92 \times 10^{-8} I3; \ \alpha(IPF) = 0.000319 27$ B(M1)(W u) = 0.0056 +47-28 if M1, B(E2)(W u) = 1.8 +15-9 if E2.				
		2619.20 10	53	562.917 2+	[M1,E2]		0.00062 4	$\alpha(K) = 4.62 \times 10^{-5} \ 8; \ \alpha(L) = 4.66 \times 10^{-6} \ 9; \ \alpha(M) = 6.95 \times 10^{-7} \ 13$ $\alpha(N) = 4.60 \times 10^{-8} \ 8; \ \alpha(IPF) = 0.00057 \ 4$ $B(M1)(W u) = 0.0015 \ + 12 - 8 \ if \ M1 \ B(F2)(W u) = 0.29 \ + 24 - 15 \ if \ F2$				
3191.05	2+	2082.51 9	34.2 25	1108.416 2+	M1+E2		0.000400 29	$\begin{aligned} \alpha(\text{M}) &= (.83)^{-0.53} + 12^{-0.11} \text{ if } \text{MI}, \text{ B}(\text{L2})(\text{w.d.}) &= (.23)^{+2.2^{-1.15}} \text{ if } \text{L2}, \\ \alpha(\text{K}) &= (.83)^{-0.55} + 13; \ \alpha(\text{L}) &= (.96)^{-0.55} + 13; \ \alpha(\text{M}) &= (.03)^{-0.25} + 10^{-0.55} + 10^{-0.55} \text{ if } \text{M}, \\ \alpha(\text{N}) &= (.83)^{-0.55} + 13^{-0.55} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 10^{-0.55} \text{ if } \text{H}, \\ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} + 12^{-0.15} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \\ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \\ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \\ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \\ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{M}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.15} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } \text{ if } \text{H}, \ \alpha(\text{M}) &= (.13)^{-0.55} + 12^{-0.55} \text{ if } i$				
		2628.08 12	100 4	562.917 2+	M1+E2		0.00063 4	$\alpha(\text{M}) = (4.59 \times 10^{-5} \ 8; \ \alpha(\text{L}) = 4.63 \times 10^{-6} \ 9; \ \alpha(\text{M}) = 6.91 \times 10^{-7} \ 13$ $\alpha(\text{N}) = 4.57 \times 10^{-8} \ 8; \ \alpha(\text{IPF}) = 0.00058 \ 4$ $\delta: +0.36 + 21 - 10 \ \text{or} + 1.03 + 25 - 81 \ (2017\text{Mu03}) \ \text{in} \ (n,n'\gamma).$ $\mathbf{R}(\text{M}) (\text{W} \ n) = 0.0064 + 8 - 7 \ \text{if} \ \text{M1} \ \text{R}(\text{F2})(\text{W} \ n) = 1.25 + 16 - 13 \ \text{if} \ \text{F2}$				
		3190.99 4	13.8 <i>13</i>	0.0 0+	E2		0.000898 13	$\alpha(\text{K})=3.37\times10^{-5} \ 5; \ \alpha(\text{L})=3.40\times10^{-6} \ 5; \ \alpha(\text{M})=5.07\times10^{-7} \ 7 \ \alpha(\text{N})=3.35\times10^{-8} \ 5; \ \alpha(\text{IPF})=0.000860 \ 12 \ \text{B(E2)(W,u)}=0.065 \ +10-9$				
3200.01	(3)+	2091.67 14	82 4	1108.416 2+	M1+E2		0.000404 29	$\alpha(K) = 6.83 \times 10^{-5} \ 13; \ \alpha(L) = 6.90 \times 10^{-6} \ 13; \ \alpha(M) = 1.030 \times 10^{-6} \ 20$ $\alpha(N) = 6.81 \times 10^{-8} \ 12; \ \alpha(IPF) = 0.000328 \ 28$ $\delta: +0.05 + 9 - I \ or \ -7 + 14 - 3 \ (2017Mu03) \ in \ (n,n'\gamma).$ B(M1)(W,u) = 0.0016 + 13 - 8 if M1. B(E2)(W,u) = 0.48 + 38 - 24 if E2.				
		2636.64 27	100 4	562.917 2+	M1+E2		0.00063 4	$\begin{aligned} \alpha(\mathbf{K}) &= 4.57 \times 10^{-5} \ 8; \ \alpha(\mathbf{L}) &= 4.60 \times 10^{-6} \ 8; \ \alpha(\mathbf{M}) &= 6.87 \times 10^{-7} \ 13 \\ \alpha(\mathbf{N}) &= 4.55 \times 10^{-8} \ 8; \ \alpha(\mathbf{IPF}) &= 0.00058 \ 4 \\ \delta: \ -8 \ +13 \ -3 \ \text{or} \ +0.08 \ 8 \ \text{in} \ (\mathbf{n}, \mathbf{n}' \gamma). \\ \mathbf{R}(\mathbf{M}) (\mathbf{W} \ \mathbf{n}) &= 9 \times 10^{-4} \ +8 \ -5 \ \text{if} \ \mathbf{M}1 \ \mathbf{R}(\mathbf{F}2) (\mathbf{W} \ \mathbf{n}) &= 0 \ 18 \ +15 \ -9 \ \text{if} \ \mathbf{F}2 \end{aligned}$				
3200.07	(1,2 ⁺)	3200.0 2		0.0 0+								
3231.8 3236.02	4 ⁺ (5) ⁺	$2668.8^{\circ a} 4$ $782.1^{a} 4$	100	562.917 2 ⁺ 2453.74 6 ⁺				I_{γ} : I(782.1 γ)/I(1826 γ)=100/40 in (⁷⁶ Ge, ⁷⁶ Ge').				

 $_{32}^{76}{
m Ge}_{44}$ -19

					as (continued)				
							$\gamma(^{76}\text{Ge})$ (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	δ #	α^{\dagger}	Comments
3236.02	(5)+	1214.23 11	85 4	2021.68	4+	M1+E2	+2.2 +31-18	0.000235 15	α (K)=0.000201 <i>11</i> ; α (L)=2.05×10 ⁻⁵ <i>12</i> ; α (M)=3.05×10 ⁻⁶
		1826.15 <i>12</i>	100 4	1409.982	4+	M1+E2		0.000305 23	<i>18</i> $\alpha(N)=2.00\times10^{-7}$ <i>11</i> ; $\alpha(IPF)=1.03\times10^{-5}$ <i>20</i> B(M1)(W.u.)<0.13; B(E2)(W.u.)=140 +26-96 $\alpha(K)=8.76\times10^{-5}$ <i>18</i> ; $\alpha(L)=8.86\times10^{-6}$ <i>19</i> ; $\alpha(M)=1.322\times10^{-6}$ <i>29</i> $\alpha(N)=8.73\times10^{-8}$ <i>17</i> ; $\alpha(IPF)=0.000207$ <i>21</i>
3243.79	1+	2680.90 10	100 5	562.917	2+	M1+E2		0.00065 4	δ: +0.48 + I3 - 20 or + 1.9 + I0 - I7 (2017Mu03) in (n,n'γ). B(M1)(W.u.)=0.064 7 if M1, B(E2)(W.u.)=25.8 28 if E2. $ α(K)=4.44\times10^{-5} 8; α(L)=4.48\times10^{-6} 8; α(M)=6.68\times10^{-7} $ I2 $ α(K)=4.42\times10^{-8} 8; α(IPE)=0.00060 4 $
3312 20	3-	3243.66 9	16.8 <i>12</i>	0.0	0 ⁺	M1		0.000830 12	$\begin{aligned} &\delta: -4 + 60 - 2 \text{ or } + 0.04 \ 2 \ (2017\text{Mu03}) \text{ in } (n,n'\gamma). \\ &B(\text{M1})(\text{W.u.}) = 0.0239 + 18 - 20 \text{ if } \text{M1}, B(\text{E2})(\text{W.u.}) = 4.47 \\ &+ 33 - 37 \text{ if } \text{E2}. \\ &\alpha(\text{K}) = 3.20 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 3.22 \times 10^{-6} \ 5; \ \alpha(\text{M}) = 4.81 \times 10^{-7} \ 7 \\ &\alpha(\text{N}) = 3.19 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000795 \ 11 \\ B(\text{M1})(\text{W.u.}) = 0.00226 \ 24 \end{aligned}$
5512.29	3	1902.2 2 2203.86 16	100 8	1409.982	2^{+}				
3322.80	(2 ⁺)	1912.7 <i>1</i>	26 2	1409.982	4+	[E2]		0.000359 5	$\alpha(K) = 8.15 \times 10^{-5} \ 11; \ \alpha(L) = 8.25 \times 10^{-6} \ 12; \alpha(M) = 1.232 \times 10^{-6} \ 17 \alpha(N) = 8.12 \times 10^{-8} \ 11; \ \alpha(IPF) = 0.000268 \ 4 D(F2)(MW) = 1.1 + 7.5$
		2214.36 8	100 3	1108.416	2+	[M1,E2]		0.000454 32	B(E2)(W,U)=1.1 +7-5 $\alpha(K)=6.18 \times 10^{-5} II; \alpha(L)=6.23 \times 10^{-6} I2;$ $\alpha(M)=9.31 \times 10^{-7} I8$
			10.0		a +				α (N)=6.15×10 ⁻⁸ <i>11</i> ; α (IPF)=0.000385 <i>31</i> B(M1)(W.u.)=0.0072 +45-31 if M1, B(E2)(W.u.)=2.0 + <i>12</i> -9 if E2.
		2759.95 14	49 3	562.917	2*	[M1,E2]		0.00068 4	$\alpha(K)=4.23\times10^{-5} 8; \ \alpha(L)=4.26\times10^{-6} 8; \ \alpha(M)=6.36\times10^{-7} I2$ $\alpha(N)=4.21\times10^{-8} 7; \ \alpha(IPF)=0.00063 4$ $B(M1)(W.u.)=0.0018 + I2 - 8 \text{ if } M1, \ B(E2)(W.u.)=0.32$ +20-I4 if E2.
3409.19 3419.47	(1,2,3) 1 ⁺	661.4 ^d 2 2310.9	100	2747.75 1108.416	$(2)^+$ 2 ⁺ 2 ⁺				
		2830.4 3419.7 6		0.0	0^{+}	M1		0.000896 13	$\alpha(K)=2.94\times10^{-5}$ 4; $\alpha(L)=2.96\times10^{-6}$ 4; $\alpha(M)=4.42\times10^{-7}$ 6 $\alpha(N)=2.93\times10^{-8}$ 4; $\alpha(IPF)=0.000863$ 12

 $_{32}^{76}{
m Ge}_{44}$ -20

From ENSDF

 $_{32}^{76}\text{Ge}_{44}$ -20

					A	Adopted Leve	els, Gammas (con	ntinued)
						$\gamma(^{76}$	Ge) (continued)	
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\ddagger}	I _γ ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
3436.9		767.8 4	100	2669.12	3+,4+			
3477.62	(2+,3)	335.9 ^d 5	100 25	3141.39	1^{+}			
		2369.8 ^d 6	52	1108.416	2^{+}			
		2914.6 ^d 2	14 2	562.917	2^{+}			
3484.0	3-	2074 1		1409.982	4+			
	(- 4)	2921 <i>I</i>		562.917	2+			
3532.81	(7*)	499.1^{aa} 4	20 20	3033.75	(6^+)			
3536.0		1043.7" 4 547 9 4	100	2487.07	5			
3543.27	8+	1089.6 4	100	2453.74	6+			
3576.96		2037.5 ^d		1539.383	3+			
		3014.0 ^{<i>a</i>} 3		562.917	2+			
3596.79	2+	3033.8		562.917	2^{+}			5
		3596.7 4		0.0	0^{+}	E2	$1.05 \times 10^{-3} 2$	$\alpha(K) = 2.79 \times 10^{-5} 4; \ \alpha(L) = 2.81 \times 10^{-6} 4; \ \alpha(M) = 4.19 \times 10^{-7} 6$
2622.02	(2+)	1 (12 Th 2	10.7	2021 (0	4+			$\alpha(N)=2.7\times10^{-6}$ 4; $\alpha(IPF)=0.001018$ 14
3632.92	(2^{+})	1612.7° 3	49 /	2021.68	4' 0+			E_{γ} : poor fit; level-energy difference=1611.6.
		2524.0 2	86 6	1108.416	0 2 ⁺			
		3069.90 13	100 6	562.917	$\frac{1}{2^{+}}$			
3680.70	1-	3117.7		562.917	2^{+}			
		3680.6 1		0.0	0^{+}	E1	$1.57 \times 10^{-3} 2$	$\alpha(K)=1.830\times10^{-5}\ 26;\ \alpha(L)=1.835\times10^{-6}\ 26;$
								$\alpha(M) = 2.74 \times 10^{-7} 4$
3727 83	(7^{-})	769 5 <mark>a</mark> 4	30.20	2958.06	5-			$\alpha(N)=1.809\times10^{\circ}$ 23; $\alpha(IPF)=0.001545$ 22
5121.05	(7)	$1274 3^{a} 4$	100	2958.00	5 6 ⁺	(E1+M2)	0 0001977 34	$\alpha(K) = 9.04 \times 10^{-5}$ 29: $\alpha(L) = 9.14 \times 10^{-6}$ 30: $\alpha(M) = 1.36 \times 10^{-6}$ 5
		1271.5 7	100	2155.71	0	(1111112)	0.0001777 57	$\alpha(N)=8.96\times10^{-8}$ 30: $\alpha(IPF)=9.68\times10^{-5}$ 17
								δ : +9 7 or +0.2 6.
3763.40	1+	2655.0		1108.416	2+			
		3200.3		562.917	2+ 0+	2.61	1.02.10-3.1	(T) 2521-10-5 25 (T) 254-10-6 (C) 200-10-7 5
		3/63.3 2		0.0	01	MI	$1.02 \times 10^{-5} I$	$\alpha(K) = 2.531 \times 10^{-5} 35; \ \alpha(L) = 2.54 \times 10^{-5} 4; \ \alpha(M) = 3.80 \times 10^{-5} 5$
3783 57	$(4^+ 567^-)$	750 0^a 4	100	3033 75	(6^{+})			$\alpha(N)=2.517\times10^{-5}55; \alpha(PP)=0.00099114$
5705.57	(1,5,6,7)	825.3 ^{<i>a</i>} 4	25 20	2958.06	5-			
3886.97	(3 ⁻)	2347.40 25	55 6	1539.383	3+			
		2476.60 40	27 6	1409.982	4+ 2+			
		2779.14	100 10	1108.416	2+			
3951.88	1-	1259.9.5	7 2	2692.347	<u>2</u> 3-	[E2]	0.0002292 32	B(E2)(W.u.) = 10.6 + 39 - 33
								$\alpha(K)=0.0001877\ 26;\ \alpha(L)=1.914\times10^{-5}\ 27;\ \alpha(M)=2.86\times10^{-6}$

					as (continued)			
							$\gamma(^{76}\text{Ge})$ (contin	nued)
E _i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
3951.88	1-	2040.70 25	8 2	1911.12	0+	[E1]	0.000707 10	4 $\alpha(N)=1.873\times10^{-7} 26; \ \alpha(IPF)=1.929\times10^{-5} 29$ B(E1)(W.u.)= $5.8\times10^{-5} +20-16$ $\alpha(K)=4.11\times10^{-5} 6; \ \alpha(L)=4.14\times10^{-6} 6; \ \alpha(M)=6.17\times10^{-7} 9$ $\alpha(N)=4.07\times10^{-8} 6; \ \alpha(IPF)=0.000661 9$
		2843.50 9	38 2	1108.416	2+	[E1]	1.18×10 ⁻³ 2	I _γ : preliminary result in 2014Do08 suggests ≈11. B(E1)(W.u.)=1.01×10 ⁻⁴ +23-16 α (K)=2.57×10 ⁻⁵ 4; α (L)=2.58×10 ⁻⁶ 4; α (M)=3.85×10 ⁻⁷ 5 α (N)=2.54×10 ⁻⁸ 4; α (BE)=0.001150 16
		3388.75 12	67 <i>4</i>	562.917	2+	[E1]	1.45×10 ⁻³ 2	$a(N)=2.54\times10^{-4} + \alpha(PF)=0.001130\ TO$ B(E1)(W.u.)=1.05×10 ⁻⁴ +24-17 $\alpha(K)=2.035\times10^{-5}\ 28;\ \alpha(L)=2.042\times10^{-6}\ 29;\ \alpha(M)=3.05\times10^{-7}\ 4$ $\alpha(N)=2.013\times10^{-8}\ 28;\ \alpha(PF)=0.001424\ 20$
		3951.70 <i>14</i>	100 8	0.0	0+	[E1]	1.68×10 ⁻³ 2	$B(E1)(W.u.)=9.9\times10^{-5} +22-16$ $\alpha(K)=1.672\times10^{-5} 23; \ \alpha(L)=1.676\times10^{-6} 23; \ \alpha(M)=2.500\times10^{-7} 35$ $\alpha(N)=1.653\times10^{-8} 23; \ \alpha(IPF)=0.001661 23$
4024.11	1 ⁽⁻⁾	4024.0 2	100	0.0	0^+	(E1)	$1.71 \times 10^{-3} 2$	$\alpha(K) = 1.634 \times 10^{-5} 23; \ \alpha(L) = 1.638 \times 10^{-6} 23; \ \alpha(M) = 2.443 \times 10^{-7} 34$ $\alpha(N) = 1.616 \times 10^{-8} 23; \ \alpha(IPF) = 0.001688 24$
4035.12	1	4035.0 2	100	0.0	0^{+}			
4116.02	1	4115.9 2		0.0	0^{+}			
4122.28?	$(1,2^{+})$	3559.5 ^{<i>a</i>} 4	100 8	562.917	2+			
		4121.8 ^d 5	43 6	0.0	0^{+}			
4129.8	8^{+}	1096.0 ^{<i>a</i>} 4	100	3033.75	(6^+)			
4130.6		894.6 ^a 4	100	3236.02	(5)'			
4192.80?	$(2^+,3)$	1273.05 ^d 10	100 6	2919.74	1+			
		2782.70 ^d 40	84 7	1409.982	4-			
4239.36	(1,2,3)	927.05 ^a 10	100.6	3312.29	3-			
4250.02	1	3130.7 ⁴ 6	23 5	1108.416	2^+			
4250.95	1	4230.8 3 775 1 ^{<i>a</i>} 4	70.20	0.0 3536.0	0.			
4311.1		1323.0^{a} 4	100	2988.09				
4326.43	(1.2.3)	1014.2^{d} 2	31.5	3312.29	3-			
	(-,-,-)	1634.0^{d} 2	100.5	2692.347	3-			
4331.3	1	4331.2 12	100	0.0	0^{+}			
4363.47	4+	885.83 ^d 10	100 8	3477.62	(2+,3)			
		1443.9 ^d 5	20 5	2919.74	1+	[M3]	0.000548 8	α (K)=0.000483 7; α (L)=5.01×10 ⁻⁵ 7; α (M)=7.50×10 ⁻⁶ 11 α (N)=4.94×10 ⁻⁷ 7; α (IPF)=6.52×10 ⁻⁶ 9

I

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I _γ ‡	E_f	${ m J}_{f}^{\pi}$	Mult. [#]	α^{\dagger}	Comments
								E _{γ} : this γ from $J^{\pi}=4^+$ to J=1 requiring high multipolarity is guestionable.
4476.67?	(≤4)	843.8 ^d 2	100 10	3632.92	(2^{+})			1
		3913.3 ^d 5	11 3	562.917	2+			
4546.8	9+	1014.0 4	100	3532.81	(7^{+})			
4613.0	10^{+}	1069.7 ^a 4	100	3543.27	8+			
4623.7	1+	4623.5 11		0.0	0+	M1	$1.30 \times 10^{-3} 2$	$\alpha(K)=1.849\times10^{-5} 26; \ \alpha(L)=1.857\times10^{-6} 26; \ \alpha(M)=2.77\times10^{-7} 4$ $\alpha(N)=1.837\times10^{-8} 26; \ \alpha(IPF)=0.001275 \ 18$
4661.2	1	4661.0 4		0.0	0^{+}			
4678.26	1	4678.1 <i>1</i>		0.0	0^{+}			
4686.8	(9 ⁻)	958.9 ^a 4	100	3727.83	(7-)			
		1143.6 ^{<i>a</i>} 4	40 30	3543.27	8+			
4719.88	$(2^+, 3, 4^+)$	1310.6 ^{<i>a</i>} 3	75 13	3409.19	(1,2,3)			
		1878.3 2	98 11	2841.61	2+			
1700 5		2435.6 3	100 13	2284.22	$(3)^{-}$			
4720.5		936.9 4	100	3/83.5/	(4',5,6,7)			
1700.06	(1)	992.7 ^u 4	55	3727.83	(7^{-})			
4722.36	(1)	4722.2 2		0.0	0^{+}			
4/41.10	(1.0.0)	4/41.0 2	74.15	0.0	0			
4784.04?	(1,2,3)	1461.2 ^{<i>u</i>} 3	74 15	3322.80	(21)			
1700.07		3675.60 ^{<i>a</i>} 45	100 11	1108.416	2^+			
4/89.06		4/88.9 3		0.0	0			
4812.47?	$(2^+,3)$	1892.7 ^{<i>a</i>} 2	100 7	2919.74	1+			
		3402.4 ^{<i>a</i>} 3	33 5	1409.982	4+			
4814.92?	(1,2,3)	1182.1 ^{<i>d</i>} 3	100 15	3632.92	(2^{+})			
		1502.3 ^d 5	96 <i>13</i>	3312.29	3-			
4837.2	(1)	4837.0 4		0.0	0+			
4846.07	1	4845.9 3		0.0	0^+			
4874.67	1	4874.5 2		0.0	0^+			
4917.2	1	4917.0 6		0.0	0^{+}			
4930.07 5116 50	1	4933.9 Z 5116 A 2		0.0	0+			
5122.47	(1.2.3)	1489.6 4	34 10	3632.92	(2^+)			
5144.17	(1,2,3)	1940.30 14	100 7	3182.19	(2^+)			
		1980.4 5	32 6	3141.39	1+			
5166.89	(1)	5166.7 2		0.0	0^{+}			
5185.99	(1)	5185.8 <i>1</i>		0.0	0^{+}			
5202.49	1	5202.3 2		0.0	0^{+}			

						Adopted	Levels, Gamma	as (continued)		
γ ⁽⁷⁶ Ge) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$lpha^\dagger$	Comments		
5222.19		5222.0 <i>3</i>		0.0	0^{+}					
5267.00	1	5266.8 <i>3</i>		0.0	0^{+}					
5273.8	(1)	5273.6 6		0.0	0^{+}					
5285.10	1	5284.9 2		0.0	0^{+}					
5304.30	1	5304.1 <i>3</i>		0.0	0^{+}					
5365.80	1	5365.6 3		0.0	0^+					
5379.7	1	5379.5 4		0.0	0^+					
5390.8	(1)	5390.6 5		0.0	0^{+}					
5418.8	(1)	5418.0 4		0.0	0+					
5454.51	I (12+)	3434.3 3	100	0.0	0 10±					
5450.0?	(12^{+})	837.0 ^{cd} 4	100	4613.0	10					
5522.58	(1,2,3)	1282.9 ^{cu} 4	<81	4239.36	(1,2,3)					
		2680.9 3	92 10	2841.61	$\frac{2}{(0+1+)}$					
5540.42	1	2808.1 2	100 14	2054.51	$(0^{+},1^{+})$					
5567.62	(1)	5567 4 2	100	0.0	0+					
5579.0	1	5578.8.5		0.0	0^{+}					
5626.7	1	5626.5 8	100	0.0	0^{+}					
5663.32	(2^{+})	2481.1 4	50 10	3182.19	(2^{+})					
		2970.90 15	100 12	2692.347	3-					
		3752.10 50	42 9	1911.12	0^{+}					
		4253.3 5	579	1409.982	4+					
5665.43	1	5665.2 3		0.0	0^+					
5677.83	1	5677.63	100	0.0	0+	-	a a a a a			
5699.03	I	5698.8 2	100	0.0	0'	EI	2.23×10 ³ 3	$\alpha(\mathbf{K}) = 1.069 \times 10^{-5} I_{5}; \ \alpha(\mathbf{L}) = 1.070 \times 10^{-6} I_{5}; \ \alpha(\mathbf{M}) = 1.597 \times 10^{-7} I_{2}^{2}$ $\alpha(\mathbf{N}) = 1.057 \times 10^{-8} I_{5}; \ \alpha(\mathbf{IPF}) = 0.002215 \ 31$		
5708.6	(1)	5708.4 6		0.0	0^{+}		2			
5748.53	1-	5748.3 1	100	0.0	0^{+}	E1	2.24×10^{-3} 3	$\alpha(K)=1.058\times10^{-5} \ 15; \ \alpha(L)=1.059\times10^{-6} \ 15; \ \alpha(M)=1.580\times10^{-7} \ 22$ $\alpha(N)=1.046\times10^{-8} \ 15; \ \alpha(IPF)=0.002227 \ 31$		
5749.90?	(1,2,3)	2981.2 ^d 4	100 20	2768.73	2+					
		3465.5 ^d 4	68 <i>13</i>	2284.22	$(3)^{-}$					
5785.24	1	5785.0 2		0.0	0^{+}					
5794.34	1	5794.1 2		0.0	0^{+}					
5821.0		5820.8 6		0.0	0^{+}					
5825.5	1	5825.3 8		0.0	0^{+}					
5843.2	(11^{-})	1156.4 ^{<i>a</i>} 4	100	4686.8	(9 ⁻)					
5846.7		5846.5 7		0.0	0^+					
5865.0		5864.8 6		0.0	0'					
5882.92?	(1,2,3)	2700.5 ^{<i>a</i>} 4	94 16	3182.19	(2^{+})					

	Adopted Levels, Gammas (continued)										
γ ⁽⁷⁶ Ge) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	α^{\dagger}	Comments			
5882.92?	(1,2,3)	3190.6 ^d 3	100 13	2692.347	3-						
5909.05		5908.8 <i>3</i>		0.0	0^{+}						
5955.9	1	5955.6 8	100	0.0	0^{+}						
5983.25	1-	5983.0 2	100	0.0	0^{+}	E1	2.30×10^{-3} 3	$\alpha(K)=1.009\times10^{-5} \ 14; \ \alpha(L)=1.010\times10^{-6} \ 14; \ \alpha(M)=1.507\times10^{-7} \ 21$ $\alpha(N)=9.98\times10^{-9} \ 14; \ \alpha(IPF)=0.002285 \ 32$			
6021.13?	(1,2,3)	3328.7 <mark>d</mark> 8	100 30	2692.347	3-						
		3366.5 ^d 3	73 14	2654.51	$(0^+, 1^+)$						
		3736 90 ^d 45	80.20	2284 22	$(3)^{-}$						
6048.7	1	6048.4 4	00 20	0.0	0^{+}						
6065.1?	(1.2.3)	2882.9 <mark>d</mark> 9	47 16	3182.19	(2^{+})						
	(-,_,_)	$3145 3^{d} 4$	100.20	2919 74	1+						
6081.7	(1)	6081.4 4	100 20	0.0	0^{+}						
6102.3	(-)	6102.0 9		0.0	0^{+}						
6113.86	1	6113.6 <i>3</i>		0.0	0^{+}						
6130.57	1	6130.3 2		0.0	0^{+}						
6145.87	1	6145.6 2		0.0	0^{+}						
6162.7		6162.4 9		0.0	0^+						
6191.57	1	6191.3 2		0.0	0^+						
6223.7	1	6223.4 /		0.0	0						
0228.3 6225 1	1	6224.8.0		0.0	0+						
6240.98	1	6240 7 3		0.0	0^{+}						
6272.98	1	6272.7.3		0.0	0^{+}						
6285.58	1	6285.3 2		0.0	0^{+}						
6315.7	1	6315.4 4		0.0	0^{+}						
6330.48	1	6330.2 2		0.0	0^{+}						
6366.5		6366.2 11		0.0	0^{+}						
6393.5	1	6393.2 5		0.0	0^+						
6408.4	1	6408.1 5		0.0	0^+						
6436.4		6436.1 9		0.0	0^+						
6448.6	1	6448.3 11		0.0	0^{+}						
6408 20	1	6407.0.3		0.0	0+						
6513.6	1	6513 3 4		0.0	0^{+}						
6572.3	1	6572.0 6		0.0	0^{+}						
6601.51	1	6601.2 2		0.0	0^{+}						
6611.4		6611.1 6		0.0	0^{+}						
6629.31	1	6629.0 <i>3</i>		0.0	0^{+}						
6642.2		6641.9 5		0.0	0^{+}						
6661.7		6661.4 9		0.0	0^{+}						

25

 $_{32}^{76}{
m Ge}_{44}$ -25

I

 $^{76}_{32}{
m Ge}_{44}$ -25

$\gamma(^{76}\text{Ge})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult.#	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} [‡]	$E_f J_f^{\pi}$	Mult.#
6670.91	1	6670.6 3		$0.0 0^+$		7723.1	(1)	7722.7 4		$0.0 0^+$	
6741.9	(1)	6741.6 6		$0.0 0^+$		7777.3	(1)	7776.9 7		$0.0 0^+$	
6765.1	ì	6764.8 4		$0.0 0^+$		7784.2		7783.8 9		$0.0 0^+$	
6787.03	1	6786.7 2		$0.0 0^+$		7797.0	1	7796.6 4		$0.0 0^+$	
6816.83	1	6816.5 <i>3</i>		$0.0 0^+$		7804.1	1	7803.7 6		$0.0 0^+$	
6835.83	1	6835.5 2		$0.0 0^+$		7814.7	1	7814.3 7		$0.0 0^+$	
6846.53	1	6846.2 <i>3</i>		0.0 0+		7817.63		7817.2 2		0.0 0+	
6880.6	1	6880.3 4		$0.0 0^+$		7836.7		7836.3 6		$0.0 0^+$	
6884.5		6884.2 10		0.0 0+		7849.7	(1)	7849.3 5		0.0 0+	
6899.2	1	6898.9 5		$0.0 0^+$		7861.6	ì	7861.2 4		$0.0 0^+$	
6908.3		6908.0 18		0.0 0+		7883.7	1	7883.3 10		0.0 0+	
6938.9	1	6938.6 7		$0.0 0^+$		7894.0		7893.6 12		$0.0 0^+$	
6960.24	1	6959.9 <i>3</i>		$0.0 \ 0^+$		7916.2	1-	7915.8 24	100	$0.0 \ 0^+$	E1
6985.4	1	6985.1 5		$0.0 \ 0^+$		7950.35	1	7949.9 2		$0.0 \ 0^+$	
6999.05	1-	6998.7 <i>3</i>	100	$0.0 \ 0^+$	E1	7976.1	(1)	7975.6 7		$0.0 \ 0^+$	
7011.4	1	7011.0 9		$0.0 \ 0^+$		7996.3	(1)	7995.8 4		$0.0 \ 0^+$	
7026.35	$1^{(-)}$	7026.0 <i>3</i>		$0.0 0^+$	(E1)	8018.0	(1)	8017.5 14		$0.0 \ 0^+$	
7048.3	1	7047.9 9		$0.0 0^+$		8027.0	(1)	8026.5 8		$0.0 0^+$	
7081.6	1	7081.2 9		0.0 0+		8049.8	(1)	8049.3 6		0.0 0+	
7091.8	1	7091.4 4		$0.0 \ 0^+$		8063.9	1	8063.4 8		$0.0 \ 0^+$	
7102.8	1	7102.4 6		$0.0 \ 0^+$		8094.7		8094.2 8		$0.0 \ 0^+$	
7121.66	1	7121.3 <i>3</i>		$0.0 \ 0^+$		8103.3		8102.8 5		$0.0 \ 0^+$	
7130.46	1	7130.1 <i>3</i>		$0.0 \ 0^+$		8110.0		8109.5 8		$0.0 \ 0^+$	
7147.7	1	7147.3 4		$0.0 \ 0^{+}$		8135.0		8134.5 11		$0.0 \ 0^{+}$	
7172.0		7171.6 9		$0.0 \ 0^+$		8152.3	$1^{(-)}$	8151.8 5	100	$0.0 \ 0^+$	(E1)
7250.9	1-	7250.5 7		$0.0 \ 0^+$	E1	8160.7		8160.2 9		$0.0 \ 0^+$	× /
7290.1		7289.7 4		$0.0 \ 0^+$		8178.3	1	8177.8 4		$0.0 \ 0^+$	
7301.08	1-	7300.7 <i>3</i>		$0.0 \ 0^+$	E1	8188.3	1	8187.8 5		$0.0 \ 0^+$	
7407.09	1	7406.7 <i>3</i>		$0.0 \ 0^{+}$		8236.9	(1)	8236.4 4		$0.0 \ 0^+$	
7416.0		7415.6 4		$0.0 \ 0^{+}$		8253.4		8252.9 9		$0.0 \ 0^{+}$	
7452.6		7452.2 5		$0.0 \ 0^{+}$		8260.1	(1)	8259.66		$0.0 \ 0^+$	
7479.0		7478.6 5		$0.0 \ 0^{+}$		8284.99	(1)	8284.5 <i>3</i>		$0.0 \ 0^+$	
7485.40	1	7485.0 <i>3</i>		$0.0 \ 0^{+}$		8294.8		8294.3 12		$0.0 \ 0^+$	
7521.6	1	7521.2 5		$0.0 \ 0^{+}$		8304.0	1	8303.5 5		$0.0 \ 0^+$	
7537.0	(1)	7536.6 4		$0.0 \ 0^{+}$		8318.29	1	8317.8 <i>3</i>		$0.0 \ 0^+$	
7549.2	(1)	7548.8 7		$0.0 \ 0^{+}$		8329.4	1	8328.9 7		$0.0 \ 0^+$	
7585.0	1	7584.6 <i>4</i>		$0.0 \ 0^{+}$		8348.2		8347.7 9		$0.0 \ 0^+$	
7643.0	1	7642.6 4		$0.0 \ 0^+$		8357.9	(1)	8357.4 7		$0.0 \ 0^+$	
7651.2	1	7650.8 4		$0.0 \ 0^+$		8397.8		8397.3 5		$0.0 \ 0^+$	
7678.1	1	7677.7 4		$0.0 \ 0^{+}$		8418.5		8418.0 15		$0.0 \ 0^+$	
7694.6	1	7694.2 11	100	$0.0 \ 0^+$		8425.70	1	8425.2 <i>3</i>	100	$0.0 \ 0^+$	
						-					

26

$\gamma(^{76}\text{Ge})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I _γ ‡	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
8446.6	(1)	8446.1.7		$0.0 0^+$		9020.1	(1)	9019.5 10	$0.0 0^+$
8462.4	(1)	8461.9.9		$0.0 0^+$		9033.7	(1)	9033.1 9	$0.0 0^+$
8500.51	1	8500.0 3		$0.0 0^+$		9052.3	(1)	9051.7 12	$0.0 0^+$
8521.2		8520.7 6		0.0 0+		9059.1		9058.5 11	0.0 0+
8535.6	1	8535.1 5		$0.0 \ 0^+$		9163.9	1	9163.3 9	$0.0 \ 0^+$
8546.6	1-	8546.1 5		$0.0 \ 0^+$	E1	9176.1	1	9175.5 8	$0.0 \ 0^+$
8552.8	1	8552.3 8		$0.0 \ 0^+$		9188.0	1	9187.4 <i>4</i>	$0.0 \ 0^+$
8567.42	1	8566.9 <i>3</i>		$0.0 \ 0^+$		9255.2		9254.6 7	$0.0 \ 0^+$
8602.8		8602.3 5		$0.0 \ 0^+$		9264.7		9264.1 6	$0.0 \ 0^+$
8626.2	1	8625.7 7		$0.0 \ 0^+$		9305.6		9305.0 4	$0.0 \ 0^+$
8649.6		8649.1 8		$0.0 \ 0^+$		9316.4		9315.8 4	$0.0 \ 0^+$
8662.5	(1)	8662.0 4		$0.0 \ 0^+$		9338.4		9337.8 6	$0.0 \ 0^+$
8696.7		8696.2 7		$0.0 \ 0^+$		9355.1	(1)	9354.5 8	$0.0 \ 0^+$
8741.2	(1)	8740.7 4		$0.0 \ 0^+$		9366.5	1	9365.9 <i>5</i>	$0.0 \ 0^+$
8753.2	1-	8752.7 6		$0.0 \ 0^+$	E1	9378.5	(1)	9377.9 4	$0.0 \ 0^+$
8768.9	1	8768.4 9		$0.0 \ 0^+$		9400.0	1	9399.4 6	$0.0 \ 0^+$
8806.8		8806.2 5		$0.0 \ 0^+$		9410.5	1	9409.9 <i>4</i>	$0.0 \ 0^+$
8844.3	1	8843.7 4		$0.0 \ 0^{+}$		9418.2	1	9417.6 5	$0.0 \ 0^+$
8889.1		8888.5 9		$0.0 \ 0^+$		9557.2	1	9556.6 <i>5</i>	$0.0 \ 0^+$
9014.2	1-	9013.6 14	100	$0.0 \ 0^+$	E1				

27

[†] Additional information 4.
 [‡] When a level is populated in more than one gamma-ray datasets, averages of all available data of comparable precision are taken. Exceptions are noted.

[#] From $\gamma(\theta)$ in $(n,n'\gamma)$. RUL for E2 and M2 restricts to E2 and M1+E2 for mult=Q and D+Q, respectively. Exceptions are noted.

[@] From $(n,n'\gamma)$ only.

[&] Placement suggested by the evaluators. ^a γ from ²³⁸U(⁷⁶Ge, ⁷⁶Ge' γ) only.

^{*b*} Poor fit, level-energy difference=1611.6.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) · 65/5 · -'040'> 6272.98 6240.98 1 6235.1 1 6228.5 6223.7 1 6191.57 6162.7 513n 1 6145.87 6130.57 1 8-4 1 6113.86 6102.3 (1) 33.55 | 28.7 | 16. .S 6081.7 36.90 | 36.90 | 36.50 | <u>6065.1</u> (1,2,3) ŝ 8 <u>1</u> (1,2,3) 5965 6048.7 '9.5° <u>6021.13</u> 8 5983.25 0.150 eV 20 1 5955.9 0.194 eV 23 1 5909.05 8-30 (1,2,3) JAY. 5882.92 _|_ 5865.0 5846.7 (11^{-}) 5843.2 8 5825.5 1 5821.0 8 1 5794.34 _ ÷ -i--W _ _ _ 5785.24 $\frac{1}{(1,2,3)}$ <u>5749.90</u> 1 I. $\frac{1^{-}}{(1)}$ 5748.53 0.166 eV 24 1 ŝ, 5708.6 تقي. 5699.03 1 0.256 eV 22 5677.83 1 1 5665.43 1 (9^-) 4686.8 (2⁺) 3182.19 0.25 ps + 35 - 11÷ $\frac{\frac{1^+}{2^+}}{\frac{3^-}{(0^+,1^+)}}$ 2919.74 0.154 ps 14 Ì. 2768.73 1 1 1 ¥ 0.162 ps 14 ¥ 2692.347 , v 2654.51 V 1 T i. (3)-2284.22 ¥ 0^+ 0.0 1.926×10²¹ y 94

 $^{76}_{32}{
m Ge}_{44}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $\frac{1}{1^{(-)}}$

3-

 $(5)^+$

1+

3-

 4^{+}

 2^{+}

2+

 0^+

0.0 1.926×10²¹ y 94

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{76}_{32}\text{Ge}_{44}$

