Adopted Levels

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

 $Q(\beta^{-})=11321.4 \ 17; \ S(n)=4582.7 \ 12; \ S(p)=14030 \ syst; \ Q(\alpha)=-13110 \ syst$ 2021Wa16

Estimated uncertainties (2021Wa16): 200 for S(p), 300 for $Q(\alpha)$.

 $Q(\beta^{-}n)=3506.0\ 22,\ S(2n)=11118\ 6,\ S(2p)=32020\ 400\ (syst)\ (2021Wa16).$

Additional information 1.

Isotope produced and identified in mass-separated fission products from ²³⁵U(n,F) (1987Ar21, 1987LuZX, 1990Wi12, 1991Kr15). Mass measurements: 2022Gi08 (mass excess=-51011.4 20, JYFL), 2017We16 (mass excess=-50981.55 89, CERN).

Other measurements:

2005Va19 (also thesis: 2002VaZX): ⁷⁶Cu produced by ²³⁸U(n,F) and ²³⁸U(p,F) at ISOLDE-CERN facility using resonance ionization laser spectroscopy. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$, timing of $\beta\gamma$ and $\gamma\gamma$ coin spectra. 2005Va19 searched for an isomer of 1.27 s proposed in 1990Wi12, but no evidence was found.

- 2009Wi03 (also 2008Wi01,2009Gr06): measured delayed $\%\beta^-n$. ⁷⁶Cu isotope produced in the reaction ²³⁸U(p,F) with a 50 MeV beam provided by the HRIBF facility at ORNL RIB facility. The radioactive beams were extracted and mass separated. Detected decay products with a Micro-channel plate detector, an ionization chamber and a moving tape collector. Measured γ , β , $\gamma\gamma$ and $\beta\gamma$ coin with two plastic β -detectors and γ -rays with four clover Germanium detectors.
- 2010Ho12: ${}^{9}\text{Be}({}^{86}\text{Kr},X) \text{E}=140 \text{ MeV/nucleon; fully-ionized }{}^{86}\text{Kr}$ beam, A1900 fragment separator at NSCL facility using $B\rho-\Delta \text{E-B}\rho$ method. After separation, the mixed beam was implanted into the NSCL β -counting system (BCS) consisting of stacks of Si PIN detectors, a double-sided Si strip detector (DSSD) for implantation of ions, and six single-sided Si strip detectors (SSSD) followed by two Si PIN diodes. The identification of each implanted event was made from energy loss, time-of-flight information and magnetic rigidity. The implantation detector measured time and position of ion implantations and β decays. Neutrons were detected with NERO detector. Measured β and β n-correlated events with ion implants; half-life of 76 Cu and delayed-neutron emission probability. A total of 277 implants were detected, and three correlated β n coincidences were observed.
- 2020De21, 2017De30: ⁷⁶Cu produced in 1.4-GeV proton bombardment of UC_x target using HRS mass separator, ISCOOL gas-filled segmented linear Paul trap, and RILIS at ISOLDE-CERN facility. Cu isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV for mass separation with high-resolution mass separator (HRS), and injected into ISCOOL gas-filled linear Paul trap. Measured hyperfine spectra and isotope shifts using Collinear Resonance Ionization spectroscopy (CRIS). Deduced hyperfine structure parameters, magnetic dipole moment and electric quadrupole moment.

Mass measurements: 2017We16, 2007Gu09 (also 2005Gu36).

Theoretical calculations: four primary references for structure and three for decay characteristics retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed in this dataset under 'document' records.

⁷⁶Cu Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	3(-)	637 ms 7	$ \frac{1}{\beta\beta^{-}=100}; \frac{\beta\beta^{-}n=7.2}{5} (2009Wi03) $ μ=-1.0907 <i>15</i> (2017De30,2019StZV) Q=+0.36 2 (2017De30,2021StZZ) δ <r<sup>2>(⁶⁵Cu,⁷⁶Cu)=+0.58 fm² 2(stat) <i>10</i>(syst) (2020De21). Isotope shift $\delta\nu$(⁶⁵Cu,⁷⁶Cu)=-4848 MHz 5 (2020De21). $\frac{\beta\beta^{-}n}{\beta}$: from 2009Wi03, weighted average of two measurements giving 7.3 6 and 7.0 6; the first is from comparison of relative intensities of the most intense γ rays in ⁷⁶Zn and ⁷⁵Zn; second is from comparison of relative intensities of most intense γ rays from nuclei in β^{-}n branch to the number of ions deposited. This value is considered as composite for the 638-ms and 1.27-s activities. Previous value was 7 <i>1</i> in 2008Wi01. Other $\frac{\beta\beta^{-}}{\beta}$ n measured values: <7.2 (2010Ho12), 2.2 5 (2000KoZH), 3 2 (1986ReZR). Measured $\frac{\beta\beta^{-}}{\beta}$ decay=88 <i>3</i> which populates ⁷⁶Zn (2009Wi03). J^π: spin from hyperfine structure in 2017De30, negative parity from comparison with shell-model calculations. T_{1/2}: weighted average of 599 ms <i>18</i> (2010Ho12), 653 ms <i>24</i> (2005Va19), 641 ms <i>6</i> (1991Kr15), 570 ms <i>60</i> (697γ(t),1990Wi12), and 637 ms <i>20</i> (2022Si25). Others: 647 ms <i>5</i> (2000KoZH), 0.61 s <i>10</i> (1986ReZR), 0.35 s <i>8</i> (697γ(t),1987LuZX).</r<sup>	

Adopted Levels (continued)

⁷⁶Cu Levels (continued)

E(level)	T _{1/2}	Comments
		Additional information 2. μ ,Q: from hyperfine structure measurement using Collinear Resonance Ionization Spectroscopy (CRIS) (2017De30). Measured value of μ =-1.0895 15 is re-evaluated to μ =-1.0907 15 by 2019StZV. Measured value of Q=+0.34 2 is re-evaluated to Q=+0.36 2 by 2021StZZ. 2017De30 compared measured μ and Q with shell-model calculations using A3DA-m and PFSDG-U interactions.
0+x?	1.27 s 30	$\%\beta^-=?$ $T_{1/2}$: from 599 γ (t), apparent $T_{1/2}(^{76}$ Cu isomer)=0.84 s 6; but after subtraction of 698 γ contribution, $T_{1/2}(^{76}$ Cu isomer)=1.27 s 30 (1990Wi12) which is assigned to a second, longer-lived isomer in 1990Wi12. This isomer was not confirmed by 2005Va19 in their resonance ionization laser spectroscopy; and the decay curves for 599 γ and 698 γ showed no time differences. 2009Wi03 (same first author as in 1990Wi12) mentioned disagreement about the existence of the isomer citing 1990Wi12 and 2005Va19 papers, and appeared to have considered only one activity for ⁷⁶ Cu. 2010Ho12 do not discuss the isomer in ⁷⁶ Cu. Its existence is considered as highly uncertain by the evaluators. J ^{π} : 1,2,3 proposed by 1990Wi12 based on decay mode and expected shell-model considerations.