Adopted Levels, Gammas

			History		
	Туре	Author	· .	Citation	Literature Cutoff Date
	Full Evaluation	Balraj Singh, Jun Chen and Ame	enah R. Farhan	NDS 194,3 (2024)	8-Jan-2024
$Q(\beta^{-}) = -1275$	10; S(n)=9253 10	; $S(p)=5409 \ 9$; $Q(\alpha)=-4484 \ 10$	2021Wa16		
$Q(\varepsilon)=4963$ 9,	S(2n)=21144 II, S(2n)=21144 II	$S(2p)=14007 \ 9 \ (2021 \ Wa16).$			
Additional info	ormation 1.				

⁷⁶Br Levels

Band assignments are from 1997Pa35. Limited assignments in 1997Wi01 and in earlier references and in the resent study by 2022Xu06 are in agreement.

Cross Reference (XREF) Flags

			A ⁷⁶ Br I B ⁷⁶ Kr æ C ⁵⁵ Mn(D ⁶³ Cu(T decay (1.31 s) E $^{68}Zn(^{12}C,p3n\gamma)$ c decay (14.79 h) F (HI,xn\gamma) $^{30}Si,2\alpha n\gamma)$ G $^{76}Se(p,n):IAS$ $^{16}O,n2p\gamma),(^{19}F,\alpha pn\gamma)$ H $^{76}Se(p,n\gamma)$
E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
0.0 ^h	1-	16.14 h 20	ABCDEF H	$%ε+%β^+=100$ μ=0.5477 <i>1</i> (1960Li11,2019StZV) Q=+0.251 <i>4</i> (1960Li11,2021StZZ) Configuration= $π3/2$ [312] $@v5/2$ [422] favors μ in 1980Ek02. J ^π : spin from atomic-beam method (1960Li11); parity from E1 γ from 1 ⁺ . T _{1/2} : weighted average of 16.1 h 2 (1971La01), 16.3 h 3 (1960Bu22) and 16.1 h 2 (1959Gi46). Others: 17.5 h (1955Th01), 17.2 h (1952Fu04, earlier abstract in Phys. Rev. 83, 875 (1951)); 16.5 h 5 (1951Ho42); 15.7 h (quoted by 1948Se40 compilation from a priv. comm., with formation of ⁷⁶ Br in As(α,3n) reaction at Berkeley cyclotron facility). μ,Q: other: γ(θ,H,Temp) (1992Gr20,1988Gr26,1988Wh03). Q=0.270 <i>3</i> in 1960Li11 is reanalyzed to +0.251 <i>4</i> in 2016St14, based on electric field gradients in ⁷⁹ Br analyzed in 1966Br03 and 2000Ha64. Hyperfine structure study by NMR technique on oriented has been studied by 1993Oh09.
45.475 ^g 20	(2)-	1.13 ns 6	ABCDEF H	J ^{π} : cascade of M2-M1 transitions from 103 level to 1 ⁻ g.s. limits J ^{π} (103 level) to 0 ⁺ ,2 ⁺ ,3 ⁺ ,4 ⁺ and J ^{π} (45 level) to 0 ⁻ ,1 ⁻ , 2 ⁻ . Very weak (or absence of) crossover transition from 103 level favors 4 ⁺ for 103 level, thus 2 ⁻ for 45 level. A band based on the 103 level has been identified in (HI,xn γ) which is consistent with a 4 ⁺ choice for the 103 level. First excited state in ⁷⁸ Br, ⁸⁰ Br has J ^{π} =2 ⁻ which supports the given assignment for 45 level, however, a solid argument for unique assignments for 45.5- and 102.6- level still seems lacking.
102.578 [@] 28	(4)+	1.31 s 2	ABCDEF H	%IT=99.7 3; $\%\varepsilon + \%\beta^+ = 0.3$ 3 Possible configuration= $\pi 3/2[431] \otimes v5/2[422]$ (1982Do11). J ^{π} : see comment for 45 level. T _{1/2} : from 1980Ha23. Others: 1.35 s 5 (1981Vo04), 1.3 s (1979Kr04), 1.49 s 2 (1978Sc30).
150.53 12	(0,1,2)		B H	J^{π} : γ to 1 ⁻ ; 295 γ from 0 ⁺ ,1 ⁺ .
212.39 ^h 21	(3 ⁻)	111 ps 28	CD F H	J^{π} : ΔJ=1, dipole γ to (2) ⁻ ; band assignment. T _{1/2} : RDDS in (HI,xnγ) (1986KuZW).
244.87 ^{&} 17	(5)+	76 ps 14	CDEF H	J^{π} : $\Delta J=1$, M1(+E2) γ to (4) ⁺ ; band assignment.

Continued on next page (footnotes at end of table)

⁷⁶Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
		<u> </u>		$T_{1/2}$: RDDS in (HLxny) (1986KuZW).
252.25 9	$(2)^{+}$	2.18 ns 9	в н	J^{π} : E1 γ to 1 ⁻ ; 199.8 γ M1+E2 from 1 ⁺ ; possible γ to (4) ⁺ .
				$T_{1/2}$: $\gamma\gamma(t)$ in ⁷⁶ Kr ε decay (1973Lo07).
301.80 ^c 24	(4 ⁻)	0.52 ns 7	CDEF H	J^{π} : 89.5 γ D, $\Delta J=1$ to (3 ⁻); 199.3 γ D, $\Delta J=0$ to (4) ⁺ . Possible
	. ,			configuration= $\pi g_{9/2} \otimes \nu(p_{3/2} \text{ or } f_{5/2})$ (1982Do11).
				$T_{1/2}$: RDDS in (HI,xn γ) (1986KuZW). Other: $\gamma\gamma(t)$ (1982Do11).
315.81 9	1^{+}		B H	J ^{π} : allowed ε feeding (log <i>ft</i> =4.8) from 0 ⁺ .
317.13 10	(2^{+})		B H	J^{π} : 317.2 γ to 1 ⁻ ; (E1) 271.7 γ to (2) ⁻ ; 214.5 γ to (4) ⁺ .
355.35 9	1+	0.5 ns 2	B H	J ^{π} : allowed ε feeding (log <i>ft</i> =5.5) from 0 ⁺ .
_				T _{1/2} : from (ce)(ce)(t) in ⁷⁶ Kr ε decay (1973Lo07).
356.92 [@] 20	$(6)^+$	118 ps 21	CDEF	J ^π : 254.3γ ΔJ=2, E2 to (4) ⁺ and 112.0γ ΔJ=1 to (5) ⁺ .
				$T_{1/2}$: from RDDS in (HI,xn γ) (1986KuZW).
363.42 ⁸ 23	$(4)^{-}$	59 ps 10	CD F H	XREF: H(?).
				J^{π} : 318.0 γ E2, ΔJ =2 to (2) ⁻ , 151.0 γ to (3 ⁻).
				$T_{1/2}$: from RDDS in (HI,xn γ) (1986KuZW).
425.77 32	(5)	45 ps <i>17</i>	CD F	J^{π} : 124.0 γ to (4 ⁻) can only be E1 or M1 from RUL; 262.2 γ D, Δ J=1
				from (6^-) .
446 10 14	(1)+			$T_{1/2}$: from RDDS in (HI,xn γ) (1986KuZW).
446.18 14	$(1)^{+}$		в н	J [*] : ε feeding (log ft =6.5 makes 0° to 0° less likely) from 0°; MI(+E2)
452.08.0	1+	0.4 ns 1	ע ה	γ to 1. I^{π} : allowed a feeding (log $t=5.0$) from 0^+
452.08 9	1	0.4 118 1	БП	J . anowed ε rectaining (log $j_i = 5.0$) from 0 . There: from callege (log $j_i = 5.0$) from 0 .
Accord 22	(5-)	242 25	CDEE H	$\Gamma_{1/2}$. Hom co-ce(i) in Ki ε decay (1975L007).
466.89 23	(5)	242 ps 35	CDEF H	AKEF: H(?).
				$J = 105.57 D$, $\Delta J = 1.10 (4)$, balle assignment. True: from PDDS in (HI yrad) (1086Ku7W)
105 61 20	(0, 1, 2)		ц	$I_{1/2}$. If the theorem (III, XIIY) (1900 KuZ W).
505 14 28	(0,1,2) $(0^{-}123^{-})$		н	I^{π} : vs to I^{-} and $(2)^{-}$
527 79 28	$(0^{-}, 1, 2, 3^{-})$		н	I^{π} : vs to 1 ⁻ and (2) ⁻
548.31 29	(0,1,2)		вн	J^{π} : 548.3 γ to 1 ⁻ : possible γ to 1 ⁺ .
583.24f 29	(5^{-})		CD F	I^{π} : 371 γ O AI=2 to (3 ⁻); hand assignment
583.5+x?	(5)	0.8 ns 2	F	$T_{1/2}$: centroid shift method (1982AnZZ).
592.43h 30	(5^{-})	010 110 2		$I_{1/2}^{\pi}$, 220 ly D AI-1 to $(4)^{-1}$; hand assignment
505.00 21	$(3)^+$	21 m	CDEE	$\overline{\mathbf{J}}$, $\underline{\mathbf{M}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{A}}$, $\underline{\mathbf{J}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{M}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$, $\underline{\mathbf{H}}$,
393.00** 21	(7)	21 ps 4	CDEF	J : M1+E2, $\Delta J = 1 \gamma (0 (0))$ and band assignment. $330\gamma(\theta) (\gamma (0 (3)))$
				(1961 web/), however, disagrees with that expected 101 $\Delta J = 2$
				T _{1/2} : RDDS in (HI xny) (1986KuZW)
616 13 15	1(+)		р ц	$I_{1/2}^{\pi}$, possible allowed a feeding (log $f_{t-6}(0)$ from 0^+
$687.76^{\circ}.24$	(6^{-})	73 ns 24	CDFF	I^{π} : 386 2 γ F2 AI=2 to (4 ⁻); hand assignment
007.70 27	(0)	15 ps 21	CDLI	$T_{1/2}$: RDDS in (HLxny) (1986KuZW).
688 30 [@] 22	$(8)^{+}$	69 ps 21	CDFF	$I_{1/2}^{\pi}$, $\Lambda I = 2$, $E_2 \propto t_0$ (6) ⁺ and hand assignment
000.50 22	(0)	07 ps 21	CDLI	$T_{1/2}$: RDDS in (HI xny) (1986KuZW)
790.6 <mark>8</mark> 4	(6^{-})		CD	J^{π} : 198.2 γ D. AJ=1 to (5 ⁻); band assignment.
815.34 22	0.1		В	J^{π} : ε feeding (log $ft=6.3$) from 0 ⁺ .
868.38 24	1+		В	J ^{π} : allowed ε feeding (log <i>ft</i> =5.5) from 0 ⁺ .
882.8 6		2.4 ps 4	F	J^{π} : γ to (4 ⁻) suggests 4,5,6 ⁻ .
				$T_{1/2}$: RDDS in (HI,xn γ) (1986KuZW).
898.44 13	1+		В	J^{π} : allowed ε feeding (log <i>ft</i> =5.4) from 0 ⁺ .
936.60 14	1+		В	J ^{π} : allowed ε feeding (log <i>ft</i> =5.5) from 0 ⁺ .
988.17 ^ƒ 26	(7 ⁻)	17 ps 6	CDEF	J^{π} : E2, $\Delta J=2 \gamma$ to (5 ⁻); band assignment.
				$T_{1/2}$: RDDS in (HI,xn γ) (1986KuZW).
1025.24 ^d 31	(7 ⁻)	7.6 ps 2	CD F	J^{π} : E2, $\Delta J=2 \gamma$ to (5 ⁻); band assignment.
		-		$T_{1/2}$: RDDS in (HI,xn γ) (1986KuZW).
1048.07 21	1+		В	J ^{π} : allowed ε feeding (log <i>ft</i> =5.3) from 0 ⁺ .

Continued on next page (footnotes at end of table)

⁷⁶Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
1120.24 ^{&} 24	(9)+	0.69 ps 4	CDEF	J ^π : E2, $\Delta J=2 \gamma$ to (7) ⁺ ; $\Delta J=1$, M1+E2 γ to (8) ⁺ . 526 $\gamma(\theta)$ (γ to (7) ⁺) (1981We07), however, disagrees with that expected for $\Delta J=2$ transition
				T _{1/2} : weighted average of 0.59 ps 6 from DSA method (1990Bu07) and 0.83 ps 14 (RDDS,1986KuZW) in (HI,xn γ); 0.707 ps +35–28 from DSAM (2022Xu06) in (¹² C,p3n γ).
1254.42 ^{<i>u</i>} 33	(8+)		E	$J^{\pi}: \Delta J = 2 \gamma \text{ to } (6)^+; \Delta J = 1 \gamma \text{ to } (7)^+.$
$1292.5^{n} 4$ $1338.31^{c} 28$	(7 ⁻) (8 ⁻)	5.5 ps 14	C CDEF	J^{π} : $\Delta J=2 \gamma$ to (5 ⁻); band assignment. J^{π} : E2, $\Delta J=2 \gamma$ to (6 ⁻); band assignment. $T_{1/2}$: from 1983GuZV in (HLxn γ).
1511.25 [@] 31	(10)+	0.68 ps 12	CDEF	J^{π} : E2, $\Delta J=2 \gamma$ to (8) ⁺ ; band assignment. $T_{1/2}$: unweighted average of 0.49 ps 6 from DSA method (1990Bu07) and 0.90 ps 14 (RDDS, 1986KuZW) in (HI,xn γ), and 0.652 ps 35 from DSAM (2022Xu06) in (12 C, n3n γ)
1542.6 ⁸ 4	(8 ⁻)		CD	J^{π} : $\Delta J=2 \gamma$ to (6 ⁻); band assignment.
1610.16 ^b 33	(9)+	0.395 ps +49-42	EF	XREF: F(?). J^{π} : E2 ΔJ =2 γ to (7) ⁺ ; band assignment.
				$T_{1/2}$: from DSAM in (1 ² C,p3n γ).
1747.53 30	(9 ⁻)	0.811 ps +90–49	CDE	J^{n} : $\Delta J=2$, E2 γ to (7 ⁻); band assignment. T _{1/2} : from DSAM in (¹² C,p3n γ).
1824.6 ^{<i>a</i>} 4	(9 ⁻)	0.76 ps 21	CD F	$T_{1/2}$: from 1983GuZV in (HI,xn γ).
1993.21 ^{&} 35	(11)+	0.276 ps 23	CDEF	J ^{π} : E2 Δ J=2 γ to (9) ⁺ ; band assignment. T _{1/2} : weighted average of 0.284 ps <i>14</i> from (¹² C,p3n γ) and 0.21 ps <i>4</i> from (HI,xn γ).
2056.9 ^h 5	(9 ⁻)		С	
2080.10 ^{<i>a</i>} 32	(10 ⁺)	0.319 ps +49-42	C EF	XREF: F(?). J^{π} : $\gamma \Delta J=1$ to (9) ⁺ ; band assignment.
2217.98 ^e 34	(10 ⁻)	0.55 ps 4	CDEF	$T_{1/2}$: from DSAM in (¹² C,p3n γ). $T_{1/2}$: weighted average of 0.541 ps +42–35 from (¹² C,p3n γ) and 0.69 ps 21 from (HI xn γ)
2357.1 ⁸ 5	(10^{-})		CD	J^{π} : $\Delta J=2 \gamma$ to (8 ⁻); band assignment.
2577.7 ^b 4	(11)+	0.194 ps +62-49	C EF	XREF: F(?). J^{π} : E2 ΔJ =2 γ to (9) ⁺ ; band assignment. $T_{1/2}$: from DSAM in (¹² C,p3n γ).
$2626.6^{\textcircled{0}}{5}$	(12^{+})		CDEF	J^{π} : $\Lambda J=2 \gamma$ to $(10)^+$: band assignment.
2688.7 ^{<i>f</i>} 4	(11 ⁻)	0.367 ps 28	CDE	J^{π} : $\Delta J=2$, E2 γ to (9 ⁻); band assignment. T _{1/2} : from DSAM (¹² C,p3n γ).
2736.2 ^d 4	(11^{-})		CD	J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); band assignment.
2882.9 ^h 5	(11^{-})		С	J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); band assignment.
3105.3 ^{<i>a</i>} 5	(12+)		CE	J^{π} : $\Delta J=(2) \gamma$ to (10^+) ; band assignment.
3108.2 ^{&} 5	(13 ⁺)	0.203 ps 20	CDEF	J ^{π} : E2 Δ J=2 γ to (11 ⁺); band assignment. T _{1/2} : weighted average of 0.208 ps 28 from (¹² C,p3n γ) and 0.20 ps 2 from (HLxn γ).
3257.0 ^g 4	(12 ⁻)		CD	J^{π} : $\Delta J=2 \gamma$ to (10 ⁻); band assignment.
3285.9 ^e 5	(12 ⁻)	0.256 ps +49-42	CDE	J^{π} : E2 $\Delta J=2 \gamma$ to (10 ⁻); band assignment. T _{1/2} : from DSAM in (¹² C,p3n γ).
3641.6 ^b 5	(13 ⁺)		CE	J^{π} : γ to (11 ⁺); band assignment.
3705.8 ^f 4	(13 ⁻)		CDE	J^{π} : $\Delta J=2$, Q γ to (11 ⁻); band assignment.
3776.1 ^{<i>h</i>} 5	(13 ⁻)		С	J^{π} : $\Delta J=2$, Q γ to (11 ⁻); band assignment.
4001.5 [@] 6	(14^{+})	0.104 ps 14	CDEF	J^{π} : E2, $\Delta J=2 \gamma$ to (12 ⁺); band assignment.

Continued on next page (footnotes at end of table)

⁷⁶Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				$T_{1/2}$: from DSAM in (¹² C,p3ny).
4301.7 ^e 5	(14 ⁻)		CE	J^{π} : Q, $\Delta J=2 \gamma$ to (12 ⁻); band assignment.
4363.8 ^a 6	(14+)		CE	J^{π} : γ to (12 ⁺); band assignment.
4403.7 <mark>8</mark> 6	(14 ⁻)		С	J ^{π} : Q, $\Delta J=2 \gamma$ to (12 ⁻); band assignment.
4434.3 ^{&} 6	(15 ⁺)	0.099 ps 14	CDEF	J^{π} : E2, $\Delta J=2 \gamma$ to (13 ⁺); band assignment.
				T _{1/2} : weighted average of 0.097 ps <i>14</i> from ($^{12}C,p3n\gamma$) and 0.11 ps <i>3</i> from (HI,xn γ).
4852.2 ^{<i>f</i>} 6	(15 ⁻)		CE	J^{π} : Q, $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
4900	(0^{+})		G	E(level), J^{π} : analog of g.s. 0 ⁺ in ⁷⁶ Se, estimated uncertainty=100 keV.
4902.9 <mark>b</mark> 8	(15 ⁺)		С	J^{π} : γ to (13 ⁺); band assignment.
4942.4 ^h 6	(15 ⁻)		С	J^{π} : Q, $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
5400	(2^{+})		G	E(level), J^{π} : analog of g.s. 2 ⁺ in ⁷⁶ Se; estimated uncertainty=100 keV.
5533.6 ^e 6	(16 ⁻)		С	
5554.3 [@] 7	(16 ⁺)		CDEF	J ^{π} : Q, $\Delta J=2 \gamma$ to (14 ⁺); band assignment.
5762.3 ⁸ 6	(16 ⁻)		С	J^{π} : Q, $\Delta J=2 \gamma$ to (14 ⁻); band assignment.
5793.8 ^{<i>a</i>} 21	(16 ⁺)		C	J^{π} : γ to (14 ⁺); band assignment.
5931.6 ^{x} 9	(17^{+})	0.055 ps 28	CDEF	J^{π} : E2, $\Delta J=2 \gamma$ to (15 ⁺); band assignment.
6100	$(0^+ 2^+ 4^+)$		C	$T_{1/2}$: DSA method in (HI,xn γ) (1990Bu0/). E(laval) I^{π} : triplet Applege of 1122, 0 ⁺ ; 1216, 2 ⁺ ; 1220, 4 ⁺ lavale in
0100	(0 ,2 ,4)		G	E(level), J ⁺ : Inplet. Allalogs of 1122, 0 ⁺ ; 1210, 2 ⁺ ; 1550, 4 ⁻ levels in ⁷⁶ Se: estimated uncertainty-100 keV
6166 6f 7	(17^{-})		C	I_{π}^{π} , O , $AI=2$ or to (15^{-1}) ; hand assignment
6100.0° 7	(17)		C	$J : Q, \Delta J = 2 \gamma$ to (15 ⁻¹), band assignment.
$0383.9^{\circ} 22$	(17)		C	$J : \gamma$ to (15); band assignment.
6391.0" /	(1/)		C	J^{*} : γ to (15); band assignment.
6900	(2)		G	E(level), J ⁺ analog of level in ⁷⁶ Se, estimated uncertainty = 100 keV
7009 7 ^e 7	(4^{-})		C	I^{π} : O AI=2 γ to (16 ⁻); hand assignment
72.00	(3^{-})		G	I^{π} : analog of 2429. 3 ⁻ level in ⁷⁶ Se: estimated uncertainty=100 keV.
$7207.8^{@}$ 11	(18^+)		C	I^{π} : γ to (16 ⁺): hand assignment
7308.3 ⁸ 21	(18^{-})		c	J^{π} : γ to (16 ⁻); band assignment.
7592.8 ^{&} 12	(19^{+})	<0.06 ps	CD F	I^{π} : E2. $\Lambda I=2 \gamma$ to (17^+) ; band assignment.
7690 cf 9	(10-)	(0100 pb	6	$T_{1/2}$: DSA method in (HI,xn γ) (1990Bu07).
$7080.05 \ 0$	(19^{+})		C	$J : Q, \Delta J = 2 \gamma$ to (17); band assignment.
8033.9° 24	(19^{+})		C	
$8124.0^{\circ} 21$ $8701.0^{\circ} 11$	(19)		C	
8701.9 II	(20^{+})		C	
900.1 14 9092 3 <mark>8</mark> 29	(20^{-})		C	
$9390.2f_{11}$	(20^{-})		C	
9390.2° 11	(21)		C F	
$9427.5^{-1}13$	(21)		Сг	
$10216.1^{\circ} 29$ $10541.4^{\circ} 13$	(21)		C	
103+1.+13 10870 1 @ 24	(22)		C	
110070.1 = 24 11000 of 14	(22)			
11289.8 ¹ 14	(23)		C	
$11450.0^{\circ} 1/$ $12564.5^{\circ} 24$	(23^{+})		C	
$12304.3^{\circ}24$	(24)			
12934.2 32	(24)		C	
13439.3 16	(25)		C	

⁷⁶Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
13606.1 ^{&} 26	(25^{+})	С
14794.5 ^e 31	(26 ⁻)	С
15863.1 ^{&} 33	(27 ⁺)	С
15954.3 <i>f</i> 26	(27 ⁻)	С

- [†] From a least-squares fit to $E\gamma$ data.
- [‡] For levels populated only in reactions leading to the population of high-spin (J>3) levels, when no J^{π} argument is given, the assignment is based on $\gamma\gamma(\theta)$ (DCO) data in (³⁰Si,2\alphan\gamma), and possible band assignment. Ascending spins are assumed as the excitation energy increases which is generally supported by the yrast nature of level population in heavy-ion fusion reactions as well as decay pattern of levels.
- [#] For high-spin (J>4) states, values are from DSA or RDDS in (HI,xn γ), unless otherwise specified.
- ^(a) Band(A): $K^{\pi}=4^+, \alpha=0$. Band built on $\pi g_{9/2} \otimes \nu g_{9/2}$ with possible Nilsson orbitals $\pi 3/2[431]$ and $\nu 5/2[422]$. Observed crossing at $\hbar\omega\approx 0.82$ MeV in both the signature partners is assigned to the alignment of the second $g_{9/2}$ neutron, and at $\hbar\omega\approx 1.09$ MeV in the odd-spin sequence to the alignment of $g_{9/2}$ proton.
- & Band(a): $K^{\pi}=4^+, \alpha=1$. For configurations and alignments, see comments for $\alpha=0$ signature partner.
- ^{*a*} Band(B): Band based on (8⁺), α =0. Moment of inertia and signature inversion is similar to that for low-spin members of K^{π} =4⁺ band. Configuration= $\pi g_{9/2} \otimes v g_{9/2}$ (2022Xu06).
- ^b Band(b): Band based on $(8^+), \alpha = 1$.
- ^{*c*} Band(C): $K^{\pi}=4^{-}, \alpha=0$. Configuration= $\pi g_{9/2} \otimes \nu p_{3/2}$ or $\pi g_{9/2} \otimes \nu f_{5/2}$.
- ^{*d*} Band(c): $K^{\pi}=4^{-}, \alpha=1$. Configuration= $\pi g_{9/2} \otimes \nu p_{3/2}$ or $\pi g_{9/2} \otimes \nu f_{5/2}$.
- ^{*e*} Band(D): $K^{\pi}=5^{-}, \alpha=0$. Configuration= $\pi g_{9/2} \otimes v p_{3/2}$ or $\pi g_{9/2} \otimes v f_{5/2}$.
- ^{*f*} Band(d): $K^{\pi}=5^{-}, \alpha=1$. Configuration= $\pi g_{9/2} \otimes \nu p_{3/2}$ or $\pi g_{9/2} \otimes \nu f_{5/2}$.
- ^g Band(E): $K^{\pi} = 1^{-}, \alpha = 0$. Configuration= $\pi 3/2[312] \otimes v 5/2[422]$. Band crossing at $\hbar \omega \approx 0.39$ MeV due to the alignment of a pair of $g_{9/2}$ protons.
- ^{*h*} Band(e): $K^{\pi}=1^{-}, \alpha=1$. See comment for $\alpha=0$ signature partner.

$\gamma(^{76}\mathrm{Br})$

Additional information 2.

E_i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
45.475	(2)-	45.48 [#] 2	100 [#]	0.0	1-	M1		1.057 15	B(M1)(W.u.)=0.101 6 α (K)=0.933 13; α (L)=0.1052 15; α (M)=0.01675 24 α (N)=0.001547 22
102.578	(4)+	57.11 [#] 2	100 [#] 3	45.475	(2)-	M2		9.58 <i>13</i>	Mult.: from ce data in ⁷⁶ Br IT decay and ⁷⁶ Kr ε decay. B(M2)(W.u.)=2.038×10 ⁻⁴ +40-42 α (K)=8.10 11; α (L)=1.262 18; α (M)=0.2053 29 α (N)=0.01831 26 Mult : from ce data in ⁷⁶ Br IT decay
		102.6 ^c	<1.1	0.0	1-	[E3]		7.26 10	B(M2)(W.u.): greatest retration in the systematics of M2 transitions in A=45-90 region (1979En04). B(E3)(W.u.)<0.026 α (K)=5.55 8; α (L)=1.461 20; α (M)=0.2340 33 α (N)=0.01749 24
150.53	(0,1,2)	104.9 2 150.5 ^b 2	100 <i>21</i> <157 ^b	45.475 0.0	(2) ⁻ 1 ⁻				I _γ (150.5γ)/I _γ (104.9γ) disagree in ⁷⁶ Kr ε and (p,nγ) it is possible to relocate 150.5γ from 252 level in ⁷⁶ Kr ε decay and from 363 level in (p,nγ). The 150γ may be a doublet with only a part of the intensity from this level
212.39	(3 ⁻)	167.0 4	100 7	45.475	(2)-	(M1)		0.0290 4	B(M1)(W.u.)=0.040 +13-8 α (K)=0.0257 4; α (L)=0.00280 4; α (M)=0.000446 7 α (N)=4 15×10 ⁻⁵ 6
		212.5 4	≤9	0.0	1-	[E2]		0.0544 8	B(E2)(W.u.)<71 α (K)=0.0478 7; α (L)=0.00565 9; α (M)=0.000894 14 α (N)=7.96×10 ⁻⁵ 12
244.87	(5)+	142.2 2	100	102.578	(4)+	M1(+E2) ^a	<0.2	0.048 4	B(M1)(W.u.)=0.095 +24-18 $\alpha(K)=0.0424 \ 33; \ \alpha(L)=0.0047 \ 4; \ \alpha(M)=0.00075 \ 7$ $\alpha(N)=6.9\times10^{-5} \ 6$ E _y : from (HI,xny). $\delta: +0.2 \ \text{to} +1.8 \ \text{from } \gamma(\theta,\text{pol}); \ <0.2 \ \text{from RUL}<300 \ \text{for E2}.$ $P(F2)(Wu) \le 205 \ \text{upper limit exceeds BUL} = 200$
252.25	(2)+	150.5 ^{bc} 2	<3 ^b	102.578	(4)+	[E2]		0.1930 29	B(E2)(W.u.)<505 upper limit exceeds ROL=500. B(E2)(W.u.)<6.0 α (K)=0.1681 25; α (L)=0.02124 32; α (M)=0.00336 5 α (N)=0.000292 4
		252.0 2	100 12	0.0	1-	E1 ^{&}		0.00560 8	B(E1)(W.u.)=1.056×10 ⁻⁵ 46 α (K)=0.00499 7; α (L)=0.000527 7; α (M)=8.34×10 ⁻⁵ 12 α (N)=7.73×10 ⁻⁶ 11

						Adopted	Levels, Gar	nmas (continue	<u>d)</u>
							γ(⁷⁶ Br) (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
301.80	(4 ⁻)	89.5 4	6.8 27	212.39	(3 ⁻)	(M1)		0.1555 29	B(M1)(W.u.)=0.0037 +15-14 α (K)=0.1376 26; α (L)=0.01529 29; α (M)=0.00244 5 α (N)=0.00226 4
		199.3 <i>4</i>	100 5	102.578	(4) ⁺	(E1)		0.01101 17	$\begin{array}{l} B(E1)(W.u.) = 8.4 \times 10^{-5} + 13 - 10 \\ \alpha(K) = 0.00979 \ 15; \ \alpha(L) = 0.001037 \ 16; \ \alpha(M) = 0.0001640 \\ 25 \end{array}$
									α (N)=1.514×10 ⁻⁵ 23 Mult.: Δ J=0 transition.
315.81	1+	63.6 2	0.30 13	252.25	$(2)^{+}$	M1(+E2) ^{&}	<0.2 ^{&}	0.49 8	$\alpha(K)=0.42$ 7; $\alpha(L)=0.053$ 13; $\alpha(M)=0.0084$ 20 $\alpha(N)=0.00075$ 16
		270.3 2	52.7 34	45.475	(2)-	(E1) ^{&}		0.00460 7	α (K)=0.00409 6; α (L)=0.000432 6; α (M)=6.84×10 ⁻⁵ 10 α (N)=6.34×10 ⁻⁶ 9
		315.8 2	100 7	0.0	1-	E1 ^{&}		0.00298 4	α (K)=0.00265 4; α (L)=0.000280 4; α (M)=4.44×10 ⁻⁵ 6 α (N)=4.12×10 ⁻⁶ 6
317.13	(2 ⁺)	166.7 2 214.5 2	4.0 8 5.6 <i>12</i>	150.53 102.578	(0,1,2) $(4)^+$				
		271.7 2	100 10	45.475	(2)-	(E1) ^{&}		0.00453 6	α (K)=0.00403 6; α (L)=0.000426 6; α (M)=6.74×10 ⁻⁵ 10 α (N)=6.25×10 ⁻⁶ 9
		317.2 4	10.3 29	0.0	1-				
355.35	1+	39.5 2	1.2 4	315.81	1+	[M1]		1.590 32	B(M1)(W.u.)=0.0037 +28-15 α (K)=1.404 29; α (L)=0.1585 32; α (M)=0.0252 5 α (N)=0.00233 5
		103.24 15	72 7	252.25	(2)+	M1(+E2) ^{&}	<0.15 ^{&}	0.112 8	B(M1)(W.u.)=0.012 +12-5; B(E2)(W.u.)<66 α (K)=0.099 7; α (L)=0.0112 9; α (M)=0.00179 15 α (N)=0.000164 12
		309.9 2	51 6	45.475	(2) ⁻	[E1]		0.00314 4	B(E1)(W.u.)= $5.5 \times 10^{-6} + 35 - 17$ α (K)= $0.00280 4$; α (L)= $0.000295 4$; α (M)= $4.67 \times 10^{-5} 7$
		355.3 2	100 10	0.0	1-	[E1]		2.17×10 ⁻³ 3	$\alpha(N)=4.34\times10^{-6} \ 6$ B(E1)(W.u.)=7.2×10 ⁻⁶ +46-21 $\alpha(K)=0.001929 \ 27; \ \alpha(L)=0.0002033 \ 29;$
									$\alpha(M)=3.22\times10^{-5} 5$ $\alpha(N)=2.99\times10^{-6} 4$
356.92	(6)+	112.0 2	100 3	244.87	(5)+	M1(+E2) ^a	<0.16	0.094 10	B(M1)(W.u.)= $0.105 + 29 - 22$ α (K)= $0.083 \ 8; \ \alpha$ (L)= $0.0094 \ 12; \ \alpha$ (M)= $0.00149 \ 18$ α (N)= $0.000137 \ 15$
									E _{γ} : from (HI,xn γ). Other: 112.1 5 from (³⁰ Si,2 α n γ) and (¹² C,p3n γ).
									I _γ : from (³⁰ Si,2 <i>α</i> ηγ). Others: 100 <i>10</i> from (¹⁶ O,n2pγ), 100 7 from (¹² C,p3nγ), and 100 5 from (HI,xnγ).

						Adopted	Levels, Gar	<mark>nmas</mark> (continue	<u>d)</u>
							γ ⁽⁷⁶ Br) (co	ntinued)	
E _i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	$lpha^{\dagger}$	Comments
356.92	(6)+	254.2 5	15.2 23	102.578	(4)+	E2 ^{<i>a</i>}		0.0285 4	δ: -0.3 to -2.4 from γ(θ, pol); <0.16 from RUL<300 for E2. B(E2)(W.u.)=29 +8-6 $α(K)$ =0.0251 4; $α(L)$ =0.00290 5; $α(M)$ =0.000460 7
									$\alpha(N)=4.13\times10^{-5} \ 6$ E_{γ} : weighted average of 254.5 5 from (³⁰ Si,2 α n γ), 254.3 5 from (¹² C,p3n γ), and 253.9 5 from (HI,xn γ). I_{γ} : unweighted average of 10.1 9 from (³⁰ Si,2 α n γ), 20.5 24 from (¹⁶ O,n2p γ), 13.2 10 from (¹² C,p3n γ), and 17.0 9 from (HI,xn γ).
363.42	(4)-	151.0 4	100 6	212.39	(3 ⁻)	(M1)		0.0378 6	B(M1)(W.u.)= $0.064 + 13 - 10$ α (K)= $0.0334 5$; α (L)= $0.00366 6$; α (M)= $0.000583 9$ α (N)= $5.42 \times 10^{-5} 9$
		318.0 4	65 8	45.475	(2)-	E2		0.01301 19	$\begin{array}{c} B(E2)(W.u.) = 59 + 13 - 10 \\ \alpha(K) = 0.01149 \ 17; \ \alpha(L) = 0.001297 \ 19; \ \alpha(M) = 0.0002055 \\ 30 \end{array}$
425 77	(5)	124.0.5	100	301.80	(4^{-})	[D]			$\alpha(N)=1.865\times10^{-5}\ 27$
446.18	$(1)^+$	91.0 2	100 62	355.35	1+	M1(+E2) ^{&}	<0.35 ^{&}	0.21 6	$\alpha(K)=0.18$ 5; $\alpha(L)=0.022$ 8; $\alpha(M)=0.0036$ 12 $\alpha(N)=3.2\times10^{-4}$ 10
		295.0 3	39 8	150.53	(0,1,2)				
450.00	1+	446.2 ⁰ 3	<115 ⁰	0.0	1-		0.25	0.151.26	Other possible location from 898 level. $P(M) = A 0 + 10^{-4} + (0 - 21) P(D) (M - 2 + 6)$
452.08	I+	96.7 2	1.5 5	355.35	I+	M1(+E2) ^{cc}	<0.25	0.151 26	B(M1)(W.u.)= $4.0 \times 10^{-4} + 40 - 21$; B(E2)(W.u.)< 6.8 α (K)= 0.133 22; α (L)= 0.0156 33; α (M)= 0.0025 5 α (N)= 0.00022 4
		134.9 2	22.4 23	317.13	(2 ⁺)	(M1) ^{&}		0.0509 7	B(M1)(W.u.)=0.0022 +8-5 α (K)=0.0451 7; α (L)=0.00496 7; α (M)=0.000790 11 α (N)=7.34×10 ⁻⁵ 11
		136.3 2	8.8 9	315.81	1+	(M1) ^{&}		0.0496 7	B(M1)(W.u.)= $8.5 \times 10^{-4} + 31 - 19$ α (K)=0.0439 6; α (L)=0.00482 7; α (M)=0.000768 11 α (N)= 7.14×10^{-5} 10
		199.9 2	10.3 10	252.25	(2)+	M1+E2&	0.6 & 2	0.031 6	B(M1)(W.u.)= $2.3 \times 10^{-4} + 9-6$; B(E2)(W.u.)= $2.8 + 18-14$ α (K)= $0.028 6$; α (L)= $0.0032 7$; α (M)= $0.00050 11$ α (N)= $4.5 \times 10^{-5} 9$
		406.5 2	100 9	45.475	(2)-	E1 ^{&}		1.52×10 ⁻³ 2	B(E1)(W.u.)= $6.2 \times 10^{-6} + 21 - 13$ α (K)= $0.001352 \ 19; \ \alpha$ (L)= $0.0001423 \ 20;$ α (M)= $2.254 \times 10^{-5} \ 32$ α (N)= $2.098 \times 10^{-6} \ 30$
		452.0 2	81 8	0.0	1-	[E1]		$1.16 \times 10^{-3} 2$	$B(E1)(W.u.)=3.7\times10^{-6}+13-8$

 ∞

						Adopted	Levels, Gamm	as (continued)
							γ ⁽⁷⁶ Br) (contin	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	Mult.@	α^{\dagger}	Comments
466.89	(5 ⁻)	103.3 4	18.8 15	363.42	(4)-	(M1)	0.1049 <i>18</i>	$\begin{aligned} \alpha(K) &= 0.001030 \ 14; \ \alpha(L) &= 0.0001083 \ 15; \ \alpha(M) &= 1.716 \times 10^{-5} \ 24 \\ \alpha(N) &= 1.599 \times 10^{-6} \ 22 \\ B(M1)(W.u.) &= 0.0089 \ + 18 - 14 \\ \alpha(K) &= 0.0928 \ 16; \ \alpha(L) &= 0.01028 \ 18; \ \alpha(M) &= 0.001636 \ 29 \\ \alpha(N) &= 0.0001518 \ 27 \end{aligned}$
		165.3 5	100 5	301.80	(4-)	(M1)	0.0297 5	$\alpha(N)=0.0001518\ 27$ B(M1)(W.u.)=0.0116 +21-16 $\alpha(K)=0.0264\ 4;\ \alpha(L)=0.00288\ 5;\ \alpha(M)=0.000458\ 7$ $\alpha(N)=4.27\times10^{-5}\ 7$ E _y : weighted average of 164.8 5 from (³⁰ Si,2\alphany), 165.8 5 from (¹² C,p3ny).
		222.0 5	40 6	244.87	(5)+	(E1)	0.00805 12	
		364.5 5	10 6	102.578	(4)+	[E1]	2.02×10 ⁻³ 3	Mult.: $\Delta J=0$, dipole transition. B(E1)(W.u.)=1.9×10 ⁻⁶ +12-9 $\alpha(K)=0.001801\ 26;\ \alpha(L)=0.0001898\ 27;\ \alpha(M)=3.01×10^{-5}\ 4$ $\alpha(N)=2.80×10^{-6}\ 4$ E _y : weighed average of 364.1 5 from (³⁰ Si,2\alphany) and 364.8 5 from (¹² C,p3ny). I _y : unweighted average of 5.0 21 from (³⁰ Si,2\alphany) and 15.8 19 from
495.61	(0,1,2)	180.0 <i>4</i> 495.4 <i>4</i>	23 100	315.81 0.0	1^+ 1^-			(C,p3nγ).
505.14	(0^-,1,2,3^-)	459.8 <i>4</i> 505.0 <i>4</i>	38 100	45.475 0.0	$(2)^{-}$ 1 ⁻			
527.79	(0^-,1,2,3^-)	482.6 <i>4</i> 527.5 <i>4</i>	31 100	45.475 0.0	$(2)^{-}$ 1 ⁻			
548.31	(0,1,2)	232.5 [°] 4 548.3 4	58 100	315.81 0.0	1+ 1-			γ from (p,n γ) only.
583.24	(5 ⁻)	157.4 <i>5</i> 219.9 <i>5</i>	60 8 100 <i>11</i>	425.77 363.42	(5) $(4)^{-}$	D		
592.43	(5 ⁻)	371.0 5 166.6 5 229.1 4 380.1 5	67 11 100 4 27 4 ≤ 4.4	212.39 425.77 363.42 212.39	(3^{-}) (5) (4) ⁻ (3 ⁻)	Q D		

						A	dopted Lev	els, Gammas ((continued)
							$\gamma(70)$	⁶ Br) (continued	<u>4)</u>
E _i (level)	J_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
595.00	(7)+	238.0 2	100 5	356.92	(6)+	M1+E2 ^{<i>a</i>}	-0.20 4	0.0126 4	B(M1)(W.u.)=0.064 +15-11; B(E2)(W.u.)=61 +31-22 α (K)=0.0112 4; α (L)=0.00122 4; α (M)=0.000193 7 α (N)=1.79×10 ⁻⁵ 6
									 E_γ: weighted average of 238.3 5 from (³⁰Si,2αηγ), 238.0 5 from (¹²C,p3nγ), and 237.9 2 from (HI,xnγ). I_γ: from (³⁰Si,2αηγ). Others: 100 7 from (¹⁶O,n2pγ), 100 7 from (¹²C,p3nγ), and 100 6 from (HI,xnγ).
		350.1 2	15.3 20	244.87	(5)+	E2		0.00938 13	B(E2)(W.u.)=35 +10-7 α (K)=0.00829 12; α (L)=0.000928 13; α (M)=0.0001470 21 α (N)=1.339×10 ⁻⁵ 19
									E_{γ} : from (HI,xnγ). Others: 350.4 5 from (³⁰ Si,2αnγ) and 349.9 5 from (¹² C,p3nγ).
									I _γ : unweighted average of 20.5 <i>18</i> from (³⁰ Si,2αηγ), 15.9 <i>23</i> from (¹⁶ O,n2pγ), 13.7 <i>10</i> from (¹² C,p3ηγ), and 11.1 <i>28</i> from (HI,xnγ).
616.13	$1^{(+)}$	299.0 <i>3</i>	100 10	317.13	(2 ⁺)	(M1,E2) ^{&}		0.011 5	α (K)=0.010 4; α (L)=0.0011 5; α (M)=1.8×10 ⁻⁴ 8 α (N)=1.6×10 ⁻⁵ 7
		300.2 2	51 5	315.81	1+	(M1,E2) ^{&}		0.011 5	$\alpha(K)=0.010 4$; $\alpha(L)=0.0011 5$; $\alpha(M)=1.8\times10^{-4} 8$ $\alpha(N)=1.6\times10^{-5} 7$
		364.0 <i>3</i>	64 7	252.25	$(2)^{+}$				
687.76	(6 ⁻)	104.8 5	55 4	583.24	(5 ⁻)	(M1)		0.1008 19	B(M1)(W.u.)= $0.054 + 27 - 15$ α (K)= $0.0892 \ 17$; α (L)= $0.00988 \ 19$; α (M)= $0.001572 \ 30$ α (N)= $0.0001459 \ 28$
		220.9 5	100 7	466.89	(5 ⁻)	(M1)		0.01406 21	B(M1)(W.u.)=0.010 +5-3 α (K)=0.01247 19; α (L)=0.001351 21; α (M)=0.0002149 33 α (N)=2.003×10 ⁻⁵ 30
									E _y : weighted average of 221.4 5 from (30 Si,2 α ny) and 220.4 5 from (12 C,p3ny). (12 C,p3ny).
		262.2 6	15.5 23	425.77	(5)	D			iy. nom (bi,2any). Onen 100 io nom (c,pony).
		330.8 5	41 19	356.92	(6)+	(E1)		0.00263 4	B(E1)(W.u.)= $2.2 \times 10^{-5} + 14 - 10$ α (K)= $0.002339 \; 34; \; \alpha$ (L)= $0.000247 \; 4; \; \alpha$ (M)= $3.91 \times 10^{-5} \; 6$ α (N)= $3.63 \times 10^{-6} \; 5$
									E_{γ} : weighted average of 330.9 5 from (³⁰ Si,2αηγ) and 330.6 5 from (¹² C,p3ηγ). L _γ : unweighted average of 60 4 from (³⁰ Si,2αηγ) and 21.6 25 from
									$({}^{12}C,p3n\gamma).$
		386.0 5	35 15	301.80	(4 ⁻)	E2		0.00677 10	B(E2)($W.u.$)=6.2 +41-27 $\alpha(K)$ =0.00599 9; $\alpha(L)$ =0.000665 10; $\alpha(M)$ =0.0001055 15

From ENSDF

Т

						Add	opted Lev	els, Gammas (c	ontinued)
							$\gamma(7)$	⁶ Br) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ} [‡]	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	$lpha^{\dagger}$	Comments
							_		$\alpha(N)=9.64\times10^{-6} \ I4$ E _y : weighted average of 386.2 5 from (³⁰ Si,2\alphan\gamma) and 385.7 5 from (¹² C,p3n\gamma). I _y : unweighted average of 20 4 from (³⁰ Si,2\alphan\gamma), and 49 6 from (¹² C p3n\gamma)
687.76	(6 ⁻)	442.8 5	14 5	244.87	(5)+	(E1)		1.22×10 ⁻³ 2	B(E1)(W.u.)= $3.1 \times 10^{-6} + 19 - 13$ α (K)=0.001085 <i>16</i> ; α (L)=0.0001141 <i>16</i> ; α (M)= 1.808×10^{-5} <i>26</i> α (N)= 1.684×10^{-6} <i>24</i> E _{γ} : weighted average of 443.1 <i>5</i> from (³⁰ Si,2 α n γ) and 442.5 <i>5</i> from (¹² C,p3n γ). L _{γ} : unweighted average of 9 <i>4</i> from (³⁰ Si,2 α n γ) and 19.5 <i>21</i>
688.30	(8)+	93.4 2	100 4	595.00	(7)+	M1(+E2)	<0.12	0.145 7	from (12 C,p3n γ). B(M1)(W.u.)=0.19 +10-5 α (K)=0.128 6; α (L)=0.0145 9; α (M)=0.00231 15 α (N)=0.000212 12
		331.4 2	88 4	356.92	(6)+	E2 ^{<i>a</i>}		0.01130 <i>16</i>	 E_γ: from (¹²C,p3nγ). Others: 93.5 5 from (³⁰S1,2αηγ) and 93.4 5 from (¹²C,p3nγ). I_γ: from (³⁰Si,2αηγ). Others: 100 8 from (¹²C,p3nγ), and 100 8 from (HI,xnγ). δ: <0.12 for RUL(E2)<300. B(E2)(W.u.)=46 +20-11 α(K)=0.001122 16; α(M)=0.0001779 25 α(N)=1.617×10⁻⁵ 2.3
									E _γ : weighted average of 331.8 5 from (30 Si,2αηγ), 331.3 5 from (12 C,p3ηγ), and 331.3 2 from (HI,xnγ). I _γ : weighted average of 86 4 from (30 Si,2αηγ) and 96 8 from (HI,xnγ). Other: 164 13 from (12 C,p3ηγ) is discrepant.
790.6 815.34	(6 ⁻)	198.2 <i>4</i> 427.3 <i>5</i> 459.4 ^{<i>c</i>} <i>5</i>	$100 5 \le 4$ 9.6 19	592.43 363.42 355.35	(5^{-}) $(4)^{-}$ 1^{+}	D			Additional information 3. Additional information 4.
868.38	1+	499.6 <i>3</i> 552.7 <i>3</i> 822.6 <i>5</i> 868.3 <i>5</i> 519.4	100 <i>10</i> 100 <i>10</i> 16.1 <i>17</i> 21 5	315.81 315.81 45.475 0.0 363.42	1^+ 1^+ $(2)^-$ 1^- $(4)^-$				
898.44	1+	446.2 ^b 3 452.1 ^c 3 543.2 4 581.5 3 582.5 3	<56 ^b 28.5 30 46 5 100 11	452.08 446.18 355.35 317.13 315.81	1^+ (1) ⁺ 1^+ (2 ⁺) 1^+				Other placement from 446 level.

$\gamma(^{76}\text{Br})$ (continued)

E_i (level)	J_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	α^{\dagger}	Comments
898.44	1^{+}	853.0 5	13.3 26	45.475	(2)-			
036 60	1+	898.5 5 38.0 ^C 3	16.3 <i>33</i> 36 10	0.0	1- 1+			
950.00	1	484.4 3	20 7	452.08	1^{+}			
		490.3 <i>3</i>	54 11	446.18	$(1)^{+}$			
		581.8° 4	100 11	355.35	1^+ (2 ⁺)			
		684.5 <i>3</i>	67 26	252.25	$(2)^+$			
		891.0 ^C 5	33 7	45.475	(2)-			
099 17	(7-)	936.0 ^c 10	30 7	0.0	1^{-}	(M 1)	0.00640.0	$D(M1)(W_{12}) = 0.021 + 11.6$
966.17	(7)	500.8 4	100 0	087.70	(0)	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.00049 9	$\alpha(K) = 0.0576.8$; $\alpha(L) = 0.00619.9$; $\alpha(M) = 9.84 \times 10^{-5}.14$
								$a(\mathbf{N})=0.005700, a(\mathbf{N})=0.0000175, a(\mathbf{N})=0.01710 - 177$ $a(\mathbf{N})=9.19\times10^{-6}$ 13
								E_{γ} : weighted average of 301.0 4 from (³⁰ Si,2 α n γ) and 300.5 5 from
								$({}^{12}C, p3n\gamma).$
		101 8 5	20 10	592 24	(5^{-})	EO	0.00570.8	I_{γ} : from (³⁰ Si,2 α n γ). Other: 100 <i>11</i> from (¹² C,p3n γ).
		404.0 J	39 10	365.24	(5)	E2	0.00379 8	$\alpha(K) = 0.00513.7; \alpha(L) = 0.000568.8; \alpha(M) = 9.00\times10^{-5}.13$
								$\alpha(N)=8.24\times10^{-6}$ 12
		521.2 5	64 8	466.89	(5 ⁻)	E2	0.00262 4	B(E2)(W.u.)=13 + 7 - 4
								$\alpha(K)=0.002321 \ 33; \ \alpha(L)=0.000253 \ 4; \ \alpha(M)=4.01\times10^{-5} \ 6$
								$\alpha(N)=3.70\times10^{-6}$ 5
								E_{γ} : weighted average of 521.4 5 from (~Si,2 α ir γ) and 521.0 5 from (¹² C n ₃ n γ)
								I_{γ} : weighted average of 58 8 from (³⁰ Si,2 α n γ) and 74 11 from
								$(^{12}\mathrm{C},\mathrm{p}3\mathrm{n}\gamma).$
		631.0 5	23.2 26	356.92	$(6)^{+}$	(E1)	0.000518 7	$\alpha(K)=0.000461$ 7; $\alpha(L)=4.83\times10^{-5}$ 7; $\alpha(M)=7.66\times10^{-6}$ 11
								$\alpha(N) = 7.16 \times 10^{-7} 10$ $P(E1)(W_{12}) = 0 \times 10^{-6} + 5 - 2$
								$B(E1)(W.u.) = 9 \times 10^{-1} + 3 - 5$ $E_{v.Lv}$: from (¹² C n3nv) only
								Mult.: D, $\Delta J=1$ from R(ADO) in (¹² C,p3n γ); $\Delta \pi$ =(yes) from level
								scheme.
1025.24	(7 ⁻)	337.1 5	100 7	688.30	$(8)^{+}$	(E1)	0.00250 4	$B(E1)(W.u.)=6.59\times10^{-4} 40$
								$\alpha(K)=0.002222 \ 32; \ \alpha(L)=0.0002343 \ 34; \ \alpha(M)=3.71\times10^{-3} \ 5$
		558.5.5	96.8	466.89	(5^{-})	E2	2.13×10^{-3} 3	$B(E_2)(W.u.)=35.0.22$
		22010 0	200		(0)			$\alpha(K)=0.001889\ 27;\ \alpha(L)=0.0002050\ 29;\ \alpha(M)=3.25\times10^{-5}\ 5$
								$\alpha(N)=3.00\times10^{-6} 4$
1048.07	1+	232.6 3	31 13	815.34	0,1			

$\gamma(^{76}\text{Br})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
1048.07	1+	431.7 4 731.2 4 796.1 4 1002.0 ^c 10	52 26 65 13 100 13 40 8	616.13 317.13 252.25 45.475					
1120.24	(9)+	432.0 2	100 5	688.30	(8)+	M1+E2 ^a	-0.29 9	0.00287 <i>10</i>	B(M1)(W.u.)=0.334 26; B(E2)(W.u.)= $2.0 \times 10^2 + 13 - 10$ α (K)=0.00255 9; α (L)=0.000272 11; α (M)= 4.33×10^{-5} 17 α (N)= 4.04×10^{-6} 15 B(E2)(W.u.)= $2.0 \times 10^2 + 13 - 10$ upper bound exceeds RUL=300. E _y : from (HI,xny). Others: 432.4 5 from (³⁰ Si,2 α ny) and 431.9 5 from (¹² C,p3ny). I _y : from (³⁰ Si,2 α ny). Others: 100 10 from (¹⁶ O,n2py), 100 8 from (¹² C, p3ny) and 100 7 from (HI xny)
		525.0 2	9.0 14	595.00	(7)+	E2		0.00256 4	B(E2)(W.u.)=89 15 α (K)=0.002270 32; α (L)=0.0002473 35; α (M)=3.92×10 ⁻⁵ 6 α (N)=3.62×10 ⁻⁶ 5 E _{γ} : weighted average of 525.9 5 from (³⁰ Si,2 α n γ), 525.3 5 from (¹² C,p3n γ), and 526.0 2 from (HI,xn γ). I _{γ} : weighted average of 14 5 from (³⁰ Si,2 α n γ), 7.7 19 from (¹² C,p3n γ), and 9.3 14 from (HI,xn γ).
1254.42	(8+)	659.8 5	100 11	595.00	$(7)^+$	D			$E_{\gamma}, I_{\gamma}, Mult.:$ from (¹² C,p3n γ).
1202.5	(7-)	697.7 J	0/9	330.92	(0)	Q D			$E_{\gamma}, I_{\gamma}, Munt.$ from (C, psir γ).
1292.3	(7)	302.0 3	100 13	790.0	(0)	D			
1338.31	(8 ⁻)	313.3 5	07 22 17 4	1025.24	(3^{-})	Q [M1]		0.00587 9	B(M1)(W.u.)= $0.012 + 5 - 4$ $\alpha(K) = 0.00521 - 8: \alpha(L) = 0.000559 - 8: \alpha(M) = 8.89 \times 10^{-5} - 13$
		350.1.5	16 <i>1</i>	088 17	(7-)	(M1)		0 00448 6	$\alpha(\mathbf{K})=0.00521$ 8; $\alpha(\mathbf{L})=0.000559$ 8; $\alpha(\mathbf{M})=8.89\times10^{-5}$ 13 $\alpha(\mathbf{N})=8.31\times10^{-6}$ 12 $\mathbf{R}(\mathbf{M})(\mathbf{W} _{\mathbf{N}})=0.023$ +8-5
		330.1 3	+0 +	700.17	(7)	(1911)		0.00446 0	
		650.3 <i>5</i>	100 7	687.76	(6 ⁻)	E2		1.38×10 ⁻³ 2	B(E2)(W.u.)=25 +9-5 α (K)=0.001222 17; α (L)=0.0001316 19; α (M)=2.087×10 ⁻⁵ 30 α (N)=1.934×10 ⁻⁶ 27

	Adopted Levels, Gammas (continued)										
							γ (⁷⁶ Br) (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments		
1338.31	(8 ⁻)	743.3 5	21.1 27	595.00	(7)+	(E1)		0.000360 5	E _γ : from (¹² C,p3nγ). Other: 650.4 <i>6</i> from (³⁰ Si,2αnγ). I _γ : from (³⁰ Si,2αnγ) and (¹² C,p3nγ). $\alpha(K)=0.000321 5; \alpha(L)=3.36\times10^{-5} 5; \alpha(M)=5.32\times10^{-6} 7$ $\alpha(N)=4.98\times10^{-7} 7$		
1511.25	(10)+	390.9 <i>3</i>	43 14	1120.24	(9)+	M1+E2 ^a	-0.38 22	0.0038 4	B(E1)(W.u.)=1.9×10 ⁻⁵ +7-5 B(M1)(W.u.)=0.142 +45-49; B(E2)(W.u.)=1.8×10 ² +21-15 α (K)=0.0034 4; α (L)=0.00037 4; α (M)=5.8×10 ⁻⁵ 7 α (N)=5.4×10 ⁻⁶ 6 E _{γ} : from (HI,xn γ). Others: 390.9 5 from (³⁰ Si,2 α n γ) and 390.9 5		
		823.2 5	100 6	688.30	(8) ⁺	E2		0.000735 10	from (¹² C,p3n γ). I _{γ} : unweighted average of 69.7 28 from (³⁰ Si,2 α n γ), 32 5 from (¹² C,p3n γ), and 26.3 21 from (HI,xn γ). δ : -0.16 to -1.3 from $\gamma(\theta$,pol); <0.6 from RUL<300 for E2. B(E2)(W.u.)=1.8×10 ² +21-15 upper bound exceeds RUL=300. B(E2)(W.u.)=80 +21-14 $\alpha(W)=0.000652.01, \alpha(M)=6.06\times10^{-5}.10, \alpha(M)=1.104\times10^{-5}.16$		
									$\alpha(\mathbf{N})=0.000035 \text{ y}, \alpha(\mathbf{L})=0.90\times10^{-7} 10, \alpha(\mathbf{M})=1.104\times10^{-7} 10^{-6} 14$ \mathbf{E}_{γ} : weighted average of 823.3 6 from (³⁰ Si,2 α n γ), 822.8 5 from (¹² C,p3n γ), and 823.4 5 from (HI,xn γ). \mathbf{I}_{γ} : from (³⁰ Si,2 α n γ). Others: 100 7 from (¹² C,p3n γ) and 100 21 from (HI,xn γ).		
1542.6	(8 ⁻)	250.1 <i>4</i> 752.1 <i>5</i>	12 <i>4</i> 100 <i>5</i>	1292.5 790.6	(7 ⁻) (6 ⁻)	Q					
1610.16	(9)+	355.9 5	100 11	1254.42	(8 ⁺)	(M1)		0.00431 6	$\alpha(K)=0.00383 \ 6; \ \alpha(L)=0.000409 \ 6; \ \alpha(M)=6.50\times10^{-5} \ 9 \ \alpha(N)=6.08\times10^{-6} \ 9 \ B(M1)(W.u.)=0.48 \ 7 \ F. \ L : \ from (^{12}C \ n^3n_2)$		
		922.1 5	73 8	688.30	(8)+	(M1)		0.000498 7	$\alpha(K) = 0.000444 \ 6; \ \alpha(L) = 4.65 \times 10^{-5} \ 7; \ \alpha(M) = 7.39 \times 10^{-6} \ 10 \ \alpha(N) = 6.94 \times 10^{-7} \ 10 \ B(M1)(W.u.) = 0.0200 \ +32 - 29 \ 10 \ M1)(W.u.) = 0.0200 \ +32 - 29 \ 10 \ M1)(W.u.) = 0.0200 \ +32 - 29 \ M1$		
		1015.0 <i>5</i>	86 <i>9</i>	595.00	(7)+	E2		0.000441 6	 E_γ: weighted average of 921.9 <i>5</i> from (¹²C,p3nγ) and 922.3 <i>5</i> from (HI,xnγ). I_γ: from (¹²C,p3nγ). α(K)=0.000393 <i>6</i>; α(L)=4.15×10⁻⁵ <i>6</i>; α(M)=6.59×10⁻⁶ <i>9</i> α(N)=6.15×10⁻⁷ <i>9</i> B(E2)(W.u.)=23.1 +35-33 E_γ,I_γ: from (¹²C,p3nγ). Mult.: Q, ΔJ=2 from ADO ratio in (¹²C,p3nγ); M2 ruled out by RUL. 		

Т

						A	Adopted Levels, (Sammas (continued)				
	γ ⁽⁷⁶ Br) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [@]	$lpha^\dagger$	Comments				
1747.53	(9-)	409.3 5	65 5	1338.31	(8-)	[M1]	0.00308 4	$\begin{aligned} &\alpha(K) = 0.00274 \ 4; \ \alpha(L) = 0.000292 \ 4; \ \alpha(M) = 4.64 \times 10^{-5} \ 7 \\ &\alpha(N) = 4.34 \times 10^{-6} \ 6 \\ &B(M1)(W.u.) = 0.116 \ +11 - 14 \\ &E_{\gamma}: \text{ weighted average of } 409.0 \ 5 \ \text{from } (^{30}\text{Si}, 2\alpha n\gamma) \text{ and } 409.5 \ 5 \ \text{from } (^{12}\text{C}, p3n\gamma). \end{aligned}$				
		722.3 5	35 7	1025.24	(7 ⁻)	[E2]	1.03×10 ⁻³ 2	(¹² C,p3ny). $\alpha(K)=0.000918 \ I3; \ \alpha(L)=9.83\times10^{-5} \ I4; \ \alpha(M)=1.560\times10^{-5} \ 22 \ \alpha(N)=1.448\times10^{-6} \ 20$				
		759.5 5	100 6	988.17	(7-)	E2	0.000904 13	B(E2)(W.u.)=29 +5-6 α (K)=0.000804 11; α (L)=8.59×10 ⁻⁵ 12; α (M)=1.363×10 ⁻⁵ 19 α (N)=1.267×10 ⁻⁶ 18 B(E2)(W.u.)=65 +6-8				
		1059.0 <i>5</i>	21 5	688.30	(8)+	(E1)	0.0001768 25	E _y : weighted average of 759.4 5 from (³⁰ Si,2 α n γ) and 759.5 5 from (¹² C,p3n γ). I _y : from (³⁰ Si,2 α n γ). Other: 100 9 from (¹² C,p3n γ). α (K)=0.0001576 22; α (L)=1.640×10 ⁻⁵ 23; α (M)=2.60×10 ⁻⁶ 4 α (N)=2.437×10 ⁻⁷ 34 B(E1)(W.u.)=3.7×10 ⁻⁵ +9-10 E ₁ L i from (¹² C n ³ n γ) only.				
1824.6	(9 ⁻)	486.1 6	10 4	1338.31	(8-)	[M1]	2.06×10 ⁻³ 3	B(M1)(W.u.)=0.023 +13-9 $\alpha(K)=0.001831 26; \alpha(L)=0.0001944 28; \alpha(M)=3.09\times10^{-5} 4$				
		799.4 6	100 7	1025.24	(7 ⁻)	E2	0.000792 11	$\alpha(N) = 2.89 \times 10^{-6} 4$ B(E2)(W.u.)=106 +42-23 $\alpha(K) = 0.000704 \ 10; \ \alpha(L) = 7.51 \times 10^{-5} \ 11; \ \alpha(M) = 1.191 \times 10^{-5} \ 17$				
		836.5 6	≤4.4	988.17	(7 ⁻)	[E2]	0.000706 10	$\alpha(N)=1.108\times10^{-5} 16^{-5}$ B(E2)(W.u.)<5.6 $\alpha(K)=0.000627 9; \alpha(L)=6.68\times10^{-5} 9; \alpha(M)=1.059\times10^{-5} 15^{-5}$				
1993.21	(11)+	482.0 5	100 7	1511.25	(10)+	(M1)	2.10×10 ⁻³ 3	B(M1)(W.u.)=0.57 +7-6 $\alpha(K)=0.001867 \ 27; \ \alpha(L)=0.0001983 \ 28; \ \alpha(M)=3.15\times10^{-5} \ 4$ $\alpha(N)=2.95\times10^{-6} \ 4$ $\delta(E2/M1)<0.35 \ from \ RUL<300 \ for \ E2.$ E _{γ} : weighted average of 482.4 5 from (³⁰ Si,2 α n γ), 481.5 5 from (¹² C,p3n γ), and 482.1 5 from (HI,xn γ). I _{γ} : from (³⁰ Si,2 α n γ). Others: 100 8 from (¹² C,p3n γ) and (HI,xn γ).				
		872.9 <i>3</i>	24 9	1120.24	(9)+	E2	0.000634 9	B(E2)(W.u.)=41 13				

Т

						Adopted Levels,	Gammas (continued)
						$\gamma(^{76}\mathrm{Br})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π} Mult.	α^{\dagger}	Comments
							 α(K)=0.000564 8; α(L)=5.99×10⁻⁵ 8; α(M)=9.51×10⁻⁶ 13 α(N)=8.86×10⁻⁷ 12 E_γ: weighted average of 873.7 6 from (³⁰Si,2αηγ), 872.5 5 from (¹²C,p3nγ), and 872.8 3 from (HI,xnγ). I_γ: unweighted average of 19.3 20 from (³⁰Si,2αηγ), 41 7 from (¹²C,p3nγ), and 13 4 from (HI,xnγ).
2056.9	(9 ⁻)	514.3 5 764 4 5	50 <i>17</i> 100 27	1542.6 (3 1292.5 (7	8 ⁻) 7 ⁻) O		
2080.10	(10+)	470.1 5	51 6	1610.16 (9	9) ⁺ (M1)	2.23×10 ⁻³ 3	$\alpha(K)=0.001979\ 28;\ \alpha(L)=0.0002103\ 30;\ \alpha(M)=3.34\times10^{-5}\ 5$ $\alpha(N)=3.13\times10^{-6}\ 4$ B(M1)(W.u.)=0.181 +32-30 E. L: from (¹² C p3pg) only
		826.1 5	36 6	1254.42 (8 ⁺) [E2]	0.000728 10	$\alpha(\mathbf{K})=0.000647 \ 9; \ \alpha(\mathbf{L})=6.89\times10^{-5} \ 10; \ \alpha(\mathbf{M})=1.094\times10^{-5} \ 15 \ \alpha(\mathbf{N})=1.018\times10^{-6} \ 14 \ \mathbf{B}(\mathbf{E2})(\mathbf{W}.u.)=46 \ +10-9 \ \mathbf{E} \ \mathbf{L} \ \mathbf{G} \ $
		959.7 <i>3</i>	100 8	1120.24 (9	9) ⁺ (M1)	0.000458 6	a_{γ}, l_{γ} : from (**C, p3n γ) only. $\alpha(K)=0.000408 \ 6; \ \alpha(L)=4.28\times10^{-5} \ 6; \ \alpha(M)=6.79\times10^{-6} \ 10$ $\alpha(N)=6.38\times10^{-7} \ 9$ B(M1)(W.u.)=0.042 +7-6 E _{\gamma} : weighted average of 960.0 5 from (³⁰ Si, 2 α n γ), 959.8 5 from
2217.98	(10 ⁻)	470.3 8	43 10	1747.53 (9 ⁻) (M1)	2.22×10 ⁻³ 3	(¹² C,p3n γ), and 959.6 3 from (HI,xn γ). I _{γ} : from (¹² C,p3n γ). B(M1)(W.u.)=0.104 20 α (K)=0.001977 29; α (L)=0.0002100 31; α (M)=3.34×10 ⁻⁵ 5 α (N)=3.13×10 ⁻⁶ 5 E _{γ} : unweighted average of 471.0 5 from (³⁰ Si,2 α n γ) and 469.5 5 from
		879.6 5	100 7	1338.31 (8 ⁻) E2	0.000622 9	 (¹²C,p3nγ). I_γ: unweighted average of 52 7 from (³⁰Si,2αnγ) and 33 4 from (¹²C,p3nγ). B(E2)(W.u.)=64 +7-6 α(K)=0.000553 8; α(L)=5.88×10⁻⁵ 8; α(M)=9.33×10⁻⁶ 13 α(N)=8.69×10⁻⁷ 12 E_γ: weighted average of 880.0 6 from (³⁰Si,2αnγ) and 879.3 5 from (¹²C, p3ny).
		1097.5 5	16 4	1120.24 (9	9) ⁺ (E1)	0.0001654 23	(-C,p3ny). I_{γ} : from (³⁰ Si,2 α n γ). Other: 100 <i>11</i> from (¹² C,p3n γ). α (K)=0.0001474 <i>21</i> ; α (L)=1.533×10 ⁻⁵ <i>22</i> ; α (M)=2.431×10 ⁻⁶ <i>34</i> α (N)=2.279×10 ⁻⁷ <i>32</i> B(E1)(W.u.)=5.2×10 ⁻⁵ <i>13</i> E_{γ} , I_{γ} : from (¹² C,p3n γ) only.

Т

$\gamma(^{76}\text{Br})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$E_f \qquad J_f^{\pi}$	Mult.@	α^{\dagger}	Comments
2357.1	(10 ⁻)	300.3 5	21 7	2056.9 (9 ⁻)	D		
2577.7	(11)+	814.6 <i>5</i> 497.7 <i>5</i>	100 6 100	$\begin{array}{c} 1542.6 (8^{-}) \\ 2080.10 (10^{+}) \end{array}$	Q (M1)	1.95×10 ⁻³ 3	α (K)=0.001734 25; α (L)=0.0001840 26; α (M)=2.92×10 ⁻⁵ 4 α (N)=2.74×10 ⁻⁶ 4
							B(M1)(W.u.)=0.34 + 13 - 10
							E_{γ} : weighted average of 497.8 8 from (* 51,2 <i>a</i> n γ) and 497.6 5 from (¹² C,p3n γ).
		06765	76 10	$1610.16(0)^{+}$	EO	0.000404.7	L_{γ} : from (¹² C,p3n γ).
		907.0 5	10 12	1010.10 (9)	E2	0.000494 /	$\alpha(\mathbf{N})=0.000459\ 0;\ \alpha(\mathbf{L})=4.05\times10^{-7}\ ;\ \alpha(\mathbf{M})=7.58\times10^{-7}\ 10^{$
							B(E2)(W.u.) = 50 + 20 - 14
		10// 0 5	07.10	1511.25 (10)+	a m	0.000260.5	E_{γ}, I_{γ} : from (¹² C,p3n γ) only.
		1066.2.5	97 18	1511.25 (10)+	(M1)	0.000368 5	$\alpha(K)=0.000328$ 5; $\alpha(L)=3.43\times10^{-5}$ 5; $\alpha(M)=5.45\times10^{-6}$ 8 $\alpha(M)=5.12\times10^{-7}$ 7
							$B(M_1)(W_1) = 0.033 + 13 - 9$
							$E_{\gamma}I_{\gamma}$: from (¹² C,p3n γ) only.
2626.6	(12 ⁺)	633.7 7	55 15	1993.21 (11)+	D		E_{γ} : weighted average of 633.0 5 from (³⁰ Si,2 α n γ) and 634.3 5 from (¹² C.p3n γ).
							I_{γ} : unweighted average of 70 5 from (³⁰ Si,2 α n γ) and 40 5 from (¹² C p ₃ n ₂)
		1115.5 5	100 7	1511.25 (10)+	Q		E_{γ} : from (¹² C,p3n γ). Other: 1115.4 6 from (³⁰ Si,2 α n γ).
						2	I_{γ} : from (³⁰ Si,2 α n γ). Other: 100 15 from (¹² C,p3n γ).
2688.7	(11 ⁻)	470.7 5	58 19	2217.98 (10 ⁻)	(M1)	2.22×10^{-3} 3	$\alpha(K)=0.001973\ 28;\ \alpha(L)=0.0002096\ 30;\ \alpha(M)=3.33\times10^{-5}\ 5$
							$B(M1)(W_{11})=0.182 + 41 - 47$
							E_{γ} : weighted average of 470.2 5 from (³⁰ Si,2 α n γ) and 471.2 5 from (¹² C, n ₃ n γ)
							I_{γ} : unweighted average of 39 8 from (³⁰ Si,2 α n γ) and 77 12 from (¹² C p3n γ)
		864.1 5	25 4	1824.6 (9 ⁻)	[E2]	0.000650 9	$\alpha(K)=0.000578 \ 8; \ \alpha(L)=6.15\times10^{-5} \ 9; \ \alpha(M)=9.76\times10^{-6} \ 14$
							$\alpha(N) = 9.09 \times 10^{-7} \ 13$
							B(E2)(W.u.)=22.8 +47-42
		941.1 5	100 6	1747.53 (9 ⁻)	E2	0.000528 7	$\alpha(K)=0.000469\ 7;\ \alpha(L)=4.98\times10^{-5}\ 7;\ \alpha(M)=7.90\times10^{-6}\ 11$
							$B(E_2)(W_{\mu})=60 + 9 - 7$
							E_{γ} : weighted average of 941.2 5 from (³⁰ Si,2 α n γ) and 941.0 5 from (¹² C,p3n γ).
							I_{γ} : from (³⁰ Si,2 α n γ). Other: 100 15 from (¹² C,p3n γ).
2736.2	(11^{-})	911.7 6	100 7	1824.6 (9 ⁻)	Q		

$\gamma(^{76}\text{Br})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
2736.2	(11 ⁻)	988.8 6	50 10	1747.53	(9 ⁻)			
2882.9	(11^{-})	525.9 5 826 2 5	100 38	2357.1	(10^{-})	D		
3105.3	(12+)	527.6 5	40 18	2577.7	$(11)^+$	D		E _{γ} : weighted average of 527.9 8 from (³⁰ Si,2 α n γ) and 527.5 5 from (¹² C,p3n γ).
								I _{γ} : weighted average of 26 <i>13</i> from (³⁰ Si,2 α n γ) and 62 <i>16</i> from (¹² C,p3n γ).
		1025.2 5	100 19	2080.10	(10+)	(Q)		E_{γ} : weighted average of 1025.7 8 from (³⁰ Si,2 α n γ) and 1025.0 5 from (¹² C,p3n γ).
2100.2	(12^{+})	402.0.5	25 4	2626.6	$(10\pm)$	0.011	$2 10 \cdot 10^{-3}$	I_{γ} : from (¹² C,p3n γ). Other: 100 37 from (³⁰ Si,2 α n γ).
3108.2	(13)	482.0 5	35 4	2626.6	(12^{+})		2.10×10 ³ 3	B(M1)(W.u.)=0.251 +37-33 α (K)=0.001867 27; α (L)=0.0001983 28; α (M)=3.15×10 ⁻⁵ 4
								$\alpha(N)=2.95\times10^{-6} 4$
		1114.7 5	100 7	1993.21	$(11)^{+}$	E2	0.000357 5	B(E2)(W.u.)=63 +7-6
								$\alpha(K)=0.000317$ 4; $\alpha(L)=3.34\times10^{-5}$ 5; $\alpha(M)=5.30\times10^{-6}$ 7
								$\alpha(N) = 4.96 \times 10^{-7}$ 7; $\alpha(IPF) = 1.147 \times 10^{-6}$ 23
								E_{γ} : weighted average of 1115.0 6 from (³⁰ Si,2 α n γ), 1115.0 5 from (¹² C.p3n γ), and 1114.0 6 from (HLxn γ).
3257.0	(12^{-})	374.0 5	17 4	2882.9	(11^{-})			((
		521.0 5	22 4	2736.2	(11^{-})	D		
		899.9 <i>5</i>	100 6	2357.1	(10^{-})	Q		
		1038.8 8	22 4	2217.98	(10^{-})	Q		
3285.9	(12-)	1067.6 5	100	2217.98	(10 ⁻)	E2	0.000393 6	$\alpha(K)=0.000349 5; \alpha(L)=3.69\times10^{-5} 5; \alpha(M)=5.85\times10^{-6} 8$ $\alpha(N)=5.47\times10^{-7} 8$
								B(E2)(W.u.) = 83 + 16 - 14
								E _{γ} : weighted average of 1067.2 8 from (³⁰ Si,2 α n γ) and 1067.8 5 from (¹² C,p3n γ).
3641.6	(13+)	536.3 5	345 <i>13</i>	3105.3	(12+)			E _{γ} : weighted average of 536.0 8 from (³⁰ Si,2 α n γ) and 536.4 5 from (¹² C,p3n γ).
								I _{γ} : from (¹² C,p3n γ). Other: \leq 33 from (³⁰ Si,2 α n γ).
		1063.8 5	100 23	2577.7	$(11)^{+}$			E_{γ} : from (¹² C,p3n γ). Other: 1063.9 8 from (³⁰ Si,2 α n γ).
3705.8	(13^{-})	420 1 5	31.5	3285 0	(12^{-})	D		I_{γ} : from (¹² C,p3n γ). Other: 100 27 from (³⁰ S1,2 α n γ).
5705.0	(15)	969.5 5	27.5	2736.2	(12)	D		
		1017.1 6	100 6	2688.7	(11^{-})	Q		
3776.1	(13 ⁻)	519.3 5	100 6	3257.0	(12 ⁻)	Ď		
	. /	893.3 5	27 5	2882.9	(11-)	Q		
		1040 2	23 7	2736.2	(11^{-})			
4001.5	(14^{+})	893.4 6	61 6	3108.2	(13+)	[M1,E2]	0.000566 34	α (K)=0.000504 30; α (L)=5.32×10 ⁻⁵ 35; α (M)=8.4×10 ⁻⁶ 5

18

 $^{76}_{35}\mathrm{Br}_{41}$ -18

	Adopted Levels, Gammas (continued)									
						γ (⁷⁶ Bi	c) (continued)			
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	α^{\dagger}	Comments			
4001.5	(14+)	1374.8 5	100 <i>10</i>	2626.6 (12 ⁺)	E2	0.000272 4	$\alpha(N)=7.9\times10^{-7} 5$ B(M1)(W.u.)=0.113 +21-16 if M1, B(E2)(W.u.)=189 +36-27 if E2. $\alpha(K)=0.0002017 28; \alpha(L)=2.114\times10^{-5} 30; \alpha(M)=3.36\times10^{-6} 5$ $\alpha(N)=3.14\times10^{-7} 4; \alpha(IPF)=4.59\times10^{-5} 7$ B(E2)(W.u.)=36 +6-5 E _{γ} : weighted average of 1375.4 8 from (³⁰ Si,2\alphan γ) and 1374.6 5 from			
4301.7	(14 ⁻)	526.3 5 595.8 5	74 9 100 <i>13</i>	3776.1 (13 ⁻) 3705.8 (13 ⁻)	0		$(^{12}C,p_3n\gamma)$. Other: 1374 <i>3</i> from (HI,xn γ).			
		1015.4 5	/4 11	3285.9 (12)	Q		E_{γ} : weighted average of 1015.9 6 from (~S1,2 α n γ) and 1015.0 5 from (¹² C,p3n γ).			
4363.8	(14+)	722 <i>1</i> 1258.6 <i>5</i>	≤33 100 <i>33</i>	3641.6 (13 ⁺) 3105.3 (12 ⁺)			E _{γ} : weighted average of 1258.7 8 from (³⁰ Si,2 α n γ) and 1258.5 5 from (¹² C,p3n γ).			
4403.7	(14 ⁻)	627.5 6	42 9	3776.1 (13 ⁻)	0					
4434.3	(15 ⁺)	432.7 5	29 <i>4</i>	4001.5 (12)	(M1)	0.00270 4	B(M1)(W.u.)=0.62 +13-11 α (K)=0.002402 34; α (L)=0.000256 4; α (M)=4.06×10 ⁻⁵ 6			
		1326.0 5	100 7	3108.2 (13+)	E2	0.000278 4	$\alpha(N)=3.80\times10^{-5} 5$ B(E2)(W.u.)=57 +10-7 $\alpha(K)=0.0002175 \ 31; \ \alpha(L)=2.282\times10^{-5} \ 32; \ \alpha(M)=3.62\times10^{-6} \ 5$ $\alpha(N)=3.39\times10^{-7} \ 5; \ \alpha(IPF)=3.38\times10^{-5} \ 5$ E _y : from (¹² C,p3ny). Others: 1326.1 8 from (³⁰ Si,2\alphany) and 1326 2 from (HI xnx)			
4852.2	(15 ⁻)	550.6 5	57 6	4301.7 (14 ⁻)	D		(III,XII <i>Y</i>).			
4902.9	(15 ⁺)	1146.4 6 539 ^c	$100\ 6$ ≤ 50	3705.8 (13) $4363.8 (14^+)$	Q					
4942.4	(15^{-})	1261.3 9 538.6 5	100 <i>40</i> 90 9	$3641.6 (13^+)$ $4403.7 (14^-)$	D					
5522 ((1(-)	1166.1 6	100 12	3776.1 (13 ⁻)	Q					
5555.0	(10)	1232.2 7	100 5	4942.4 (15) 4301.7 (14 ⁻)	Q Q					
5554.3	(16+)	1119.9 6 1552.8 5	20 6 100 <i>1</i> 2	4434.3 (15 ⁺) 4001.5 (14 ⁺)	Q		E_{γ} : weighted average of 1552.6 8 from (³⁰ Si,2αnγ) and 1552.9 5 from (¹² C,p3nγ). Other: 1550 4 from (HLxnγ).			
5762.3	(16 ⁻)	819.9 5	≤17 100 0	4942.4 (15 ⁻)	0					
5793.8	(16 ⁺)	1358.5 8 1430 2	100 8 100	440 <i>3</i> .7 (14) 4363.8 (14 ⁺)	Q					
5931.6	(17+)	1497.3 7	100	4434.3 (15+)	E2	0.000274 4	B(E2)(W.u.)=7×10 ¹ +6-3 α (K)=0.0001695 24; α (L)=1.773×10 ⁻⁵ 25; α (M)=2.81×10 ⁻⁶ 4			

From ENSDF

 $^{76}_{35}\mathrm{Br}_{41}$ -19

 $^{76}_{35}\mathrm{Br}_{41}$ -19

Т

						Ad	lopted Levels,	Gammas (continued)
							$\gamma(^{76}\text{Br})$	(continued)
E_i (level)	\mathbf{J}_i^{π}	Eγ [∓]	Ι _γ ቹ	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
								$\alpha(N)=2.64\times10^{-7}$ 4; $\alpha(IPF)=8.42\times10^{-5}$ 12
								E _{γ} : weighted average of 1498.9 8 from (³⁰ Si,2 α n γ), 1496.7 5 from (¹² C,p3n γ), and 1496 3 from (HI,xn γ).
6166.6	(17^{-})	632.9 5	25 7	5533.6	(16 ⁻)			
		1314.5 8	100 7	4852.2	(15 ⁻)	Q		
6383.9	(17^{+})	1481 2	100	4902.9	(15^{+})			
6391.0	(17^{-})	628.7 5	≤18	5762.3	(16 ⁻)			
	(10.)	1448.6 8	100 14	4942.4	(15^{-})			
7009.7	(18^{-})	618.6 5	16 4	6391.0	(17^{-})			
	(10+)	1476.18	100.6	5533.6	(16^{-})	Q		
7207.8	(18^{+})	1653.5 8	100	5554.3	(16')			
/308.3	(18)	1546 2	100	5/62.3	(16)	E2	0.000207.4	$\mathbf{D}(\mathbf{D}\mathbf{Q})/\mathbf{W}$), 20
/592.8	(191)	1661.2 8	100	5931.6	(1/')	E2	0.000307 4	B(E2)(W.u.)>39
								$\alpha(\mathbf{K}) = 0.0001381 \ 19; \ \alpha(\mathbf{L}) = 1.441 \times 10^{-5} \ 20; \ \alpha(\mathbf{M}) = 2.28 / \times 10^{-5} \ 32$
7690 6	(10^{-})	670.0.5	22.5	7000 7	(10^{-})			$\alpha(N)=2.143\times10^{-5}$ 50, $\alpha(PP)=0.0001322$ 22
/080.0	(19)	070.9 5	33 J 100 11	6166.6	(10)	0		
8033.0	(10^{+})	1514.1 0	100 11	6383.0	(17^+)	Q		
8124.0	(19^{-})	1733 2	100	6301.0	(17^{-})			
8701.9	(20^{-})	169228	100	7009.7	(17) (18^{-})			
8960 1	(20^{+})	1752.2.0	100	7207.8	(10^{-})			
9092.3	(20^{-})	1784 2	100	7308.3	(10^{-})			
9390.2	(20^{-})	1709 6 8	100	7680.6	(10^{-})			
9427.5	(21^+)	1834.7 9	100	7592.8	(19^+)			
10216.1	(21^{-})	2092 2	100	8124.0	(19^{-})			
10541.4	(22-)	1839.5 8	100	8701.9	(20^{-})			
10870.1	(22^{+})	1910 2	100	8960.1	(20^+)			
11289.8	(23^{-})	1899.5 8	100	9390.2	(21^{-})			
11450.0	(23^{+})	2022.5 8	100	9427.5	(21^{+})			
12564.5	(24^{-})	2023 2	100	10541.4	(22^{-})			
12954.2	(24^{+})	2084 2	100	10870.1	(22^{+})			
13439.3	(25 ⁻)	2149.5 8	100	11289.8	(23 ⁻)			
13606.1	(25^{+})	2156 2	100	11450.0	(23 ⁺)			
14794.5	(26 ⁻)	2230 2	100	12564.5	(24 ⁻)			
15863.1	(27^{+})	2257 2	100	13606.1	(25^{+})			
15954.3	(27-)	2515 2	100	13439.3	(25 ⁻)			

[†] Additional information 5. [‡] For low-spin (J<4) levels, values are generally from ⁷⁶Kr ε decay supplemented by data from (p,n γ). For high-spin levels (J>3), values are mainly from ⁵⁵Mn(³⁰Si,2 α n γ). Exceptions are noted.

$\gamma(^{76}\text{Br})$ (continued)

[#] From ⁷⁶Br IT decay.

^(e) From ce data in ⁷⁷Kr ε decay, and from $\gamma(\theta)$, $\gamma(\text{pol})$ and DCO ratios in (HI,xn γ), (³⁰Si,2 α n γ) and ADO ratios in (¹²C,p3n γ). When level half-lives are known or assumed to be less than coincidence resolving time of \approx 50 ns, RUL for E2 and M2 is used to assign E2 for $\Delta J=2$, quadrupole transitions. In some cases (M1) or (E1) is assigned for $\Delta J=1$, dipole transitions, based on ΔJ^{π} . Specific cases are noted.

[&] From ce data in ⁷⁷Kr ε decay.

^{*a*} From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ data in (HI,xn γ).

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) ----13385 100 1 ¹⁴³0 100 $= \begin{bmatrix} 1 & 1 \\ 2 & 2 \\$ (16⁺) 5793.8 (16⁻) 5762.3 (16+) 5554.3 (16⁻) 5533.6 1001 0100 1 330 - 4 w 0010 - 5.9K, Ś 05 5 230,3 1 (15^{-}) 4942.4 4902.9 4852.2 (15^+) (15-) 2010 2010 (15^+) 0.099 ps 14 4434.3 (14-) ¥ 4403.7 ¥ 25 8 2 8 8 8 V 1 1324 8 22 100 1 1 (14+) 4363.8 ¥ (14^{-}) 4301.7 $= \left[\begin{array}{c} 1^{(0)}_{0}, \\ 9^{(0)}_{0}, \\ 4^{(0)}_{2}, \\ 4^{(0)}_{2}, \\ 2^{(0)}_{$ (14^{+}) 4001.5 0.104 ps 14 1040 893,23 519,3 02 100 st $\frac{(13^{-})}{(13^{-})}$ 3776.1 5.03 - 1 3705.8 (13^{+}) ¥ 3641.6 1. 100.50 E2 100 , 0 9 a lin (12^{-}) 3285.9 0.256 ps +49-42 1/1/ 10251 (12^{-}) ¥ 3257.0 1 252 080 1 253 080 1 1 0100 × 6 (13⁺) 0.203 ps 20 3108.2 ¥ (12^+) ¥ _***** 3105.3 1 000, 1,00, (11^{-}) 2882.9 (11^{-}) 2736.2 (11^{-}) ¥ 2688.7 0.367 ps 28 ¥ (12^+) 2626.6 * (11) 0.194 ps +62-49 2577.7 (10^{-}) 2357.1 (10^{-}) 2217.98 0.55 ps 4 (10^{+}) 2080.10 0.319 ps +49-42 (9-) 2056.9 $(11)^{-1}$ 1993.21 0.276 ps 23 (9-) 1824.6 0.76 ps 21 (9-) 1747.53 0.811 ps +90-49 0.0 16.14 h 20 1-

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $---- \rightarrow \gamma$ Decay (Uncertain)

 $^{76}_{35}{
m Br}_{41}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \triangleright \gamma$ Decay (Uncertain)

Legend

 $^{76}_{35}{
m Br}_{41}$

⁷⁶₃₅Br₄₁