Adopted Levels, Gammas

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013

 $Q(\beta^{-})=5906 \ 3; \ S(n)=4874 \ 3; \ S(p)=13842 \ 6; \ Q(\alpha)=-9577.6 \ 30$ 2012Wa38

S(2n)=13108.1 27, S(2p)=27029 3 (2012Wa38).

The ⁷⁵Zn isotope produced by mass separation of fragments from neutron induced fission of ²³⁵U and identified by detection of Ga x rays (1974Gr29). Other: ²³⁸U(p,F), E=25 MeV (1997Hu09).

⁷⁵Zn Levels

Cross Reference (XREF) Flags

	A	75 Cu β^-	decay	(1.224 s)
--	---	----------------------	-------	-----------

- 76 Cu β^{-n} decay (0.638 s) 76 Ge(14 C, 15 O) В С

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	$(7/2^+)^{\dagger}$	10.2 s 2	ABC	$-\frac{1}{8\beta^{-}=100}$
				T _{1/2} : from 1986Ek01.
126.94 9	$(1/2^{-})^{\dagger}$		Α	$\%\beta^{-}=?;$ %IT=?
				E(level): proposed as a β -decaying isomer in ⁷⁵ Zn (2011II01). Estimated
150 10 10	(1 (2 + 2 (2 -)			half-life from systematics=5 s ($2012Au07$).
152.12 10	$(1/2^+, 3/2^-)$		A	J [*] : possible decay to $(1/2^{-})$ isomer; γ from $(5/2^{+}, 1/2^{-})$; no decay to $(1/2^{+})$ g.s. observed.
236.22 10	$(3/2, 5/2^{-})$		Α	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ to (1/2 ⁻).
344.95 8	$(3/2^+, 5/2^-)$		Α	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ 's to (7/2 ⁺) and (1/2 ⁻).
420.52 8	$(3/2^+, 5/2^-)$		Α	J^{π} : γ' s to (7/2 ⁺) and (1/2 ⁻).
475.66 8	$(9/2^+)^{\dagger}$		Α	
725.14 9	$(3/2, 5/2^{-})$		Α	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ to (1/2 ⁻).
933.47 17			Α	
1012.58 10			Α	-
1102.01 11	$(3/2, 5/2^{-})$		Α	J^{π} : possible β feeding from $5/2^{(-)}$; γ to $(1/2^{-})$.
1144.24 8	$(7/2^{-})$		Α	J ^{π} : possible allowed β transition from 5/2 ⁽⁻⁾ ; γ to (9/2 ⁺).
1303.90 11	$(5/2^+)^{\ddagger}$		Α	
1317.8? 5			Α	
1551.08 18			Α	
1605.83 12	$(5/2^+,7/2)^{\ddagger}$		Α	
1787.64 16			Α	
1864.30 25			Α	
1915.96 14	$(5/2^+,7/2)^+$		Α	
2042.5 5			Α	
2230.1 3	$(5/2^+, 7/2)^+$		Α	
2239.60 23			A	
2315.91 22			A	
2339.9 3			A	
2851.2019			Δ	
2904.66 [#] 17			A	
2906.54 [#] 15	$(7/2^{-})$		Α	J ^{π} : possible allowed β feeding from 5/2 ⁽⁻⁾ ; γ to (9/2 ⁺).
2969.77 20	× 1 - 2		Α	
3000.1 <i>3</i>			Α	
3020.37 18			Α	
3087.25 13	$(3/2^{-}, 5/2, 7/2)$		Α	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ to (7/2 ⁻).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁷⁵Zn Levels (continued)

E(level)	\mathbf{J}^{π}	XREF	Comments
3126.55 <i>16</i> 3166.9 <i>4</i>	(3/2 ⁻ ,5/2,7/2)	A A	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ to (7/2 ⁻).
3235.04 <i>13</i> 3266.6 <i>3</i>	(3/2 ⁻ ,5/2,7/2)	A A	J ^{π} : possible β feeding from 5/2 ⁽⁻⁾ ; γ to (7/2 ⁻).
3341.48 23	$(5/2^+, 7/2)^{\ddagger}$	Α	
3361.99 <i>15</i> 3406.7 <i>3</i> 3424.88 <i>21</i>	(3/2 ⁻ ,5/2,7/2) [‡]	A A A	
3492.30 23		A	
3530.73 <i>22</i> 3546.4 <i>3</i>	$(5/2^+, 7/2)^{\ddagger}$	A A	
3574.1 <i>4</i> 3576.9 <i>4</i> 3668.0 <i>3</i>	(5/2+,7/2)‡	A A A	
3818.3 3 3840.38 <i>18</i> 3886.7 7 3897.4 7 3900.1 8	$(5/2^+, 7/2^-)^{\ddagger}$	A A A A	
3999.0 <i>11</i> 4010.0 <i>5</i>		A A A	
4016.4 <i>4</i> 4035.4 <i>5</i>		A A	
4359.0 <i>10</i> 4599.0 <i>6</i>		A A	
4686.1 5		A	
4989.6 8 5022.0 6		A A	

[†] From systematics, $7/2^+$ g.s., $1/2^-$ isomer and a low-lying $9/2^+$ are expected as in N=45 isotones ⁷⁷Ge, ⁷⁹Se, ⁸¹Kr and ⁸³Sr. [‡] Possible β feeding from $5/2^{(-)}$; γ to $(9/2^+)$. If γ to $(1/2^-)$ level at 126.94 keV, then 7/2 is not likely.

[#] Two levels at 2904.7 and 2906.5 are proposed by the evaluators based on γ -ray fits in the level scheme.

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_f^{π}
152.12	$(1/2^+, 3/2^-)$	(25.2)		126.94	$(1/2^{-})$
236.22	$(3/2, 5/2^{-})$	109.21 14	100	126.94	$(1/2^{-})$
344.95	$(3/2^+, 5/2^-)$	192.72 14	100.0 10	152.12	$(1/2^+, 3/2^-)$
		217.90 13	22.48 22	126.94	$(1/2^{-})$
		345.00 13	34.5 <i>3</i>	0.0	$(7/2^+)$
420.52	$(3/2^+, 5/2^-)$	268.48 13	43.1 4	152.12	$(1/2^+, 3/2^-)$
		293.64 13	3.44 6	126.94	$(1/2^{-})$
		420.51 12	100.0 10	0.0	$(7/2^+)$
475.66	$(9/2^+)$	475.61 12	100	0.0	$(7/2^+)$
725.14	$(3/2, 5/2^{-})$	304.60 13	14.6 6	420.52	$(3/2^+, 5/2^-)$
		380.14 13	43.8 7	344.95	$(3/2^+, 5/2^-)$
		488.77 12	20.0 6	236.22	$(3/2, 5/2^{-})$
		573.01 12	84.6 20	152.12	$(1/2^+, 3/2^-)$
		598.30 11	100.0 10	126.94	$(1/2^{-})$
933.47		697.21 <i>17</i>	100	236.22	$(3/2, 5/2^{-})$

$\gamma(^{75}\text{Zn})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{75}$ Zn) (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}	Comments
1012.58		592.06 11	100.0 13	420.52	$(3/2^+, 5/2^-)$	
		667.45 23	14.0 24	344.95	$(3/2^+, 5/2^-)$	
1102.01	$(3/2, 5/2^{-})$	756.93 12	53.6 22	344.95	$(3/2^+, 5/2^-)$	
		865.90 17	32.4 25	236.22	(3/2, 5/2)	
1144 24	$(7/2^{-})$	975.12 11	2 27 7	120.94	(1/2)	
1111.21	(1/2)	668.44 11	19.58 23	475.66	$(9/2^+)$	
		723.76 11	100.0 10	420.52	$(3/2^+, 5/2^-)$	
		799.32 11	34.8 4	344.95	$(3/2^+, 5/2^-)$	
		907.99 11	6.65 11	236.22	$(3/2, 5/2^{-})$	
1000.00		1144.37 16	1.44 11	0.0	$(7/2^+)$	
1303.90	$(5/2^+)$	828.29 14	$22.3 \ 13$	475.66	$(9/2^{+})$	
		1007.70.14	24.7 17	126.04	(3/2, 3/2)	
		11/6.86 11	100.0 22	126.94	(1/2)	
1317.8?		1081.6 4	100	236.22	$(3/2, 5/2^{-})$	
1551.08	$(5/2^+, 7/2)$	1073.42 10	100 4	475.00	$(9/2^+)$ $(9/2^+)$	
1005.05	(3/2, 7/2)	1185.30 16	65 4	420.52	$(3/2^+, 5/2^-)$	
1787.64		854.13 18	16.8.78	933.47	(
1101101		1551.42 14	100 3	236.22	$(3/2, 5/2^{-})$	
1864.30		1628.06 23	100	236.22	$(3/2, 5/2^{-})$	
1915.96	$(5/2^+, 7/2)$	1440.23 15	100 5	475.66	$(9/2^+)$	
2042 5		1495.52 20	92.9	420.52	$(3/2^+, 5/2^-)$	
2042.5	(5.10+ 7.10)	1109.04	100	955.47	(0/2+)	
2230.1	$(5/2^+, 1/2)$	1/5/.6 3	100 14	4/5.66	$(9/2^{+})$ $(3/2^{+} 5/2^{-})$	E_{γ} : poor fit, level-energy difference=1/54.5.
2239.60		1894.62.21	100	344.95	$(3/2^+, 5/2^-)$	
2315.91		1840.23 20	100	475.66	$(9/2^+)$	
2339.9		1864.23 24	100	475.66	$(9/2^+)$	
2851.26		2430.68 21	100 3	420.52	$(3/2^+, 5/2^-)$	
2071 4		2506.3 3	33.6 20	344.95	$(3/2^+, 5/2^-)$	
28/1.4		2033.14 27	100 3	230.22	(3/2, 3/2) $(7/2^{-})$	
2704.00		2559.3 4	20.6 17	344.95	$(3/2^+, 5/2^-)$	
2906.54	$(7/2^{-})$	2430.88 21	70.9 12	475.66	$(9/2^+)$	
		2485.99 22	100.0 12	420.52	$(3/2^+, 5/2^-)$	
00/0 55		2906.4 3	43.6 9	0.0	$(7/2^+)$	
2969.77		2244.5 3	100 7	125.14	(3/2, 5/2)	
		2625.0.6	21.6	344 95	(3/2, 3/2) $(3/2^+, 5/2^-)$	
3000.1		2524.4 3	100	475.66	$(9/2^+)$	
3020.37		2295.24 21	64.4 25	725.14	$(3/2, 5/2^{-})$	
		2675.32 24	100 3	344.95	$(3/2^+, 5/2^-)$	
2007.25	(2) = 5 = 7 (2)	2784.0 9	10 4	236.22	$(3/2, 5/2^{-})$	
3087.25	(3/2,5/2,7/2)	1942.98 20	43 4	1144.24	(7/2)	
		2362.05.21	100 3	725.14	$(3/2, 5/2^{-})$	
		2666.70 24	98 <i>3</i>	420.52	$(3/2^+, 5/2^-)$	
		2742.10 25	75.1 25	344.95	$(3/2^+, 5/2^-)$	
3126.55	$(3/2^{-}, 5/2, 7/2)$	1982.01 <i>17</i>	100.0 19	1144.24	$(7/2^{-})$	
		2024./ 4	213	1102.01	$(3/2, 5/2^{-})$	
		2114.0 3	94	344.95	$(3/2^+, 5/2^-)$	
3166.9		2821.9 4	100	344.95	$(3/2^+, 5/2^-)$	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

				$\gamma(7)$	Zn) (continued
E _i (level)	J^{π}_i	Eγ	Iγ	E_f	J_f^π
3235.04	$(3/2^{-}, 5/2, 7/2)$	2090.84 20	100 3	1144.24	$(7/2^{-})$
		2222.47 24	45 <i>3</i>	1012.58	
		2509.83 24	65 <i>3</i>	725.14	$(3/2, 5/2^{-})$
		2814.2 <i>3</i>	74	420.52	$(3/2^+, 5/2^-)$
		2890.1 3	70 4	344.95	$(3/2^+, 5/2^-)$
3266.6		2921.4 3	100 7	344.95	$(3/2^+, 5/2^-)$
		3115.1 [†] 5	317	152.12	$(1/2^+, 3/2^-)$
3341.48	$(5/2^+, 7/2)$	2865.9 <i>3</i>	100 5	475.66	$(9/2^+)$
		2996.1 5	34 6	344.95	$(3/2^+, 5/2^-)$
		3341.4 4	64 <i>4</i>	0.0	$(7/2^+)$
3361.99	$(3/2^{-}, 5/2, 7/2)$	2217.32 19	100.0 21	1144.24	$(7/2^{-})$
		2349.60 [†] 23	4.5 <i>3</i>	1012.58	
		3017.6 <i>3</i>	54.3 17	344.95	$(3/2^+, 5/2^-)$
3406.7		2262.0 [†] 6	66 9	1144.24	$(7/2^{-})$
		2931.1 <i>3</i>	100 8	475.66	$(9/2^+)$
3424.88		2699.5 <i>3</i>	100 9	725.14	$(3/2, 5/2^{-})$
		3004.2 4	85 11	420.52	$(3/2^+, 5/2^-)$
		3080.14 <i>33</i>	90 8	344.95	$(3/2^+, 5/2^-)$
3492.30		3071.7 <i>3</i>	40 7	420.52	$(3/2^+, 5/2^-)$
		3147.3 <i>3</i>	100 6	344.95	$(3/2^+, 5/2^-)$
3530.73	$(5/2^+, 7/2)$	3055.2 4	22 <i>3</i>	475.66	$(9/2^+)$
		3110.4 <i>3</i>	100 5	420.52	$(3/2^+, 5/2^-)$
		3530.0 4	53 <i>5</i>	0.0	$(7/2^+)$
3546.4		3070.7 <i>3</i>	100	475.66	$(9/2^+)$
3574.1	$(5/2^+, 7/2)$	2848.8 8	65 19	725.14	$(3/2, 5/2^{-})$
2556.0		3098.4 4	100 11	475.66	$(9/2^+)$
3576.9		2565.0 9	49 14	1012.58	(2)(2+ 5)(2-)
2660.0		3231.74	100 9	344.95	$(3/2^+, 5/2^-)$
3668.0		2942.5 3	100 5	125.14	(3/2, 5/2)
2010 2		3248.2 5	23 3	420.52	$(3/2^+, 5/2^-)$
3818.3		3397.73	100 4	420.52	$(3/2^{+}, 5/2^{-})$
2010 20	$(5/2^+, 7/2^-)$	2605.0.2	25 5	1144.24	(3/2, 3/2)
5640.56	(3/2, 7/2)	2095.9 5	53 3	1144.24	(1/2) $(0/2^+)$
		3419 7 4	55 <i>4</i>	420.52	$(3/2^+ 5/2^-)$
		3495 2 4	45 3	344.95	$(3/2^+, 5/2^-)$
		3688.1.4	100.3	152.12	$(1/2^+, 3/2^-)$
3886.7		3411.0 7	100 5	475.66	$(9/2^+)$
3897.4		3661.1 7	100	236.22	$(3/2.5/2^{-})$
3900.1		3555.1 8	100	344.95	$(3/2^+, 5/2^-)$
3999.0		3578.4 11	100	420.52	$(3/2^+, 5/2^-)$
4010.0		3533.8 6	100 19	475.66	$(9/2^+)$
		3665.5 6	54 11	344.95	$(3/2^+, 5/2^-)$
4016.4		3540.7 4	100	475.66	$(9/2^+)$
4035.4		3560.1 8	54 25	475.66	$(9/2^+)$
		3798.7 7	100 25	236.22	$(3/2, 5/2^{-})$
		4035.2 [†] 10	61 21	0.0	$(7/2^+)$
4359.0		3883.2 10	100	475.66	$(9/2^+)$
4599.0		4123.2 6	100	475.66	$(9/2^+)$
4686.1		4341.0 5	100	344.95	$(3/2^+, 5/2^-)$
4989.6		3845.3 8	100	1144.24	$(7/2^{-})$
5022.0		4785.0 10	50 17	236.22	$(3/2, 5/2^{-})$
		4895.1 6	100 33	126.94	$(1/2^{-})$

(⁷⁵Zn) (continu ed)

 † Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{75}_{30}Zn_{45}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $- - - - \rightarrow \gamma$ Decay (Uncertain)

⁷⁵₃₀Zn₄₅

6

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) $\exists \frac{1}{2} \frac{$ 2239.60 (5/2+,7/2) 2230.1 907 0. 100[.]007 + 1 1495 32 -14405 32 -144053 32 2042.5 + 1₆ + 1₆, 6 10 $\frac{1}{3} \frac{1}{35,42} + \frac{1}{3$ (5/2+,7/2) 1915.96 1864.30 1 $= \frac{1}{1_{39,5}} \frac{1}{9_{05}} \frac{1}{9_{05}}$ 1787.64 1 + 105 + 105 + 100 (5/2⁺,7/2) 1605.83 1551.08 ¹ 1081 11766 100 100766 100 2823 243 2823 243 T T _1<u>317.8</u> -i-(5/2+) 1303.90 25. 55 50. 10 $\frac{1}{3} \frac{6_{5,45}}{9_{2,65}} \frac{1}{4_{2}}$ i 1 (7/2-) 1144.24 (3/2,5/2-) 1102.01 1 907 I. Т 12:60 1012.58 i I. 1 933.47 ¥ 398.3 37.307 48.27 48.27 38.67 38.64 36.64 36.64 14.6 14.6 I 1 (3/2,5/2-) 725.14 1 43.61 100 ²⁰ ²⁰³ ²⁰³ ²⁰⁵ ²⁰⁵ ²⁰⁵ ²⁰⁵ ³⁴ ³⁴ ³ I $(9/2^+)$ 475.66 10. 55 - 5 10. 48 10. 48 $(3/2^+, 5/2^-)$ 420.52 ŧ - 8- 8- 8 - 8- 8- 8-- 8- 8- 8- 8i. i. $(3/2^+, 5/2^-)$ Ş 344.95 ÷. 1 100' Т $(3/2, 5/2^{-})$ 236.22 ⁴ حجي $(1/2^+, 3/2^-)$ 152.12 $(1/2^{-})$ ¥ 126.94 $(7/2^+)$ 0.0 10.2 s 2

⁷⁵₃₀Zn₄₅

7