⁴⁸ Ti(³⁰ Si,2pnγ)	1999So02
--	----------

	Histo	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013

⁷⁵Se Levels

E=90 MeV. 190 μ g/cm² target enriched to 99%. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) using an array of 10 Compton-suppressed Ge detectors. Deduced 3- and 5-quasiparticle band structures.

E(level)	J^{π}^{\dagger}	E(level)	J^{π}^{\dagger}	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$
0.0‡	5/2+	1740.4 [#] 2	$(15/2^+)$	3431.8 ^b 8	$(19/2^{-})$	5475.5 [‡] 5	$(29/2^+)$
112.1 [#] 1	7/2+	1904.8 ^{<i>a</i>} 2	$(13/2^{-})$	3646.1 [@] 2	(21/2-)	5585.6 <mark>b</mark> 16	$(27/2^{-})$
132.4 [‡] 1	9/2+	1910.2 [‡] 2	$(17/2^+)$	3745.7 [#] 3	$(23/2^+)$	6059.1 [@] 11	$(29/2^{-})$
286.4 <mark>b</mark> 1	3/2-	2390.6 ^b 2	$(15/2^{-})$	3884.4 ^a 20	$(21/2^{-})$	6171.9 [#] 10	$(31/2^+)$
427.5 ^a 1	5/2-	2765.4 [#] 3	$(19/2^+)$	4198.7 [‡] 4	$(25/2^+)$	6870.1 [‡] <i>17</i>	$(33/2^+)$
747.3 ^b 1	$7/2^{-}$	2840.1 [@] 2	$(17/2^{-})$	4267.6 ^{&} 11	$(23/2^{-})$	7649.3 [@] 15	$(33/2^{-})$
813.8 [#] 2	$11/2^{+}$	2871.4 ^a 2	$(17/2^{-})$	4471.9 ^b 13	$(23/2^{-})$	7755.3 [#] 20	$(35/2^+)$
933.4 [‡] 1	$13/2^{+}$	3017.8 [‡] <i>3</i>	$(21/2^+)$	4706.4 [@] 3	$(25/2^{-})$	8447.6 [‡] 25	$(37/2^+)$
1078.3 ^a 2	9/2-	3289.1 ^{&} 7	(19/2 ⁻)	4830.7 [#] 5	$(27/2^+)$	10242.6 [‡] <i>32</i>	$(41/2^+)$
1487.2 <mark>b</mark> 2	$(11/2^{-})$	3305.6 2	(19/2 ⁻)	5037.2? ^a 23	$(25/2^{-})$		

[†] As proposed by 1999So02. The parentheses are added by the evaluator since strong arguments for most of these assignments are lacking.

[‡] Band(A): $vg_{9/2}$ 5/2[422], $\alpha = +1/2$. First band crossing is due to a pair of $g_{9/2}$ protons and the second due to alignment of a pair of $g_{9/2}$ neutrons.

[#] Band(a): $vg_{9/2}$ 5/2[422], $\alpha = -1/2$.

[@] Band(B): $(\nu 1/2[431])(\pi 3/2[312])(\pi 1/2[440]), \alpha = +1/2.$

& Band(b): $(\nu 1/2[431])(\pi 3/2[312])(\pi 1/2[440]), \alpha = -1/2.$

^{*a*} Band(C): $\alpha = +1/2$.

^b Band(c): $\alpha = -1/2$.

$\gamma(^{75}\text{Se})$

The R(DCO) presented as comments are from 1999So02. The first value corresponds to a gate on stretched quadrupole (E2) transitions (theoretical R(DCO)=0.74 for ΔJ =1 transitions and 0.7 otherwise) while the second value corresponds to a gate on a stretched dipole transition (theoretical R(DCO)=1.41 for ΔJ =2, Q transitions and 0.70 for ΔJ =1, dipole).

Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
112.1 [†] <i>1</i>	112.1	7/2+	0.0	5/2+
119.4 [†] 2	933.4	$13/2^{+}$	813.8	$11/2^+$
132.4 [†] 1	132.4	9/2+	0.0	5/2+
141.2 [†] 2	427.5	5/2-	286.4	3/2-
169.8 [†] 3	1910.2	$(17/2^+)$	1740.4	$(15/2^+)$
252.7 [†] 5	3017.8	$(21/2^+)$	2765.4	$(19/2^+)$
286.4	286.4	3/2-	0.0	5/2+
315.4 [†] 1	427.5	5/2-	112.1	7/2+
319.7 [†] <i>1</i>	747.3	7/2-	427.5	5/2-

Continued on next page (footnotes at end of table)

⁴⁸Ti(³⁰Si,2pnγ) **1999So02** (continued)

$\gamma(^{75}\text{Se})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Comments
330.8 [†] 2 340.4 <i>1</i> 357.2 <i>10</i>	9 4	1078.3 3646.1 3646.1	9/2 ⁻ (21/2 ⁻) (21/2 ⁻)	747.3 7/2 ⁻ 3305.6 (19/2 ⁻) 3289.1 (19/2 ⁻)	R(DCO)=0.52 9, 0.68 6. R(DCO)=0.81 11.
408.9^{\dagger} <i>I</i>		1487.2	$(11/2^{-})$ $(12/2^{-})$	$1078.3 \ 9/2^{-1}$	
417.6 [†] 427.6 [†] 439.0 20	2	427.5 4706.4	(13/2) $5/2^{-}$ $(25/2^{-})$ $(17/2^{-})$	$\begin{array}{c} 1487.2 (11/2 \) \\ 0.0 5/2^+ \\ 4267.6 (23/2^-) \\ 2200.6 (15/2^-) \end{array}$	R(DCO)=0.93 12.
449.0 <i>I</i> 453.2 [†] 7	0	2840.1 4198.7	$(17/2^{-})$ $(25/2^{+})$	$3745.7 (23/2^+)$	R(DCO)=0.7713, 0.770.
460.9 [†] 3 465.4 1	8	747.3 3305.6	7/2 ⁻ (19/2 ⁻)	286.4 3/2 ⁻ 2840.1 (17/2 ⁻)	R(DCO)=0.56 9, 0.70 8.
485.7 [†] 7 560.7 10	2	2390.6 3431.8	(15/2 ⁻) (19/2 ⁻)	1904.8 (13/2 ⁻) 2871.4 (17/2 ⁻)	R(DCO)=0.36 11, 0.72 16.
631.6 [†] 4 644.2 10	4	4830.7 5475.5	$(27/2^+)$ $(29/2^+)$	$\begin{array}{r} 4198.7 & (25/2^+) \\ 4830.7 & (27/2^+) \end{array}$	R(DCO)=0.56 6.
650.8 <i>1</i> 681.1 <i>2</i>		1078.3 813.8	9/2 ⁻ 11/2 ⁺	$427.5 \ 5/2^{-1}$ $132.4 \ 9/2^{+1}$	
696.5 <i>10</i> 701.7 [†] <i>3</i>	3	6171.9 813.8	$(31/2^+)$ $11/2^+$	5475.5 (29/2 ⁺) 112.1 7/2 ⁺	R(DCO)=0.55 7.
727.9^{\dagger} 1		3745.7	$(23/2^+)$	3017.8 (21/2 ⁺)	
739.91 2	2	1487.2 3646.1	$(11/2^{-})$ $(21/2^{-})$	$2871.4 (17/2^{-})$	R(DCO)=0.80 20.
801.1 <i>1</i> 806.1 <i>1</i>	9	933.4 3646.1	$\frac{13/2^{+}}{(21/2^{-})}$	$\begin{array}{r} 132.4 9/2^+ \\ 2840.1 (17/2^-) \end{array}$	R(DCO)=0.98 8, 1.37 12.
806.9 [†] 2 826 5 [†] 1		1740.4 1904 8	$(15/2^+)$ $(13/2^-)$	933.4 13/2 ⁺ 1078 3 9/2 ⁻	
855.2 [†] 1	14	2765.4	$(19/2^+)$ $(19/2^+)$ $(10/2^-)$	$1910.2 (17/2^+)$ $2300.6 (15/2^-)$	P(DCO) = 1.68.24
903.5 [†] 1	14	2390.6	$(19/2^{-})$ $(15/2^{-})$	$\begin{array}{c} 2390.0 & (13/2^{-}) \\ 1487.2 & (11/2^{-}) \end{array}$	K(DCO)=1.06 24.
915 [‡] 1 926.6 [†] 1	1	3305.6	$(19/2^{-})$ $(15/2^{+})$	2390.6 (15/2 ⁻) 813.8 11/2 ⁺	R(DCO)=1.7 5.
935.1 <i>I</i> 966.6 <i>2</i>	12 8	2840.1 2871.4	$(17/2^{-})$ $(17/2^{-})$ $(17/2^{-})$	$\begin{array}{c} 813.8 & 11/2 \\ 1904.8 & (13/2^{-}) \\ 1904.8 & (13/2^{-}) \end{array}$	R(DCO)=1.02 <i>15</i> , 1.53 <i>15</i> . R(DCO)=1.08 <i>10</i> , 1.67 <i>19</i> .
976.8 [†] 3 978.5 10	4	1910.2 4267.6	$(17/2^+)$ $(23/2^-)$	933.4 13/2 ⁺ 3289.1 (19/2 ⁻)	R(DCO)=1.37 13.
980.3 [†] 4 1013.0 20	3	3745.7 3884.4	$(23/2^+)$ $(21/2^-)$	$\begin{array}{r} 2765.4 & (19/2^+) \\ 2871.4 & (17/2^-) \end{array}$	R(DCO)=1.47 22.
1024.8 [†] 7 1040.1 <i>10</i> 1040.8 <i>10</i> 1060 2 2	4 5	2765.4 4471.9 3431.8 4706.4	$(19/2^+)$ $(23/2^-)$ $(19/2^-)$ $(25/2^-)$	$\begin{array}{r} 1740.4 (15/2^+) \\ 3431.8 (19/2^-) \\ 2390.6 (15/2^-) \\ 3646.1 (21/2^-) \end{array}$	R(DCO)=0.96 24 for 1040.1+1040.8. R(DCO)=0.96 24 for 1040.8+1040.1. R(DCO)=1.1.2.152 24
1085.6 [†] 5	3	4700.4 4830.7	$(23/2^{-})$ $(27/2^{+})$	$3745.7 (23/2^+)$	R(DCO)=1.13, 1.3224.
1107.6 [†] 2 1113.7 <i>10</i>	2	3017.8 5585.6	(21/2 ⁺) (27/2 ⁻)	1910.2 $(17/2^+)$ 4471.9 $(23/2^-)$	
$1152.8^{\ddagger} 10$	1	5037.2?	$(25/2^{-})$	$3884.4 (21/2^{-})$	
1180.71 2 1276.9 4 1341.1 10 1352.7 10	10 10 4	4198.7 5475.5 6171.9 6059.1	$(25/2^+)$ $(29/2^+)$ $(31/2^+)$ $(29/2^-)$	$\begin{array}{r} 3017.8 & (21/2^{+}) \\ 4198.7 & (25/2^{+}) \\ 4830.7 & (27/2^{+}) \\ 4706.4 & (25/2^{-}) \end{array}$	R(DCO)=0.92 8. R(DCO)=1.03 14. R(DCO)=1.42 19.

Continued on next page (footnotes at end of table)

⁴⁸Ti(³⁰Si,2pn γ) 1999So02 (continued)

$\gamma(^{75}\text{Se})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
^x 1369 1394.6 <i>16</i> ^x 1424	6	6870.1	(33/2+)	5475.5	(29/2+)	In $\gamma\gamma$ coin with transitions from many negative parity states. R(DCO)=1.06 <i>10</i> . In $\gamma\gamma$ coin with yrast decays up to 25/2 ⁺ level at 4198.7, but a similar line is also present in ⁷⁵ Br.
1577.5 <i>18</i>	3	8447.6	$(37/2^+)$	6870.1	$(33/2^+)$	$R(DCO)=0.95\ 13$ for $1578\gamma+1583\gamma$.
1583.4 18	5	7755.3	$(35/2^+)$	6171.9	$(31/2^+)$	$R(DCO)=0.95 \ 13 \text{ for } 1583\gamma+1578\gamma.$
1590.2 10	2	7649.3	$(33/2^{-})$	6059.1	$(29/2^{-})$	R(DCO)=1.7 3.
1795.0 20	2	10242.6	$(41/2^+)$	8447.6	$(37/2^+)$	

[†] From ⁵⁹Co(¹⁹F,2pn γ) (1992Jo04). [‡] Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

 $^{75}_{34}$ Se $_{41}$

 $^{75}_{34}$ Se $_{41}$

⁴⁸Ti(³⁰Si,2pnγ) 1999So02

 $^{75}_{34}$ Se $_{41}$