⁷⁵Rb ε decay (19.0 s) 1983Ke08

	Histo	ory		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013	

⁷⁵Kr Levels

Parent: ⁷⁵Rb: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=19.0$ s 12; $Q(\varepsilon)=7105$ 8; $\%\varepsilon+\%\beta^{+}$ decay=100.0

 75 Rb-J^{π},T_{1/2}: From 75 Rb Adopted Levels.

⁷⁵Rb-Q(ε): From 2012Wa38.

1983Ke08: ⁷⁵Rb isotope produced by ⁵⁸Ni(²⁰Ne,p2n) reaction and mass separated with an on-line isotope separator. Measured γ , $\gamma\gamma$, $T_{1/2}$ using two Ge(Li) detectors.

Others: 1998Sk01, 1977Da04, 1975Bo52, 1975Ra03.

1998Sk01: mass-separated source. Measured precise energies and ce for the 179 doublet; details are given in 1995BeZS thesis.

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	E(level)	$J^{\pi \dagger}$
0.0	5/2+	4.60 min 7	671.80 7	$(3/2^{-}, 5/2^{-})$
178.90 5	$(3/2)^{-}$		833.21 9	$(1/2^{-}, 3/2, 5/2)$
187.05 10	$(7/2)^+$		880.69 10	$(1/2^{-}, 3/2, 5/2)$
358.11 6	$(5/2)^{-}$		1026.5 <i>3</i>	$(1/2^+, 3/2, 5/2)$
611.16? 9	$(7/2)^{-}$		1042.14 10	$(3/2^+, 5/2)$
629.04 10	$(1/2^+, 3/2, 5/2)$			

[†] From Adopted Levels.

ε, β^+ radiations

All ε , β^+ feedings are considered as upper limits and associated log *ft* values as lower limits since the level scheme is known only up to 1042 keV whereas Q value is 7 MeV.

E(decay)	E(level)	$I\beta^+$ [†]	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(6063 8)	1042.14	<4.3	< 0.048	>6.1	<4.3	av Eβ=2333.7 39; εK=0.00970 5; εL=0.001120 6; εM+=0.0002298
(6079 8)	1026.5	<1.1	< 0.012	>6.7	<1.1	av $E\beta$ =2341.3 39; ε K=0.00962 5; ε L=0.001110 6; ε M+=0.0002278
(6224 8)	880.69	<3.1	< 0.031	>6.3	<3.1	av $E\beta$ =2412.1 39; ε K=0.00885 4; ε L=0.001021 5; ε M+=0.0002095
(6272 8)	833.21	<3.9	< 0.038	>6.2	<3.9	av $E\beta$ =2435.1 39; ε K=0.00862 4; ε L=0.000994 5; ε M+=0.0002040
(6433 8)	671.80	<17	< 0.15	>5.6	<17	av $E\beta$ =2513.6 39; ε K=0.00788 4; ε L=0.000910 4; ε M+=0.0001867
(6476 8)	629.04	<6.8	< 0.061	>6.0	<6.9	av $E\beta$ =2534.3 39; ε K=0.00771 4; ε L=0.000889 4; ε M+=0.0001824
(6494 8)	611.16?	<3.2	< 0.028	>6.3	<3.2	av Eβ=2543.0 39; εK=0.00763 4; εL=0.000881 4; εM+=0.0001807
(6747 8)	358.11	<36	<0.27	>5.4	<36	I ε ,I β^+ : very small ε feeding is expected for Δ J=2, $\Delta\pi$ =yes. av E β =2666.3 39; ε K=0.00668 3; ε L=0.000771 4; ε M+=0.0001582 7
(6918 8)	187.05	<7.2	< 0.051	>6.1	<7.3	av Eβ=2749.7 39; εK=0.006131 25; εL=0.000707 3; εM+=0.0001451 6
(6926 8)	178.90	<18	<0.13	>5.8	<18	I ε ,I β^+ : almost no ε feeding is expected for $\Delta J=2$, $\Delta \pi=no$. av E $\beta=2753.6\ 39$; $\varepsilon K=0.006107\ 25$; $\varepsilon L=0.000704\ 3$; $\varepsilon M+=0.0001445\ 6$

[†] Absolute intensity per 100 decays.

⁷⁵ Rb ε decay (19.0 s) 1983Ke08 (continued)

$\gamma(^{75}\mathrm{Kr})$

I γ normalization: from Ti(γ 's to g.s.)=100. From I(γ^{\pm})=140 *14* (1983Ke08), the $\varepsilon + \beta^+$ feeding to g.s. and 179 level is expected to be negligible, but in the present decay scheme apparent $\varepsilon + \beta^+$ feeding is $\approx 18\%$ to the 179 level. The normalization is considered as approximate since level scheme is known up to only 1042, whereas the Q value is 7.1 MeV. I($\gamma \pm$)=140 *14* (1983Ke08).

Eγ	$I_{\gamma}^{(a)}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{\ddagger}	Comments
171 ^{&} 1 178.95 6	≈0.1 68 4	358.11 178.90	(5/2) ⁻ (3/2) ⁻	187.05 0.0	(7/2) ⁺ 5/2 ⁺	(E1)		0.01615	α (K)=0.01434 21; α (L)=0.001536 22; α (M)=0.000247 4; α (N)=2.46×10 ⁻⁵ 4 E _{γ} ,Mult.: from 1998Sk01. I _{γ} : from I γ (178.95)/
179.26 6	32 3	358.11	(5/2)-	178.90	(3/2)-	M1+E2	0.6 2	0.048 11	$I_{\gamma}(179.26)=90 \ 4/43 \ 4$ (1998Sk01). $\alpha(K)=0.042 \ 9; \ \alpha(L)=0.0050$ 12; \(\alpha(M)=0.00081 \ 19; \(\alpha(N)=7.9\times10^{-5} \ 18\) E_{\gamma}: from 1998Sk01. I_{\gamma}: from I_{\gamma}(178.95)/ I_{\gamma}(179.26)=90 \ 4/43 \ 4 (1998Sk01). Mult.,δ: from \(\alpha(K)exp=0.044 \ 13 \ (1998Sk01) \) deduced from \(\alpha(K)exp(178.95\gamma+179. \ 26\gamma)=0.022 \ 3 \ (1998Sk01) \) and mult(178.95\gamma)=E1. \(\alpha(K)exp(178.95\gamma+179.26\gamma))
187.0 <i>1</i>	7.6 15	187.05	(7/2)+	0.0	5/2+	M1+E2	-0.55 6	0.040 <i>3</i>	=0.024 6 listed in 1995BeZS thesis. $\alpha(K)=0.0349 \ 24;$ $\alpha(L)=0.0041 \ 3;$ $\alpha(M)=0.00066 \ 5;$ $\alpha(N)=6.5 \times 10^{-5} \ 5$
253.1 <i>I</i>	1.7 3	611.16?	(7/2)-	358.11	(5/2)-	M1+E2	-1.2 2	0.0227 18	α (K)exp=0.07 3 (1995BeZS) α (K)=0.0200 16; α (L)=0.00232 20; α (M)=0.00037 4; α (N)=2.7 \times 10 ⁻⁵ 2
313.6 <i>I</i> 358.0 <i>I</i> 432.2 <i>I</i> 450.2 <i>I</i> 475.2 <i>I</i> 493.0 <i>I</i> 522.5 <i>2</i> ^x 608.1 [†]	2.8 6 5.6 11 1.2 2 5.5 11 1.0 2 5.9 12 1.0 2	671.80 358.11 611.16? 629.04 833.21 671.80 880.69	$\begin{array}{c} (3/2^-,5/2^-) \\ (5/2)^- \\ (7/2)^- \\ (1/2^+,3/2,5/2) \\ (1/2^-,3/2,5/2) \\ (3/2^-,5/2^-) \\ (1/2^-,3/2,5/2) \end{array}$	358.11 0.0 178.90 178.90 358.11 178.90 358.11	$(5/2)^{-}$ $5/2^{+}$ $(3/2)^{-}$ $(5/2)^{-}$ $(3/2)^{-}$ $(5/2)^{-}$ $(5/2)^{-}$	E2			$\alpha(n) = 3.7 \times 10^{-5}$
628.8 2 654.2 1 $x_{670 8}^{\dagger}$	0.8 2 2.5 5	629.04 833.21	$(1/2^+, 3/2, 5/2)$ $(1/2^-, 3/2, 5/2)$	0.0 178.90	5/2 ⁺ (3/2) ⁻				
671.8 <i>I</i> 701.8 <i>I</i> ^x 725 1 [†]	7.0 <i>14</i> 1.8 <i>4</i>	671.80 880.69	(3/2 ⁻ ,5/2 ⁻) (1/2 ⁻ ,3/2,5/2)	0.0 178.90	5/2 ⁺ (3/2) ⁻				

Continued on next page (footnotes at end of table)

⁷⁵ Rb ε decay (19.0 s)	1983Ke08 (continued)
--	----------------------

					$\gamma(^{75}\mathrm{Kr})$ (c	continued)
Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	
^x 791.3 <i>1</i>	0.7 2					
848.2		1026.5	$(1/2^+, 3/2, 5/2)$	178.90	$(3/2)^{-}$	
854.9 2	1.0 2	1042.14	$(3/2^+, 5/2)$	187.05	$(7/2)^+$	
863.2 1	2.1 4	1042.14	$(3/2^+, 5/2)$	178.90	$(3/2)^{-}$	
1026.4 <i>3</i>	1.0 2	1026.5	$(1/2^+, 3/2, 5/2)$	0.0	$5/2^{+}$	
1042.9 <i>3</i>	0.8 2	1042.14	$(3/2^+, 5/2)$	0.0	5/2+	
^x 1139.3 [†]						
^x 1192.5 [†]						
^x 1197.1 3	3.1 6					
^x 1683.8 [†]						
x1690.1 3	4.1 8					
^x 1877.5 [†]						

[†] Observed in coincidence with 178.9 γ . [‡] Additional information 1. [#] From Adopted Gammas. [@] For absolute intensity per 100 decays, multiply by ≈ 1.1 . [&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{75}_{36}$ Kr₃₉-4

⁷⁵Rb ε decay (19.0 s) 1983Ke08

