⁷⁵Kr ε decay (4.60 min) 1995BeZS,1974Ho35,1974Ro12

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013

Parent: ⁷⁵Kr: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=4.60 \text{ min } 7$; $Q(\varepsilon)=4783 \ 9$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁷⁵Kr-J^{π},T_{1/2}: From ⁷⁵Kr Adopted Levels.

⁷⁵Kr-Q(ε): From 2012Wa38. The value measured by 1995BeZS is 4454 +105-64.

1995BeZS: Measured E γ , I γ , $\gamma\gamma$, ce, half-life using HPGe detectors, a mini-orange electron spectrometer for the determination of internal conversion coefficients, and a positron annihilator. ⁷⁵Kr source prepared in ⁵⁸Ni(²⁰Ne,2pn) reaction at 4.2 MeV/nucleon beam energy from GSI Unilac accelerator followed by mass separation.

1974Ho35 (also 1973HoYM thesis): Measured E γ , I γ , $\gamma\gamma$, ce. A total of 32 γ rays reported placed amongst 15 excited states. ⁷⁵Kr produced in ⁷⁹Br(p,5n) E=65 MeV reaction; Kr gas separated from other elements by cold traps. No information was deduced from ce data.

1974Ro12 (also 1974Ro11): Measured E γ , I γ , $\gamma\gamma$, ce, E β ⁷⁵Kr formed in Zr(p,5pxn) E=600 MeV reaction at CERN-ISOLDE facility followed by mass separation. A total of 16 γ rays reported with ce data for three γ transitions. A 6.5-keV γ ray reported belongs to the decay of ⁷⁵Br to ⁷⁵Se. Measured level lifetimes by $\gamma\gamma$ (t).

Others: 1975CoZR, 1973DaYM, 1969Ha03, 1960Gr19, 1960Bu22.

Measured annihilation radiation intensity: 250 50 (1975CoZR). Other: 607 60 (1974Ho35).

Most data given here are from 1995BeZS. The level scheme originally proposed in 1974Ho35 and 1974Ro12 has been extended and greatly modified based on their detailed $\gamma\gamma$ coincidence measurements.

⁷⁵Br Levels

The following levels reported in 1974Ho35 have not been confirmed in the more detailed $\gamma\gamma$ -coin study of 1995BeZS, thus have been omitted: 285.7, 782.0, 793.1, 824.7, 2042.5 and 2958.7 keV. The gamma rays shown from these levels have either been relocated by 1995BeZS or have not been seen.

A 507.2 level proposed in 1974Ro12 is omitted with the relocation of 352-keV gamma ray as a ground-state transition from 352 level.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-	96.7 min 13	T _{1/2} : from Adopted Levels.
119.84 <i>15</i>	$5/2^{-}$		
132.50 15	$(5/2)^+$	5.6 ns 4	$T_{1/2}$: from $\gamma\gamma(t)$ (1974Ro12) with a NaI(Tl)-NaI(Tl) combination. Other: 6.5 ns 8 (1974Ro12) with Ge(Li)-NaI(Tl) combination.
154.68 <i>14</i>	$(3/2)^+$		
179.40 25	$(1/2^{-})$		
220.82 19	$(9/2)^{+}$	31.7 ns 3	T _{1/2} ; from Adopted Levels.
	(-1-)		No transition to the g.s. was observed by 1995BeZS. The 221 keV gamma is a sum peak from 132.5 and 88.5 keV lines. 1974Ro12 listed the energy as 220.9 3 with I γ =0.18 8.
273.23 25	$(1/2,3/2)^{-}$		J^{π} : (3/2 ⁻) in 1995BeZS.
295.6 3	$(3/2, 5/2)^{-}$		
352.42 19	$(5/2)^{-}$		J^{π} : (3/2 ⁻ ,5/2 ⁻) in 1995BeZS.
374.20 17	$(7/2)^+$		
518.26 20	$(7/2^{-})$		
524.3 5			
701.6 4			
735.6 3			
774.3 4	$(9/2^{-})$		
777.45 20	(-1)		
802.5 4			
819.95 22			
833.2.4			
848.21.24	$(9/2^+)$		
901 09 76	(3/2, 5/2)		
, , , , , , , , , , , , , , , , , , , ,	(0/2,0/2)		

$^{75}{\rm Kr}~\varepsilon$ decay (4.60 min) 1995BeZS,1974Ho35,1974Ro12 (continued)

⁷⁵Br Levels (continued)

Comments

E(level) [†]	Jπ‡	
928.9 4		
947.02 22		
1023.4 4		
1047.81 22		
1072.59 20	$(5/2^+, 7/2)$	
1145.47 23		
1178.5 4		
1223.6 4		
1226.3 4		
1240.0 4		
1447.4 <i>4</i>		
1500.54 22	$(3/2^+, 5/2, 7/2^+)$	J^{π} : $(3/2, 5/2)^+$ in 1995BeZS.
1601.62 14	$(3/2^+, 5/2^+)$	
1612.26 19	$(5/2,7/2)^+$	
1636.0 4		J^{π} : $(3/2, 5/2)^+$ in 1995BeZS.
1744.7 <i>3</i>		J^{π} : $(3/2, 5/2)^+$ in 1995BeZS.
1789.2 4		
1801.37 <i>21</i>		
2123.5 4		
2208.2 3	(3/2,5/2)	

[†] From least-squares fit to E γ data. Reduced χ^2 =0.49. [‡] From Adopted Levels.

E(decay)	E(level)	I β^+ †	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(2575 9)	2208.2	0.117 11	0.042 4	6.48 5	0.159 15	av Eβ=682.0 41; εK=0.230 4; εL=0.0265 4; εM+=0.00530 8
(2660 9)	2123.5	0.054 15	0.016 5	6.92 13	0.070 20	av E β =720.5 41; ϵ K=0.203 3; ϵ L=0.0233 4; ϵ M+=0.00467 7
(2982 9)	1801.37	0.511 18	0.088 3	6.289 19	0.599 21	av Eβ=867.9 42; εK=0.1287 16; εL=0.01477 19; εM+=0.00296 4
(2994 9)	1789.2	0.089 8	0.0150 13	7.06 4	0.104 9	av E β =873.6 42; ε K=0.1266 16; ε L=0.01453 18; ε M+=0.00291 4
(3038 9)	1744.7	0.397 16	0.062 3	6.454 20	0.459 18	av Eβ=894.1 42; εK=0.1193 15; εL=0.01369 17; εM+=0.00274 4
(3147 9)	1636.0	0.072 9	0.0097 12	7.29 6	0.082 10	av E β =944.3 42; ε K=0.1036 12; ε L=0.01189 14; ε M+=0.00238 3
(3171 9)	1612.26	2.85 9	0.368 13	5.720 17	3.22 10	av E β =955.3 42; ε K=0.1005 12; ε L=0.01153 14; ε M+=0.00231 3
(3181 9)	1601.62	5.47 11	0.696 17	5.446 13	6.17 12	av $E\beta$ =960.2 42; ε K=0.0992 12; ε L=0.01138 13; ε M+=0.00228 3
(3282 9)	1500.54	1.75 6	0.193 7	6.030 19	1.94 7	av $E\beta$ =1007.2 42; ε K=0.0875 10; ε L=0.01003 12; ε M+=0.002008 23
(3336 9)	1447.4	0.103 12	0.0106 12	7.30 5	0.114 13	av $E\beta = 1031.9 \ 42; \ \varepsilon E = 0.0820 \ 9; \ \varepsilon L = 0.00941 \ 11; \ \varepsilon M + = 0.001883 \ 21$
(3543 9)	1240.0	0.082 8	0.0065 7	7.57 5	0.088 9	av $E\beta$ =1128.7 43; ε K=0.0645 7; ε L=0.00740 8; ε M+=0.001480 15
(3557 9)	1226.3	0.108 10	0.0084 8	7.46 5	0.116 11	av $E\beta$ =1135.2 43; ε K=0.0636 7; ε L=0.00728 8; ε M+=0.001458 15
(3559 9)	1223.6	0.133 9	0.0103 7	7.37 4	0.143 10	av $E\beta$ =1136.4 43; ε K=0.0634 7; ε L=0.00726 8; ε M+=0.001453 15

 ε, β^+ radiations

Continued on next page (footnotes at end of table)

$^{75}_{35}\mathrm{Br}_{40}$ -3

⁷⁵ Kr ε decay (4.60 min)	1995BeZS,1974Ho35,1974Ro12 (continued)
---	--

				<i>c</i> , <i>p</i> 10		inded)
E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(3605 9)	1178.5	0.080 9	0.0059 7	7.63 6	0.086 10	av $E\beta$ =1157.6 43; ε K=0.0603 6; ε L=0.00691 7; ε M+=0.001383 14
(3638 9)	1145.47	0.204 17	0.0144 12	7.25 4	0.218 18	av $E\beta$ =1173.1 43; ε K=0.0582 6; ε L=0.00667 7; ε M+=0.001334 14
(3710 9)	1072.59	0.527 23	0.0343 15	6.887 21	0.561 24	av $E\beta$ =1207.3 43; ε K=0.0538 6; ε L=0.00616 6; ε M+=0.001234 12
(3735 9)	1047.81	0.66 3	0.042 2	6.808 21	0.70 <i>3</i>	av E β =1218.9 43; ε K=0.0524 5; ε L=0.00601 6; ε M+=0.001202 12
(3760 [‡] 9)	1023.4	0.050 7	0.0031 4	7.95 6	0.053 7	av E β =1230.4 43; ε K=0.0511 5; ε L=0.00585 6; ε M+=0.001171 11
(3836 9)	947.02	0.22 3	0.012 2	7.36 6	0.23 3	av $E\beta$ =1266.4 43; ε K=0.0472 5; ε L=0.00541 5; ε M+=0.001083 10
(3854 9)	928.9	0.249 18	0.0139 10	7.31 4	0.263 19	av $E\beta$ =1274.9 43; ε E=0.0464 5; ε L=0.00531 5; ε M+=0.001063 10
(3882 9)	901.09	0.54 5	0.029 3	7.00 4	0.57 5	av $E\beta$ =1288.1 43; ε K=0.0451 4; ε L=0.00517 5; ε M+=0.001034 10
(3935 9)	848.21	0.223 19	0.0114 10	7.42 4	0.234 20	av E\$\vert =1313.0 43; \vert E\$\vert =0.00428 4; \vert L\$\vert =0.000490 5; \vert M\$\vert =0.000981 9
						I($\varepsilon + \beta^+$): log $ft=7.42$ from $5/2^+$ parent is too low. The direct $\varepsilon + \beta^+$ feeding is incorrect if $J^{\pi}(848)=9/2^+$.
(3950 9)	833.2	0.030 8	0.0015 4	8.31 12	0.031 8	av $E\beta$ =1320.1 43; ε K=0.0422 4; ε L=0.00483 5; ε M+=0.000966 9
(3963 9)	819.95	0.24 3	0.012 1	7.41 6	0.25 3	av $E\beta$ =1326.4 43; ε K=0.0416 4; ε L=0.00477 5; ε M+=0.000954 9
(3981 [‡] 9)	802.5	0.108 10	0.0053 5	7.76 4	0.113 10	av $E\beta$ =1334.6 43; ε K=0.0409 4; ε L=0.00469 5; ε M+=0.000938 9
(4006 9)	777.45	0.82 6	0.039 3	6.90 4	0.86 6	av $E\beta$ =1346.5 43; ε K=0.0399 4; ε L=0.00457 4; ε M+=0.000915 8
(4009 9)	774.3	0.117 10	0.0056 5	7.74 4	0.123 10	av $E\beta$ =1348.0 43; ε K=0.0398 4; ε L=0.00456 4; ε M+=0.000912 8
(4047 [‡] 9)	735.6	< 0.013	< 0.00061	>8.7	< 0.014	av $E\beta$ =1366.3 43; ε K=0.0384 4; ε L=0.00439 4; ε M+=0.000879 8
(4081 9)	701.6	0.056 6	0.0025 3	8.12 5	0.058 6	av E β =1382.4 43; ε K=0.0371 4; ε L=0.00425 4; ε M+=0.000851 8
(4259 9)	524.3	0.107 10	0.0040 4	7.94 4	0.111 10	av E β =1466.5 43; ε K=0.0316 3; ε L=0.00361 3; ε M+=0.000723 6
(4265 9)	518.26	0.030 18	0.0011 7	8.5 <i>3</i>	0.031 19	av $E\beta$ =1469.4 43; ε K=0.0314 3; ε L=0.00360 3; ε M+=0.000719 6
(4409 9)	374.20	5.92 21	0.192 7	6.289 18	6.11 22	av $E\beta$ =1537.9 43; ε K=0.02769 22; ε L=0.003169 25; ε M+=0.000634 5
(4431 9)	352.42	0.18 5	0.0059 15	7.81 12	0.19 5	av $E\beta$ =1548.3 43; ε K=0.02718 21; ε L=0.003111 24; ε M+=0.000622 5
(4487 9)	295.6	0.119 18	0.0036 6	8.03 7	0.123 19	av $B\beta$ =1575.4 43; ε K=0.02590 20; ε L=0.002965 23; ε M+=0.000593 5
(4510 9)	273.23	0.332 24	0.0099 7	7.60 4	0.342 25	av E β =1586.0 43; ε K=0.02542 20; ε L=0.002910 22; ε M+=0.000582 5
(4562 [‡] 9)	220.82	<0.5	< 0.01	>7.5	< 0.5	av Eβ=1611.1 43; εK=0.02434 18; εL=0.002786 21; εM+=0.000558 5
(4604 9)	179.40	0.248 19	0.0163 13	9.31 ¹ <i>u</i> 4	0.264 20	av $E\beta = 1643.9 \ 43$; $\varepsilon K = 0.0542 \ 5$; $\varepsilon L = 0.00624 \ 5$; $\varepsilon M_{\pm} = 0.001250 \ 10$
(4628 9)	154.68	38.5 14	1.04 4	5.600 18	39.5 14	av E β =1642.7 43; ε K=0.02307 17; ε L=0.002640 20; ε M+=0.000528 4
(4651 9)	132.50	34 4	0.90 10	5.66 5	35 4	av E β =1653.3 43; ϵ K=0.02266 17; ϵ L=0.002593 19; ϵ M+=0.000519 4

ϵ, β^+ radiations (continued)

Continued on next page (footnotes at end of table)

itinued)
1t

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(4663 9)	119.84	0.57 11	0.015 3	7.45 9	0.58 11	av Eβ=1659.3 43; εK=0.02243 17; εL=0.002567 19; εM+=0.000514 4

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

⁷⁵Kr ε decay (4.60 min) **1995BeZS**,**1974Ho35**,**1974Ro12** (continued)

 $\gamma(^{75}\mathrm{Br})$

I γ normalization: The I γ values in 1995BeZS are normalized to 100 disintegrations of ⁷⁵Kr.

 $\boldsymbol{\nabla}$

Following γ rays reported by 1974Ho35 have not been seen in 1995BeZS: E γ =692.8 4, I γ =0.07 6 placed from an 824.7 level; E γ =698.2 4, I γ =0.26 3 placed from 1072.5 level; E γ =787.6 4, I γ =0.39 4 placed from 1612.3 level; E γ =1356.9 5, I γ =0.39 6 placed from a 2958.7 level. These γ rays have been omitted here.

E_{γ}^{\ddagger}	I_{γ} [‡] <i>h</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#g}$	α^{\dagger}	Comments
22.2 1	2.3 1	154.68	(3/2)+	132.50	(5/2)+	(M1)		8.61 17	$ α(K)=7.60 \ 15; \ α(L)=0.865 \ 17; \ α(M)=0.138 \ 3; \ α(N)=0.01266 \ 25 $ E _γ : average of 22.3 3 (1995BeZS), 22.1 2 (1974Ho35), 22.2 1 (1974Ro12). Mult.: E1 or M1 from intensity balance; M1 is required by $ΔJ^{π}$.
35.2 <i>3</i> 88.4 ^{<i>a</i>} <i>1</i>	0.041 <i>6</i> 3.04 <i>17</i>	154.68 220.82	$(3/2)^+$ $(9/2)^+$	119.84 132.50	5/2 ⁻ (5/2) ⁺	[E1] E2		1.80 <i>6</i> 1.388	Additional information 3. $\alpha(K)=1.59 5; \alpha(L)=0.180 6; \alpha(M)=0.0281 9; \alpha(N)=0.00244 7$ $\alpha(K)=1.179 18; \alpha(L)=0.179 3; \alpha(M)=0.0283 5; \alpha(N)=0.00233 4$ $\alpha(K)\exp=1.5 2; \alpha(L)\exp=0.26 4; \alpha(M)\exp=0.022 5$ $E_{\gamma}: average of 88.5 3 (1995BeZS), 88.4 2 (1974Ho35), 88.4 1$ (1974Ro12).
119.6 2	1.80 <i>9</i>	119.84	5/2-	0.0	3/2-	M1+E2	0.26 8	0.095 16	Mult.: E2 or M2 from ce data, but E2 from RUL. Additional information 6. $\alpha(K)=0.083 \ 14; \ \alpha(L)=0.0098 \ 19; \ \alpha(M)=0.0016 \ 3; \ \alpha(N)=0.000140 \ 25 \ \alpha(K)exp=0.084 \ 14 \ E_{\gamma}: average of 119.6 \ 3 \ (1995BeZS), 119.6 \ 3 \ (1974Ho35), 119.5 \ 2 \ (1974Ho35), 119.5 \ (1974Ho$
132.5 2	70 <i>3</i>	132.50	(5/2)+	0.0	3/2-	E1		0.0366	(1974Ro12). Additional information 1. $\alpha(K)=0.0326 5; \alpha(L)=0.00347 5; \alpha(M)=0.000547 8;$ $\alpha(N)=5.01\times10^{-5} 8$ $\alpha(K)\exp=0.032 5; \alpha(L)\exp=0.0039 6; \alpha(M)\exp=0.0005 1$ E_{γ} : average of 132.5 3 (1995BeZS), 132.5 2 (1974Ho35), 132.5 2
153.3 2	6.3 2	374.20	(7/2)+	220.82	(9/2)+	M1(+E2)	<0.2	0.039 3	(1974Ro12). Additional information 2. $\alpha(K)=0.0345\ 25;\ \alpha(L)=0.0038\ 4;\ \alpha(M)=0.00061\ 5;\ \alpha(N)=5.6\times10^{-5}\ 5$ $\alpha(K)\exp=0.032\ 5;\ \alpha(L)\exp=0.0044\ 11$ $E_{\gamma}: average of 153.3\ 3\ (1995BeZS),\ 153.2\ 3\ (1974Ho35),\ 153.3\ 2$ (1974Ro12)
154.6 2	21.1 8	154.68	(3/2)+	0.0	3/2-	E1		0.0232	Additional information 10. $\alpha(K)=0.0206 \ 3; \ \alpha(L)=0.00219 \ 4; \ \alpha(M)=0.000346 \ 5; \ \alpha(N)=3.18\times10^{-5} \ 5 \ \alpha(K)\exp=0.022 \ 4; \ \alpha(L)\exp=0.0029 \ 7 \ E_{\gamma}: average of 154.7 \ 3 \ (1995BeZS), 154.5 \ 3 \ (1974Ho35), 154.7 \ 2 \ (1974Ro12).$

			75	$\mathbf{K}\mathbf{r} \in \mathbf{deca}$	y (4.60 min)	1995BeZ	ZS,1974H	035,1974R01	2 (continued)
						$\gamma(^{75}\text{Br})$ (c	continued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.#	δ ^{#g}	$lpha^{\dagger}$	Comments
179.36 [@] 10	0.352 18	179.40	(1/2 ⁻)	0.0	3/2-	(M1)		0.0240	 α(K)=0.0213 3; α(L)=0.00232 4; α(M)=0.000370 6; α(N)=3.44×10⁻⁵ 5 α(K)exp=0.015 13 E_γ: from spectrum obtained with a high-resolution planar detector (appendix B3, p111 in 1995BeZS). Mult.: M1 or E1 from α(K)exp. log <i>ft</i> supports negative parity for J=1/2 for 179.4 level. Additional information 5.
219.4 ^{&} 3	0.226 13	374.20	(7/2)+	154.68	(3/2)+	(E2)		0.0484	α(K)=0.0425 7; α(L)=0.00501 8; α(M)=0.000793 12; α(N)=7.07×10-5 11 α(K)exp=0.07 3 Mult.: E2 or M2 from α(K)exp; but ΔJπ requires E2. Additional information 11.
228.7 3	0.111 10	524.3	(5/2) =	295.6	$(3/2, 5/2)^{-}$				Additional information 13.
233.13 241.7 ^{<i>a</i>} 2	0.049 8 1.11 <i>4</i>	352.42 374.20	(3/2) $(7/2)^+$	119.84	5/2 (5/2) ⁺	E2(+M1)	>1	0.028 6	$\alpha(K)=0.025\ 5;\ \alpha(L)=0.0029\ 6;\ \alpha(M)=0.00046\ 10;$ $\alpha(N)=4.1\times10^{-5}\ 9$ $\alpha(K)\exp=0.031\ 10;\ \alpha(L)\exp=0.0030\ 11$ E _y : average of 241.7 3 (1995BeZS), 241.7 2 (1974Ro12).
273.2 2	0.52 2	273.23	(1/2,3/2)-	0.0	3/2-	M1(+E2)	<0.75	0.0107 25	Additional information 12. $\alpha(K)=0.0095$ 22; $\alpha(L)=0.0010$ 3; $\alpha(M)=0.00017$ 5; $\alpha(N)=1.5\times10^{-5}$ 4 $\alpha(K)\exp=0.009$ 3 E _y : average of 273.2 3 (1995BeZS), 273.1 2 (1974Ro12).
295.6 ^{<i>a</i>} 3	0.232 15	295.6	(3/2,5/2)-	0.0	3/2-	M1(+E2)	<0.55	0.0079 12	Additional information 7. $\alpha(K)=0.0070 \ 11; \ \alpha(L)=0.00077 \ 12; \ \alpha(M)=0.000122 \ 19;$ $\alpha(N)=1.13\times10^{-5} \ 17 \ \alpha(K)\exp=0.006 \ 2$ Additional information 8
352.5 ^{<i>a</i>} 2	0.76 <i>3</i>	352.42	(5/2) ⁻	0.0	3/2-	M1(+E2)	<0.4	0.0047 4	$\alpha(K)=0.0042 \ 3; \ \alpha(L)=0.00045 \ 4; \ \alpha(M)=7.2\times10^{-5} \ 6; \ \alpha(N)=6.7\times10^{-6} \ 5 \ \alpha(K)\exp=0.0034 \ 11 \ E_{\gamma}: average of 352.5 \ 3 \ (1995BeZS), \ 352.5 \ 2 \ (1974Ro12). \ Additional information 9.$
398.6 3	0.078 9	518.26	$(7/2^{-})$	119.84	5/2-				
403.3 3 518 2d 2	0.172 13	777.45 518.26	$(7/2^{-})$	374.20	$(1/2)^+$				
518.2° 3 553.9 ^e 3 556.2 3 581.8 ^a 3	0.144 10 0.062 7 0.096 8 0.058 6	518.26 1601.62 735.6 701.6	(7/2) $(3/2^+, 5/2^+)$	0.0 1047.81 179.40 119.84	$(1/2^{-})$ $5/2^{-}$ $(2/2)^{+}$				
622.8 3	0.171 11	777.45		154.68	$(3/2)^{+}$				Additional information 14.

6

			⁷⁵	$\operatorname{Kr} \varepsilon$ decay (4.60 min)	1995BeZS,1974Ho35,1974Ro12 (continued)
					γ (⁷⁵ Br) (continued)
E _γ ‡	$I_{\gamma}^{\ddagger h}$	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
644.9 <mark>&</mark> 3	0.86 5	777.45		$132.50 (5/2)^+$	
654.5 <i>3</i>	0.123 <i>f</i> 10	774.3	$(9/2^{-})$	119.84 5/2-	
654.5 <i>3</i>	0.203 ^f 12	1601.62	$(3/2^+, 5/2^+)$	947.02	
665.7 <mark>&</mark> 3	0.257 19	819.95		154.68 (3/2)+	
670.0 ⁱ 3	0.113 10	802.5		$132.50 (5/2)^+$	Additional information 15.
673.6 <i>3</i>	0.401 18	1047.81		374.20 (7/2)+	Additional information 21.
687.1 <i>3</i>	0.083 17	819.95		$132.50 (5/2)^+$	
700.7 3	0.49 2	1601.62	$(3/2^+, 5/2^+)$	901.09 (3/2,5/2)	Additional information 26.
715.4.5	0.031 8	833.2 848-21	$(9/2^+)$	$119.84 \ 5/2$ $132 \ 50 \ (5/2)^+$	
746.3 3	0.391 18	901.09	(3/2, 5/2)	$152.50 (3/2)^+$ 154.68 (3/2) ⁺	Additional information 17.
768.6 ^a 3	0.65 3	901.09	(3/2,5/2)	$132.50 (5/2)^+$	Additional information 18.
770.8 <mark>b</mark> 3	0.053 8	1145.47		374.20 (7/2)+	
781.4 <mark>b</mark> 3	0.174 12	901.09	(3/2,5/2)	119.84 5/2-	Additional information 19.
792.2 3	0.54 2	947.02		154.68 (3/2)+	Additional information 20.
796.4 ^{&} 3	0.263 19	928.9		132.50 (5/2)+	
824.2 3	0.342 16	1601.62	$(3/2^+, 5/2^+)$	777.45	Additional information 27.
849.4 3	0.143 10	1223.6	(5/2 + 7/2)	$374.20 (7/2)^+$	
852.0 5 854 3 ^e 3	0.175 10	1072.59	$(5/2^{+}, 7/2)$	$220.82 (9/2)^{\circ}$ 947.02	
866.0 3	0.094 9	1601.62	$(3/2^+, 5/2^+)$	735.6	
873.9 3	0.116 11	1226.3	(-1- ,-1-)	352.42 (5/2)-	
890.9 ^{bi} 3	0.053 7	1023.4		132.50 (5/2)+	
896.5 <i>3</i>	0.164 9	1744.7		848.21 (9/2+)	
900.4 3	0.206 11	1801.37		901.09 (3/2,5/2)	Additional information 34.
901.3 3	0.046 4	901.09	(3/2,5/2)	$0.0 \ 3/2$	Additional information 22
913.4 3	0.050 9	1047.81	(5/2 + 7/2)	$152.50 (3/2)^+$ 154.68 (3/2) ⁺	Additional information 22.
924.8 3	0.068 10	1145.47	(3/2 ,//2)	$220.82 (9/2)^+$	
940.3 <i>3</i>	0.325 16	1072.59	$(5/2^+, 7/2)$	132.50 (5/2)+	Additional information 23.
952.1 ^{bi} 3	0.023 11	1072.59	$(5/2^+, 7/2)$	119.84 5/2-	Additional information 24.
966.8 <i>3</i>	0.088 9	1240.0		273.23 (1/2,3/2)-	
981.5 3	0.088 9	1801.37		819.95	
991.1.5	0.097 12	1145.47		$154.08 (3/2)^{+}$ 154.68 (3/2) ⁺	
1023.03	0.000 10	1226.3		$137.00 (5/2)^+$	
1094.1 3	0.191 13	1612.26	$(5/2,7/2)^+$	$518.26 (7/2^{-})$	
1126.5 3	0.110 12	1500.54	$(3/2^+, 5/2, 7/2^+)$) $374.20 (7/2)^+$	
1227.4 3	0.351 19	1601.62	$(3/2^+, 5/2^+)$	374.20 (7/2)+	Additional information 28.
1238.1 ^{<i>a</i>} 3	0.58 3	1612.26	$(5/2,7/2)^+$	$374.20 (7/2)^+$	Additional information 32.
1249.0 <i>3</i>	0.51 3	1601.62	$(3/2^+, 5/2^+)$	352.42 (5/2)-	E_{γ} : from figure 2.15 in 1995BeZS. In Table 3.2 and figure 2.17 it listed as 1249.8. In

 $^{75}_{35}\mathrm{Br}_{40}$ -7

From ENSDF

 $^{75}_{35}\mathrm{Br}_{40}$ -7

			75 Kr ε decay (4.60 min)			1995BeZS,1974Ho35,1974Ro12 (continued)
						$\gamma(^{75}\text{Br})$ (continued)
E _γ ‡	I_{γ} ‡ <i>h</i>	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Comments
						an email reply of April 5, 2012, Dr. R. Rubio suggested that 1249.0 is a better value. Additional information 29.
1292.7 <i>3</i>	0.114 13	1447.4		154.68 (3	$3/2)^{+}$	
1345.9 <i>3</i>	1.43 6	1500.54	$(3/2^+, 5/2, 7/2^+)$	154.68 (3	$3/2)^+$	Additional information 25.
1367.8 <i>3</i>	0.40 2	1500.54	$(3/2^+, 5/2, 7/2^+)$	132.50 (5	$5/2)^{+}$	
1391.3 <i>3</i>	0.135 12	1612.26	$(5/2,7/2)^+$	220.82 (9	$9/2)^{+}$	
1446.7 <i>3</i>	0.58 <i>3</i>	1601.62	$(3/2^+, 5/2^+)$	154.68 (3	$3/2)^{+}$	
1457.6 <i>3</i>	0.283 15	1612.26	$(5/2,7/2)^+$	154.68 (3	$3/2)^{+}$	
1469.2 <i>3</i>	1.16 5	1601.62	$(3/2^+, 5/2^+)$	132.50 (5	$5/2)^{+}$	Additional information 30.
1479.8 <i>3</i>	2.03 9	1612.26	$(5/2,7/2)^+$	132.50 (5	$5/2)^{+}$	
1481.1 <i>3</i>	0.66 3	1601.62	$(3/2^+, 5/2^+)$	119.84 5/	/2-	
1491 <mark>ci</mark>		1612.26	$(5/2,7/2)^+$	119.84 5/	5/2-	
1503.5 3	0.082 10	1636.0		132.50 (5	$(5/2)^+$	
1601.6 ^a 3	1.72 8	1601.62	$(3/2^+, 5/2^+)$	0.0 3/	$\frac{1}{2^{-1}}$	Additional information 31.
1612.2 <i>3</i>	0.295 15	1744.7		132.50 (5	$(5/2)^+$	Additional information 33.
1668.7 <i>3</i>	0.200 12	1801.37		132.50 (5	$5/2)^{+}$	Additional information 35.
1669.3 <i>3</i>	0.104 9	1789.2		119.84 5/	$1/2^{-1}$	
1934.9 <i>3</i>	0.096 10	2208.2	(3/2,5/2)	273.23 (1	1/2,3/2)-	
1991.0 <i>3</i>	0.07 2	2123.5		132.50 (5	$5/2)^{+}$	
2053.5 <i>3</i>	0.063 11	2208.2	(3/2, 5/2)	154.68 (3	$3/2)^{+}$	

[†] Additional information 36.

[‡] From 1995BeZS, unless otherwise stated. The I γ values in 1995BeZS are normalized to 100 disintegrations of ⁷⁵Kr. Energy uncertainty of 0.3 keV is assigned for most transitions in consultation Dr. B. Rubio (adviser of 1995BeZS thesis) through e-mail reply of April 5. Several lines are indicated by 1995BeZS as contaminated with other activities. The evaluators assume that appropriate corrections have been applied to the values listed in table 3.2 of 1995BeZS.

[#] From Adopted Gammas, based on measured $\alpha(K)exp$, $\alpha(L)exp$ and $\alpha(M)exp$ values in 1995BeZS. Mixing ratios deduced by the evaluators from ce data in 1995BeZS.

[@] Contamination from a line in ⁷⁵Rb decay.

- & Contamination from a sum peak of either two transitions in cascade or a gamma ray summing with 511-keV annihilation peak.
- ^{*a*} Contamination from room background.
- ^b Contamination from a line from ⁷⁵Br decay.
- ^c Observed in $\gamma\gamma$ coin spectrum, not in singles.
- ^d Contaminated with 511-keV annihilation peak.
- ^{*e*} Transition observed in an experiment at HMI by producing ⁷⁵Kr source in ⁵⁸Ni(²⁰Ne,2pn) at 80 MeV using OSIRIS detector system for γ -ray detection (some details are given in appendix C of 1995BeZS).

^{*f*} From $\gamma\gamma$ coincidence gated spectrum.

^g If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*h*} Absolute intensity per 100 decays.

^{*i*} Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{75}_{35}\mathrm{Br}_{40}$ -9

⁷⁵Kr ε decay (4.60 min) 1995BeZS,1974Ho35,1974Ro12

 $^{75}_{35}{
m Br}_{40}$

Legend Decay Scheme (continued) $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $I_{\gamma} > 10\% \times I_{\gamma}^{\gamma}$ $\dot{\gamma}$ Decay (Uncertain) 0.0 4.60 min 7 Coincidence Qε=4783 9 $\%\varepsilon + \%\beta^+ = 100$ ⁷⁵₃₆Kr₃₉ 13678 1345,8 1345,9 1265,9 110 0,110 $I\beta^+$ P110 Log ft <u>I</u>£ (3/2+,5/2,7/2+) 1500.54 1.75 0.193 1.6621. 6.030 1447.4 0.103 0.0106 7.30 ⁴⁸⁰0 ⁴'.96 ● 0.115 1.001 1240.0 0.082 0.0065 7.57 1226.3 0.1080.00847.46 1223.6 0.133 0.0103 7.37 -8,6,5, _0^ 1178.5 0.080 0.0059 7.63 22 1145.47 0.204 0.0144 7.25 ⁸⁵²0 01 * 0.358 403 .053 $(5/2^+, 7/2)$ 1072.59 0.527 0.0343 6.887 1047.81 0.042 0.66 6.808 • ²⁰ - 20 29 16.4 0.203 1023.4 0.050 0.0031 7.95 1 0.004 947.02 0.22 0.012 7.36 (5) (03) ÷. 928.9 0.249 0.0139 7.31 1/3.4 0.031 | (3/2,5/2) 901.09 0.54 0.029 7.00 Ś T. T $(9/2^+)$ 848.21 0.223 0.0114 7.42 ĕ ÷ 833.2 0.030 0.0015 8.31 $(7/2)^+$ 374.20 5.92 0.192 6.289 (5/2) 352.42 0.18 0.0059 7.81 (1/2,3/2) 273.23 0.332 0.0099 7.60 T i. i (9/2)+ 220.82 31.7 ns 3 < 0.5 < 0.01>7.5 ļ 1 $\frac{(3/2)^+}{(5/2)^+}$ 154.68 38.5 1.04 5.600 132.50 5.6 ns 4 34 0.90 5.66 5/2 119.84 ŧ 0.57 0.015 7.45 0.0 3/2-96.7 min 13 $^{75}_{35}{ m Br}_{40}$

⁷⁵Kr ε decay (4.60 min) 1995BeZS,1974Ho35,1974Ro12

11