⁷⁴Se(p, γ),(d,n γ),(³He,pn γ) 1981Wi05

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013						

⁷⁴Se(³He,pnγ); E=28, 32 MeV.

⁷⁴Se(p, γ); E=6.7 MeV.

 74 Se(d,n γ); E=12, 13.5 MeV.

Measured γ , $\gamma\gamma$, $\gamma(\theta)$, $\sigma(E\gamma, \theta)$, $T_{1/2}$ using Ge(Li) detectors and a high resolution photon spectrometer dedicated to low energy γ rays.

Other:

1978Be08: ⁷⁵As(α ,4n γ); E=30-55 MeV; γ rays reported only by these authors are 66.4, 360.3, 427.1 and 474.6 keV.

⁷⁵Br Levels

E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	Comments	
0.0	3/2-			
119.58 8	5/2-	1.7 ns 3		
132.41 10	5/2+	5.6 ns 4	J^{π} : $\gamma(132\gamma)(\theta)$ rules out J=3/2, 1/2, given mult(132 γ)=E1.	
154.69 10	3/2+	1.2 ns <i>3</i>	J^{π} : $\gamma(154\gamma)(\theta)$ rules out J=1/2. Authors suggest J=3/2 based on interpretation as bandhead.	
179.3 <i>1</i>	$(1/2^{-})$			
220.81 13	9/2+	26 ns 2	J^{π} : 9/2 favored by relative population in (p, γ) and (d,n γ), given mult(88 γ)=E2 to the 132 level.	
273.1 <i>I</i>	$(1/2^{-}, 3/2^{-})$			
295.6 1	$(3/2^{-}, 5/2^{-})$			
352.48 9	$(5/2^-, 7/2^-)$			
374.01 13	7/2+		J^{π} : $\gamma(\theta)$ of γ' s to 132(J=5/2) and 220(J=9/2) favors J=7/2.	
518.04 8	7/2-			
524.30 15				
773.79 13	$(9/2^{-})$			
783.81 17	$(13/2^{+})$		J^{π} : stretched Q to 220.	
939.91 24	$(11/2^{+})$		J^{π} : probable stretched Q to 374.	
1149 <i>1</i>	$(11/2^{-})$			
1516.5 4	$(13/2^{-})$			
1613.92 20	$(17/2^+)$		J^{π} : stretched Q to 783.	
1790.9 <i>11</i>	$(15/2^+)$		J^{π} : probable stretched Q to 939.	
1896.2 11	$(15/2^{-})$		J^{π} : from Adopted Levels.	
2355.5 11				
2659.1 5				
2755.4 12	$(19/2^{-})$		J^{π} : from Adopted Levels.	

[†] From pulsed-beam γ -ray timing method (1981Wi05).

[‡] From 1981Wi05 based on $\gamma(\theta)$ data and decay pattern. See also Adopted Levels.

 $\gamma(^{75}\mathrm{Br})$

A₂ and A₄ are from $\gamma(\theta)$ in (³He,pn γ), unless stated otherwise.

$$\frac{E_{\gamma}^{\dagger}}{88.4 \ l} = \frac{I_{\gamma}^{\dagger}}{35 \ 3} = \frac{E_i(\text{level})}{220.81} = \frac{J_i^{\pi}}{9/2^+} = \frac{E_f}{132.41} = \frac{J_f^{\pi}}{5/2^+} = \frac{Mult.}{E2} = \frac{\alpha^{@}}{1.388} = \frac{\alpha^{@}}{\alpha(\text{K})=1.179 \ l8; \ \alpha(\text{L})=0.179 \ 3; \ \alpha(\text{M})=0.0283 \ 5; \ \alpha(\text{N})=0.00233}{4} = \frac{Mult.}{A_2=+0.02 \ 4, \ A_4=-0.03 \ 6.}$$

⁷⁴Se(p, γ),(d,n γ),(³He,pn γ) 1981Wi05 (continued)

$\gamma(^{75}\text{Br})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
119.5 <i>1</i>	24 2	119.58	5/2-	0.0	3/2-	Mult.: D+Q from $\gamma(\theta)$.
						$A_2 = -0.25 \ 4, \ A_4 = -0.03 \ 6.$
132.4 <i>1</i>	100	132.41	5/2+	0.0	3/2-	$A_2 = +0.01 \ 2, \ A_4 = +0.01 \ 2.$
153.2 <i>1</i>	14 2	374.01	7/2+	220.81	$9/2^{+}$	$A_2 = -0.13 \ 3, \ A_4 = -0.12 \ 7.$
154.7 <i>1</i>	5.4 6	154.69	3/2+	0.0	3/2-	$A_2 = -0.03 5, A_4 = +0.02 11.$
179.3 <i>1</i>		179.3	$(1/2^{-})$	0.0	3/2-	$A_2 = +0.025, A_4 = -0.018$ from (p,γ) .
220 1	≈1 [‡]	374.01	7/2+	154.69	$3/2^{+}$	
228.7 1	1.0 3	524.30		295.6	$(3/2^{-}, 5/2^{-})$	
232.8 2	0.5 3	352.48	$(5/2^-, 7/2^-)$	119.58	5/2-	
241.6 <i>1</i>	3.3 5	374.01	7/2+	132.41	5/2+	$A_2 = +0.3 I$, $A_4 = +0.3 2$, from (p, γ) .
273.1 <i>I</i>	91	273.1	$(1/2^-, 3/2^-)$	0.0	3/2-	$A_2 = +0.05 2$, $A_4 = -0.03 4$, from (p,γ) .
295.6 1	3.1 5	295.6	$(3/2^{-}, 5/2^{-})$	0.0	3/2-	$A_2 = -0.07 6$, $A_4 = +0.2 l$, from (p, γ).
352.5 1	8.9 8	352.48	$(5/2^-, 7/2^-)$	0.0	3/2-	$A_2 = +0.215, A_4 = +0.057.$
398.4 <i>I</i>	6.7 7	518.04	7/2-	119.58	5/2-	$A_2 = -0.4 I, A_4 = +0.1 2.$
518.1 1	12 2	518.04	7/2-	0.0	$3/2^{-}$	$A_2 = +0.3 I, A_4 = 0.0 2.$
563.0 1	24.2	783.81	$(13/2^+)$	220.81	9/2+	$A_2 = +0.354, A_4 = -0.064.$
565.9 2	4.76	939.91	$(11/2^{+})$	374.01	7/21	$A_2 = +0.3 I, A_4 = -0.1 2.$
631 #		1149	$(11/2^{-})$	518.04	7/2-	E_{γ} : assigned by authors to ⁷⁴ Se, but shown by 1985Lu02 and 1989Ma27 to be due, at least in part, to ⁷⁵ Br.
654.2 <i>1</i>	15 2	773.79	$(9/2^{-})$	119.58	5/2-	$A_2 = +0.34 \ 6, A_4 = -0.03 \ 9.$
719.0 ^{&} 3	≈4 [‡]	939.91	$(11/2^+)$	220.81	$9/2^{+}$	
742.7 <i>3</i>	91	1516.5	$(13/2^{-})$	773.79	(9/2 ⁻)	$A_2 = +0.41 \ I, \ A_4 = 0.0 \ I.$
747.2 [#] 3	71	1896.2	(15/2 ⁻)	1149	(11/2 ⁻)	E_{γ} : assigned by authors to 1265 level. A ₂ =+0.1 2, A ₄ =0.0 2.
830.1 <i>1</i>	12 3	1613.92	$(17/2^+)$	783.81	$(13/2^+)$	$A_2 = +0.26$ 7, $A_4 = -0.09$ 9.
839 1	≈2 [‡]	2355.5		1516.5	$(13/2^{-})$	
851 <i>I</i>	3.5 9	1790.9	$(15/2^+)$	939.91	$(11/2^+)$	$A_2 = +0.4 I, A_4 = 0.0 2.$
859.1 [#] 4	≈3 [‡]	2755.4	$(19/2^{-})$	1896.2	$(15/2^{-})$	E_{γ} : assigned by authors to 2124 level.
1045.2 4	≈2	2659.1		1613.92	$(17/2^+)$	

[†] From (³He,pn γ) reaction at E=32 MeV.

[‡] Estimated from $\gamma\gamma$ coin.

Placement assigned (evaluators) from results of heavy-ion reactions (see ⁴⁸Ti(³⁰Si,p2nγ)).
@ Additional information 1.
& Placement of transition in the level scheme is uncertain.

 $^{75}_{35}{
m Br}_{40}$

⁷⁴Se(p,γ),(d,nγ),(³He,pnγ) 1981Wi05

 $^{75}_{35}{
m Br}_{40}$