⁷⁵As(γ, γ') **1969Mo27,1981Ca10**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Alexandru Negret, Balraj Singh	NDS 114, 841 (2013)	30-Jun-2013						

1969Mo27: E<8 MeV; measured $\gamma(\theta)$; γ rays from ⁵⁶Fe(n, γ) resonance scattering and self absorption.

1981Ca10: E \approx 0.5-1.65 MeV; photons from bremsstrahlung measured $\gamma(\theta)$, self absorption absolute γ transition strength and deduced T_{1/2} by nuclear resonance fluorescence method.

Others:

1978Ca24: E=572.5-1370 keV bremsstrahlung; resonant scattering, self absorption (same group as 1981Ca10).

1970Mo26: measured $\sigma(E\gamma)$, $\gamma(\theta)$. 1969Mo27, 1970Mo26, 1979Mo19 are from the same group.

1967La07 (also 1965La01): γ rays from ⁷⁵Se ε , resonant scattering, $\gamma(\theta)$ withGe(Li).

1962Me04: γ rays from ⁷⁵Se ε . Resonance transmission.

Other measurements: 1977Ce02, 1974DaZJ, 1968A113, 1964Sh23, 1958Me76, 1958La10.

Data are from 1969Mo27, except as noted.

⁷⁵As Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0	3/2-		
199	$1/2^{-}$		
265	3/2-	11.2 ps <i>3</i>	T _{1/2} : from 1962Me04 and 1967La07. 1962Me04 report $\Gamma(0)$ =4.03×10 ⁻⁵ eV 11 and obtained T _{1/2} =10.9 ps 7 using $\Gamma(0)/\Gamma$ =0.96. 1967La07 report $\Gamma(0)^2/\Gamma$ =3.62×10 ⁻⁵ eV 20 and use $\Gamma(0)/\Gamma$ =0.97 to get T _{1/2} =11.9 ps 7. Our adopted value is $\Gamma(0)/\Gamma$ =0.968 1 giving T _{1/2} =11.2 ps 3.
280	$5/2^{-}$	279 ps 21	E(level): from 1967La07.
			T _{1/2} : 1967La07 report $\Gamma(0)^2/\Gamma=1.60\times10^{-6}$ eV <i>12</i> and get T _{1/2} =279 ps <i>21</i> using $\Gamma(0)/\Gamma=0.99$. From our adopted branching, we get $\Gamma=1.68\times10^{-6}$ and thus T _{1/2} =270 ps <i>21</i> .
404?			
468			
568?			
572.5	5/2-	2.9 ps 3	
618			
823	7/2-	3.0 ps 3	
865.5		0.60 ps 5	
1076.0	3/2-	0.199 ps 13	
1128.5	$(1/2^+)$	1.02 ps 11	
1203	3/2-		
1262			
1349.0	3/2-	0.125 ps 22	
1370.0	$(3/2^{-})$	0.15 ps 3	
1432	3/2-		
1505	$3/2^{(+)}$		
1607	1/2-,3/2-		
1843?			
1872	3/2-		
2064			
2097			
2176	1/2		
2233			
2470?			
2572?			
2596			
2687?			
7646	$1/2^{(+)}$	1.3 fs 4	$T_{1/2}$: from Γ=0.36 eV 10 and Γ(0)=0.041 eV 11 given by 1969Mo27. J ^π : from $\gamma(\theta)$ and transition strengths.

Continued on next page (footnotes at end of table)

⁷⁵As(γ, γ') **1969Mo27,1981Ca10** (continued)

⁷⁵As Levels (continued)

 $\gamma(^{75}\mathrm{As})$

[†] From Adopted Levels.

[‡] From 1981Ca10 (nuclear resonance fluorescence technique) based on measurement of $W(\theta)(2J+1)(\Gamma(\gamma_0))^2/\Gamma$, with branching taken from 1978Ab06 in $(n,n'\gamma)$, and with $W(\theta)$ calculated for the δ values given by 1978Ab06, except for the 823 γ , taken as E2, and the 865 γ , with $W(\theta)$ taken as 0.99.

E _i (level)	$J^{\pi}_{:}$	Eγ	I_{ν}^{\dagger}	Ef	\mathbf{J}^{π}_{c}	Mult. [‡]	δ^{\ddagger}	Comments	
	1	~/	/		<u>J</u>		0.01.(—
265	3/2	265"		0	3/2	D+Q	-0.01 4	$A_2=0.14$ 5 (1967La07).	
280	5/2-	280"		0	3/2-	D+Q	-0.42 8	$A_2 = 0.92 \ I2 \ (1967La07).$	
572.5	5/2-	572.5 ^e 10		0	3/2-				
823	7/2-	823.0 ^{^w} 10		0	3/2-				
865.5		865.5 [@] 10		0	3/2-				
1076.0	3/2-	1076.0 [@] 10		0	3/2-				
1128.5	$(1/2^+)$	1128.5 [@] 10		0	3/2-				
1349.0	$3/2^{-}$	1349.0 [@] 10		0	$3/2^{-}$				
1370.0	$(3/2^{-})$	1370.0 [@] 10		0	3/2-				
1432	3/2-	1028 <mark>&</mark> 4		404?	,				
	-/-	1432 4		0	$3/2^{-}$				
2064		1799 4		265	3/2-				
2176	1/2	1911 4		265	3/2-				
2596		2596		0	3/2-				
7646	$1/2^{(+)}$	4959 ^{&} 4		2687?					
		5050 4	0.5 2	2596					
		5074 ^{&} 4		2572?					
		5176 ^{&} 4		2470?					
		5413 4	1.0 2	2233					
		5470 4	0.9 2	2176	1/2				
		5549 4 5582 4	1.8 4	2097					
		5774 4	252	1872	3/2-				
		5803 ^{&} 4	0.1.1	18432	5/2				
		6039 4	1.2.2	1607	$1/2^{-}.3/2^{-}$				
		6141 4	1.2 2	1505	$3/2^{(+)}$				
		6214 4	7.1 6	1432	3/2-				
		6291 4	0.9 2	1349.0	3/2-				
		6384 4	1.4 3	1262	a /a				
		6443 4	2.1 2	1203	$3/2^{-}$				
		6570 <i>4</i>	0.8 5	1128.3	$(1/2^{+})$ $3/2^{-}$				
		7028 4	2.9 2	618	5/2				
		$7078^{\&} 4$	202 2	568?					
		7178 4	9.7 8	468					
		7242 ^{&} 4		404?					
		7381 4	41 3	265	$3/2^{-}$				
		7447 <i>4</i>	1.5 3	199	1/2-				
		7646 <i>4</i>	11.3 9	0	3/2-				

[†] Photon branching ratios. The authors state that the uncertainties for the strong branches are 8%. The uncertainties for the weak branches are not specified, and have been estimated by the evaluators.

⁷⁵As(γ,γ') 1969Mo27,1981Ca10 (continued)

 $\gamma(^{75}\text{As})$ (continued)

[‡] From $\gamma(\theta)$ in 1967La07. [#] From 1967La07. [@] From 1981Ca10. I γ from 1978Ca24. [&] Existence of transition is uncertain.

75 As(γ, γ') 1969Mo27,1981Ca10

Level Scheme

Intensities: % photon branching from each level

 $^{75}_{33}As_{42}$

4